
HAL Id: hal-00658836
https://hal.inria.fr/hal-00658836

Submitted on 17 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Banded structure in binary matrices
Gemma Garriga, Esa Junttila, Heikki Mannila

To cite this version:
Gemma Garriga, Esa Junttila, Heikki Mannila. Banded structure in binary matrices. Knowledge
and Information Systems (KAIS), Springer, 2011, 28 (1), pp.197-226. �10.1007/s10115-010-0319-7�.
�hal-00658836�

https://hal.inria.fr/hal-00658836
https://hal.archives-ouvertes.fr

Banded Structure in Binary Matrices⋆

Gemma C. Garriga1, Esa Junttila2, and Heikki Mannila1,2

1 HIIT, Helsinki University of Technology, Finland
2 HIIT, University of Helsinki, Finland

Abstract. A binary matrix has a banded structure if both rows and
columns can be permuted so that the non-zero entries exhibit a staircase
pattern of overlapping rows. The concept of banded matrices has its
origins in numerical analysis, where entries can be viewed as descriptions
between the problem variables; the bandedness corresponds to variables
that are coupled over short distances. Banded data occurs also in other
applications, for example in the physical mapping problem of the human
genome, in paleontological data, in network data and in the discovery of
overlapping communities without cycles.
We study the banded structure of binary matrices, give a formal defi-
nition of the concept and discuss its theoretical properties. We consider
the algorithmic problems of computing how far a matrix is from being
banded, and of finding a good submatrix of the original data that ex-
hibits approximate bandedness. Finally, we show by experiments on real
data from ecology and other applications the usefulness of the concept.
Our results reveal that bands exist in real datasets and that the final
obtained orderings of rows and columns have natural interpretations.

1 Introduction

Matrices with binary values occur in many different applications. A typical ex-
ample is market basket data gathered by retail companies [1]. Further than this,
binary matrices abound in a large variety of fields ranging from information
retrieval (documents and words occurrences) [5], to bioinformatics and compu-
tational biology (genes and probes mappings) [2, 26], or ecology and paleontology
(sites and species occurrences) [3, 29]. Understanding the properties of such ma-
trices is therefore important for many applications. A fundamental problem is to
uncover structures that will reveal the nature of the relations between the rows
and the columns of the binary dataset.

In this paper we study the banded structure of binary matrices. A binary
matrix is fully banded if both rows and columns can be permuted so that the
non-zero entries exhibit a staircase pattern of overlapping rows. See Figure 1 for
an illustration of a fully banded matrix.

⋆ A preliminary version of this paper appeared in the proceedings of SigKDD 2008
(see [16]). This current submission corresponds to a significant extension which (1)
includes proofs of formal statements; (2) presents new algorithms that outperform
the ones presented in the previous paper and lift previous fixed-column permutation

Fig. 1. An example of a fully banded matrix.

The concept of banded matrices has its origins in numerical analysis, where
the matrix entries indicate connections between variables. From the computa-
tional point of view, working with banded matrices is always preferable: The
work load involved in performing certain operations, such as multiplication, falls
significantly for banded matrices [13], often leading to huge savings in terms
of calculation time and complexity. There has been much research focused on
minimizing the bandwidth of a matrix (broadly, the distance of non-zero entries
from the main diagonal of the matrix) by applying permutations on the original
matrix [4, 13, 31].

From the data analysis perspective banded structures can occur in many
applications. Consider for example the physical mapping problem of the hu-
man genome. Genome biologists break the genome into pieces (clones) which
by recursive breaking can be eventually sequenced together. Unfortunately, the
information about the relative positions of clones is lost during the breaking
process. The physical mapping process starts with the experimental data from
which information about the clone overlaps can be derived. The biological com-
munity has invested considerable efforts in the analysis of clone–probe matrices,
in order to determine useful properties of both clone and probe orderings [2].

For another application consider the presence/absence data from paleontol-
ogy. Rows represent sites and columns represent species. A banded structure
signifies an overlapping pattern between a set of species occurring in a spatially
correlated set of sites. Or similarly, consider dialect word data described by a
binary matrix of words used in several locations or municipalities. For this lin-
guistic application a band provides a comprehensive visualization of the spatial
distribution of dialects across the different municipalities of a country.

Another application where bands are potentially visible is in the discovery of
overlapping communities without cycles in network data [6]. After finding a suit-
able permutation of rows and columns, a band of 1s from the adjacency matrix
of a network should reveal communities of nodes that are strongly connected in
a overlapping fashion. For example, consider the Football network dataset [17]
containing a match graph of football teams in US colleges in year 2000: a band
corresponds to teams that frequently play together and are geographically close

requirements; (3) compares to previous related work; and (4) includes an extended
experimental evaluation with a view to new applications.

to each other. Or the network of characters in the novel Les Misérables [19] by
Victor Hugo: a band shows the coappearence patterns by groups in the novel.
Notice however, that communities in networks define smaller groups of highly
interacting components and they cannot be always mapped in the shape of a
band. The idea of bandedness is that the locality structure of the communities
can be mapped in a overlapping fashion if this exists.

Fully banded matrices are not expected to arise in a real noisy environment.
Therefore we study the problem of determining the minimum number of trans-
formations one needs to do on the original binary matrix to uncover a banded
structure. The number of such transformations will measure how far a matrix is
from being banded. A simple example is shown in Figure 2. In its original form
the matrix seems to be random, yet when permuted suitably, it exhibits a high
concentration of 1s confined close to the main diagonal band.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

(a)

26 25 12 30 33 29 17 15 3 27 5 24 34 18 6 13 22 23 21 4 40 20 37 7 39 2 28 31 8 36 11 32 19 35 10 9 1 14 38 16

23
7

10
8

28
5

19
18

6
27
26

1
30
24
25
22
17
16
12
13

3
11
29
14
21
15
20

4
9
2

(b)

Fig. 2. An example of a binary matrix in its original form (a), and after permuting
rows and columns to uncover its banded structure (b).

To better illustrate this optimization problem let us examine in more detail
the network data applications mentioned above. Both Football and Les Mis-
érables datasets are small matrices of sizes 115× 115 and 77 × 77 respectively.
The approximate bands exhibited by the datasets are shown in Figure 3. The
band shown by the Football dataset is only 534 bit flips away (that is, number
of 0-to-1 or 1-to-0 transformations) from being fully banded, while the band ex-
hibited by Les Misérables only requires 201 flips. In both cases the ordering of
rows and columns reveals clusters that are linked in an overlapping fashion. For
the football dataset we observe a clear organization of teams in small clusters;
indeed, each of those non-overlapping communities represent teams that are ge-
ographically close to each other and thus, they usually play one against each
other. For Les Misérables dataset we can clearly see which group of characters
co-occur together in the novel, and on the other hand, which characters appear
more independently across the chapters. Not all network datasets might contain
bands, but still they might contain communities. The notion of a community ex-
presses a group of highly interacting nodes, which is more general. The concept

of bandedness we study here forces the mapping of the discovered communities
in a overlapping fashion if this is possible.

Football teams

F
oo

tb
al

l t
ea

m
s

(a) Football

Book characters

B
oo

k
ch

ar
ac

te
rs

(b) Les Misérables

Fig. 3. Band exhibited in two network datasets after proper row and column permu-
tation: Football (a) and Les Misérables (b).

These simple examples already reflect the complexity involved in this prob-
lem. Another optimization problem we consider to cope with the unavoidable
noise is finding a maximum subset of rows and columns from the original matrix
that will exhibit an almost banded structure. Here we explore the combinato-
rial properties related to bandedness and propose algorithmic solutions to solve
the associated optimization problems. Finally, we demonstrate the usefulness
of the band-concept by applying our methods to an extensive collection of syn-
thetic datasets and several real life-sciences applications: paleontological dataset,
mammal dataset, DNA amplification data and Finnish dialect word data.

The rest of this paper is organized as follows. In Section 2 we give a for-
mal definition of the concept of bandedness and study its theoretical proper-
ties. Section 3 introduces the definition of the banded optimization problems. In
Section 4 and Section 5 we propose algorithmic solutions for the banded aug-
mentation problem; and in Section 6 for the banded submatrix problem. Finally
Section 7 shows empirical results and Section 8 discusses related work.

2 Bandedness and its combinatorial properties

This section studies the combinatorial nature of banded matrices. We introduce
an incompatibility graph between the columns of the matrix that will charac-
terize the proper permutations for obtaining a fully banded structure. We also
define an intuitive binary relation between the rows which, under those proper
column permutations, will lead to a banded structure. The combination of these
two results drive to a polynomial test for bandedness.

2.1 Bandedness

Consider a n × m binary matrix M . In the genetic fingerprinting application,
rows would correspond to probes and columns to clones; in the ecological appli-
cation, rows would be sites and columns would be species. We denote the i-th
row of M by Mi and the j-th column of M by M j . Given a permutation π of
natural numbers {1, . . . , m} and a row vector Mi, we denote with Mπ

i the per-
mutation of the vector Mi induced by π. In general Mπ represents the matrix
resulting from applying the column permutation π to each one of the rows of
M . Similarly, Mπ

κ represents the permutation of rows and columns according to
κ and π respectively. Sometimes it is useful to interpret the row and column
vectors of M as sets of indices, that is a row Mi is as well a set of column indices
that appear in the row.

Roughly speaking, a matrix is fully banded if both rows and columns can
be permuted in a way that the non-zero entries exhibit a staircase pattern of
overlapping rows (see Figure 1). A formal definition follows.

Definition 1. A binary matrix M is fully banded if there exists a permutation
of rows κ and a permutation of columns π such that (1) for every row i in Mπ

κ

the entries with 1s occur in consecutive column indices {ai, ai + 1, . . . , bi} and
(2) these indices satisfy ai ≤ ai+1 and bi ≤ bi+1.

From the definition we observe that bandedness is a hereditary property:
submatrices of a fully banded matrix preserve that property. Also, if M is fully
banded also its transpose, MT , is fully banded. Another observation is that for a
matrix to be banded it has to satisfy at least the consecutive-ones property on the
rows and the columns. Formally, a binary matrix M is a consecutive-ones matrix
if it is possible to order the columns so that, in every row, the non-zero entries
occur in consecutive positions [35]. A consecutive interval of 1s from a row will
be denoted as [a, b]: all the entries between columns a and b (inclusive) are 1s and
the rest 0s. Unless explicitly stated, when a binary matrix M is said to satisfy
the consecutive-ones property we assume that it comes permuted to exhibit this
consecutive arrangement of ones in all rows. Thus, we can omit permutation π
from the notation. Testing the consecutive-ones property of a binary matrix and
representing permutations π (if they exist) can be done in polynomial time via
PQ-trees [9], and more recently, in linear time with a certifying algorithm [24];
unfortunately, these algorithms do not handle noise.

Not all matrices with the consecutive-ones property are banded, i.e., part (2)
in the definition is not superfluous. For example, the following is a consecutive-
ones matrix for the rows and the columns yet none of the row–column permu-
tations leads to a staircase pattern of ones.

1 1 1 0
0 1 1 1
0 0 1 0

 (1)

On the other hand, even if the matrix is fully banded, we cannot expect that all
column permutations from the consecutive-ones property will lead to an over-
lapping sequence of rows. An example is the following matrix, which as shown

in Equation 2 has consecutive ones for the rows but it is only banded when the
last column is placed first.

0 0 0 1
1 1 1 1
0 1 1 0

 (2)

Next we characterize exactly the relation of banded matrices with consecutive-
ones matrices. This will be possible via the following binary relation between
rows.

Definition 2. Let Mi = [a, b] and Mj = [a′, b′] be two rows with the consecutive-
ones property. We say that Mj is properly included in Mi, denoted Mj ≺Mi, if
and only if a < a′ and b′ < b. We denote by Mi ⌢ Mj whenever Mi ⊀ Mj and
Mj ⊀ Mi.

As an example, the third row in the small matrix of Equation 2 is properly
included in the second row. The rows of a consecutive-ones matrix M are a
Sperner family of intervals if for any two rows Mi, Mj we have Mi ⌢ Mj . This
Sperner property on the family of row intervals can be seen as a restricted version
of the Sperner property on the family of row sets: two rows Mi and Mj with
Mi ⊂ Mj might, or might not satisfy Mπ

i ⊀ Mπ
j . This depends on the column

permutation π of the consecutive-ones arrangement for M , which, at the end,
determines the starting and ending points of the row intervals. For example, the
third row in Equation 2 would not be properly included in the second row if the
last column was placed first. The following statement characterizes exactly this
relation.

Lemma 1. A binary matrix M is fully banded if and only if M is a consecutive-
ones matrix for a permutation of columns π where every two rows i and j satisfy
Mπ

j ⌢ Mπ
i .

Proof. If for every two rows Mπ
i = [ai, bi] and Mπ

j = [aj , bj] with consecutive
ones we have Mπ

i ⌢ Mπ
j , then: either ai ≤ aj and bi ≤ bj , or aj ≤ ai and

bj ≤ bi. Under these conditions we can easily establish a preorder of rows by
sorting them in ascending value of ai’s, while resolving ties with the ascending
value of their bi’s; if two rows are exactly the same, then ties between them can
be resolved arbitrarily. This preorder defines directly the banded structure of
Definition 1. The other direction of the statement is trivially implied from the
definition of fully banded matrices. ⊓⊔

2.2 An incompatibility graph for bandedness

The set of orderings that satisfies bandedness is a subset of those satisfying
consecutive-ones, as argued with Lemma 1. Unfortunately, checking whether
a matrix is fully banded would be unfeasible if we had to go through all the
permutations of the consecutive-ones property of the same matrix: there might be
exponentially many such permutations. The key lies in identifying the difference

(a,b)

(b,a) (c,a)

(a,c) (a,d)

(d,a)

(b,c) (b,d)

(c,b) (d,b)

(c,d)

(d,c)

(a,b)

(b,a) (c,a)

(a,c) (a,d)

(d,a)

(b,c) (b,d)

(c,b) (d,b)

(c,d)

(d,c)

Fig. 4. The incompatibility graph corresponding to the matrix from Equation 1, with
row sets M1 = {a, b, c}, M2 = {b, c, d}, and M3 = {c}. The upper figure shows the
incompatibilities introduced by only the first row M1 = {a, b, c}, together with the rule
(x, y) and (y, x) are incompatible. The lower figure shows the whole graph obtained
by adding the incompatibilities from all rows. M has the consecutive-ones property as
this graph is bipartite.

between bandedness and consecutive-ones. In the remaining of this section we
will study the incompatibilities that arise under certain permutations of the
columns to derive a polynomial test for bandedness.

A very convenient data structure to deal with the valid column orderings
of a consecutive-ones relation is the incompatibility graph, as introduced in [24].
An incompatibility graph is simply an undirected graph whose vertices are pairs
of elements (a, b), for all column indices a 6= b, and whose edges reflect the
incompatibility relation derived from the following observations.

Suppose we want to discover the consecutive-ones ordering of a set of columns.
For each pair of columns a, b of M , we have that the order (a, b) (column a be-
fore b) is incompatible with order (b, a). Moreover, for a triplet of columns a, b, c
and a row i of M with a, c ∈ Mi and b /∈ Mi, the pairs (a, b) and (b, c) can-
not appear in the same consecutive-ones relation. Namely, they would imply
that b goes between a and c in the column ordering, which would imply that
M fails to be consecutively ordered in the i-th row. Therefore, (a, b) and (b, c)
are incompatible in this case. It follows from definition that only these types
can violate consecutive-ones property. The incompatibility graph G(M) of M
is an undirected graph formed by adding all edges of these types. A toy ex-
ample of an incompatibility graph is shown in Figure 4. It is then clear that a
consecutive-ones relation must not contain incompatible pairs, thus giving the
following result.

Proposition 1 ([24]). A binary matrix M has the consecutive-ones property if
and only if its incompatibility graph G(M) is bipartite.

Next we study further the observation given by Lemma 1 and use the in-
compatibility graph to test the bandedness property in polynomial time. The
idea is to augment the graph G(M) with more incompatibility edges; basically,
those incompatibility ordering pairs that restrict the consecutive-ones orderings
to those preserving a Sperner family of row intervals. We denote the augmented
graph with Ĝ(M).

Suppose we have two rows i and j of M and Mi ⊂ Mj . Let a, b, c ∈ Mj

be column indices such that a ∈ Mi but b, c /∈ Mi. Then if the matrix is fully
banded, the orderings (b, a) and (a, c) cannot both hold. Namely, if b is before a
and a is before c, we have entries as follows.

row b a c
Mi: 0 1 0
Mj: 1 1 1

(3)

But in this case, the ordering cannot satisfy the conditions of a full band as one
interval is included in the other (as seen in Lemma 1 this is a necessary condition
for bandedness). We call these new edges added to G(M) to form Ĝ(M) the set of
Sperner conflicting pairs. As an example consider the matrix in Equation 1: it has
the consecutive-ones property, as shown in the incompatibility graph of Figure 4.
However, when adding to that graph the incompatible pairs from M1\M3 =
{a, b} and M2\M3 = {b, d}, the final graph would not be bipartite anymore. This
implies that the matrix in Equation 1 is not banded in any of the consecutive-
ones permutation.

Adding Sperner conflicting pairs to graph Ĝ(M) restricts the set of consecutive-
ones orderings to fully banded orderings. To see this, recall that part (2) in
Definition 1 separates bandedness from consecutive-ones. The only way for ma-
trix M to violate part (2) is that the matrix in Equation 3 is a submatrix of
column-ordered M . The new edges prevent this. Notice that by construction the
incompatibility graph is complete: for each edge there is an incompatiblity pair
(due to part (1) or part (2) of Definition 1) and for every incompatibility pair
there will be an edge reflecting such conflict in the graph.

The number of Sperner conflicting pairs that can be potentially added to the
graph Ĝ(M) is at most quadratic in n. A way of testing bandedness in linear
time in the number of edges of the incompatibility graph is then the following.

Proposition 2. A matrix M is fully banded if and only if its incompatibility
graph augmented with the set of Sperner conflicting pairs is bipartite.

Proof. It follows directly from the construction of the incompatibility graph and
the property stated by Lemma 1. In the incompatibility graph an ordering is
defined by a set of nodes. An ordering of columns satisfying the fully banded
property must have no incompatible pairs in the graph augmented with the
Sperner conflicting pairs. Thus, a proper column ordering for the fully banded
property is an independent set in this graph that consists of half of the vertices.

The reverse of a fully-banded ordering is also a fully-banded ordering, so the
remaining vertices of the incompatibility graph must be also an independent
set. Therefore, the incompatibility graph must be bipartite whenever the matrix
is fully-banded. This is also a sufficient condition: the incompatibility graph fails
to be bipartite whenever the matrix fails to be fully-banded. It follows that if
the graph is not bipartite then it must have an odd cycle, and therefore there is
no independent set that contains half of the vertices in the graph, implying that
there is no column ordering that would make the matrix fully banded. ⊓⊔

We derive next a generalization from Proposition 2. The advantage is that
it will summarize the conflicting Sperner pairs directly into an augmentation of
M . This will be particularly important for the algorithmic solutions we later
present to our optimization problems.

Lemma 2. Let M̂ be the binary matrix M augmented with a set of new rows
Mij = Mj\Mi for every two rows Mi ⊂ Mj. Then we have that M is fully

banded if and only if M̂ has the consecutive-ones property.

Proof. If any two rows i and j of M such that Mi ⊂Mj satisfy Mi ⌢ Mj under a
certain permutation π of the consecutive-ones, then Mj\Mi will be consecutive-
ones for that permutation π as well. On the other direction: any permutation π
of the consecutive-ones on M̂ , preserves both the consecutive-ones property of
M and the Sperner family of intervals of their rows. ⊓⊔

The maximum number of rows that can be potentially added to the original
M is at most n · (n− 1)/2.

3 Problem definitions

Real world matrices are not expected to be fully banded. Therefore we introduce
a measure that computes how far a matrix is from being banded. We will do so
by looking at the minimum number of 0s that need to be transformed into 1s
to make a matrix banded. We name this optimization problem as the Minimum
Banded Augmentation problem.

Problem 1. (Minimum Banded Augmentation, Mba) Given a binary matrix
M , find the minimum number of 0s that need to be transformed into 1s so that
M becomes fully banded.

The formulation of the problem above offers a way to estimate how strong the
underlying banded pattern is; this will be closely related to the permutations of
rows and columns needed to find the full band. In addition, if a dataset contains
a banded pattern, we can identify entries that are likely errors by checking which
entries were transformed. In the best case, the fully banded matrix induced by
transformations is closer to reality than original erroneous data is. From now on,
the transformations are also called flips, and the solutions to the Mba problem
are called minimum-flips values.

Example 1. Finding the minimum number of 0s that need to be transformed
into 1s in order to make the matrix band is not easy. Consider the following
input matrix and the transformation.

1 0 1 0
1 1 1 1
0 1 1 0

1 0 1 0
1 1 1 1
0 1 1 1

Despite the appearances, only one flip (bottom right) is enough to transform the
matrix into a full band. Notice that after this flip, the third of the columns in
the matrix can be placed in the second position to display the full band.

We denote with β(M) the optimal number of flips to make the matrix fully
banded. Matrices that are fully banded satisfy β(M) = 0. A trivial observation
following from the symmetry of our definition of fully banded matrices is the
following.

Proposition 3. For a binary matrix M , we have β(M) = β(MT), where MT

is the transpose of M .

For ecological and paleontological data we often have the situation where
the 1s are reasonably certain, but the 0s can be missing values. Thus the Mba
problem is quite natural. However, for other types of applications it is useful
to allow flips in both directions, from 1 to 0 and from 0 to 1. We refer to the
version of Mba as the Bidirectional Mba. We will denote with βB(M) the
optimal number of such bidirectional flips to obtain a fully banded matrix. Note
that βB(M) ≤ β(M).

A variation of the Bidirectional Mba is to consider its weighted version:
suppose we have a cost associated to 0-to-1 flips and a cost associated 1-to-0 flips;
the weighted problem becomes that of finding a transformation with the mini-
mum cost. This weighted variation of the Bidirectional Mba can be especially
useful in ecological applications, as it will be justified in the experiments.

Example 2. To illustrate the importance of bidirectional flips, consider the fol-
lowing input matrix as in Example 1 with one extra row.

1 0 1 0
1 1 1 1
0 1 1 0
0 1 1 0

1 0 1 0
1 1 1 0

0 1 1 0
0 1 1 0

Even if we have one more row, only one flip is necessary to transform the band
into a full band: in this case, the last 1 on the second row is flipped. Again, move
the third column to the second position to see the full band.

The algorithmic complexity of the Mba problem is expected to be hard.
The basis of this assumption arises from Lemma 2 and the known fact that
the Consecutive-ones Matrix Augmentation problem (with 0-to-1 flips)

is NP-complete [27]. Also symmetric banded matrices have an interpretation
as proper interval graphs [30], and general banded matrices as proper interval
digraphs [32]. Both the edition and deletion of edges to transform a general graph
into an interval graph is NP-complete [10].

A second problem we study here is the following.

Problem 2. (Maximum Banded Submatrix, Mbs) Given a binary matrix M
and an integer k, find the maximum submatrix M ′ of M such that it is banded
after at most k flips.

The Mbs problem will be useful in datasets exhibiting several independent
band structures, or also, when noise is too high to identify a clear band from
the complete dataset. In essence, a solution extracts the most relevant banded
pattern in a dataset. Since Mbs is only a generalization of the Mba and Bidi-
rectional Mba problem, the algorithmic complexity is also expected to be
hard.

4 Algorithms with fixed column permutation

Since the values of β(M) and βB(M) cannot be computed exactly for larger
instances, we consider algorithms for their estimation in both the Mba and the
Mbs problems. We denote those upper bounds with β̃(M) and β̃B(M).

We first investigate a special form of the problems where we assume that
a column permutation that establishes the banded structure is already known.
Later we will show ways to lift this requirement.

4.1 Algorithms for Mba

By Lemma 1, when having a fixed column permutation the Mba problem decom-
poses into enforcing the consecutive-ones property for single rows, and after that,
making some final flips to ensure that rows form a Sperner family of intervals.
Algorithm 1 outlines this Fixed Permutation solution.

Assuming that the column permutation π is given and that Mba only allows
0-to-1 flips, there is only one exact way of producing a consecutive-ones relation:
by flipping all possible 0s falling between 1s for each row of Mπ (lines 4–6). A
second phase has to ensure that all row intervals will be pairwise overlapping,
that is Mπ

i ⌢ Mπ
j for all rows i 6= j (lines 7–13). Since only 0-to-1 flips are

allowed, the solution is simply to extend the row intervals. An extension of
Mi = [a, b] means to update the endpoints of the interval for a new [a′, b′] such
that a′ ≤ a ≤ b ≤ b′.

At every step the algorithm takes a row Mπ
i and calculates its optimal ex-

tension (if this is needed). To do so it will select all the superintervals Mπ
j ≻Mπ

i

and check all the potential extensions for Mπ
i that would resolve the Sperner

conflicts that the i-th row has with those j-th rows.
An extension of Mπ

i that will always resolve all Sperner conflicts for that row
can either be a left-hand side extension to the leftmost Mπ

j ≻Mπ
i (line 10 (a)); a

Algorithm 1 The Fixed Permutation algorithm for Mba

1: Input: An n × m binary matrix M and a permutation π

2: Output: A permutation κ of rows
3: Fix the column permutation of M to be π

4: for each row i in Mπ do

5: Flip all those 0s falling between 1s
6: end for

7: for each row i in Mπ s.t. Mπ
i = [a, b] do

8: Let C = {Mπ
j = [aj , bj] | Mπ

i ≺ Mπ
j }

9: Extend Mπ
i = [x, y] with the best from the following options:

10: (a) x = min{aj | [aj , bj] ∈ C} and y = b

11: (b) x = a and y = max{bj | [aj , bj] ∈ C}
12: (c) x = aj and y = max{bk | [ak, bk] ∈ C, ak < aj},

for every Mπ
j = [aj , bj] ∈ C

13: end for

14: Sort the rows [a, b] of Mπ in ascending order of as, resolving ties with the ascending
order of their bs.

right-hand side extension to the rightmost Mπ
j ≻Mπ

i (line 11 (b)); or, extending
Mπ

i to both left and right-hand sides with a combination of two superintervals
(line 12 (c)). This only requires checking the starting point of each Mπ

j ≻ Mπ
i

and combining it with the right-most ending point from all other superintervals
Mπ

k ≻ Mπ
i whose starting point comes before Mπ

j . Eventually, for a row i the
algorithm takes the extension that represents fewest transformations.

Resolving the Sperner conflicts for a row i does not change the optimal
extension of other rows j 6= i (there are no cascade effects). To see this suppose
that i includes a new interval k after its extension, and let j be the interval
that previously contained i and that originated the best optimal extension of i
(in lines 10–12). This interval j contains k by transitivity, and indeed, it also
contained k even before i was extended. This implies that when processing k, its
optimal extension cannot be changed because of a previous extension of interval
i.

Example 3. To illustrate the Fixed Permutation algorithm, consider again the
small matrix in Example 1.

1 0 1 0
1 1 1 1
0 1 1 0

1 1 1 0
1 1 1 1
0 1 1 0

1 1 1 0
1 1 1 1
0 1 1 1

Under this given fixed column permutation, the algorithm would transform first
all 0s falling between 1s: this corresponds to flipping one 0 in the first row of
the matrix. Then, the algorithm would resolve the Sperner conflicts between the
rows: there is a conflict between the second and the third row, which can be
resolved by flipping the bottom right 0 into a 1. The matrix is fully banded
for this permutation after doing two 0-to-1 flips. The number of flips done in
this illustration is 2, while we showed in Example 1 that only one flip would be

Algorithm 2 The Bidirectional Fixed Permutation algorithm for Bidirec-
tional Mba
1: Input: An n × m binary matrix M and a permutation π

2: Output: A permutation κ of rows
3: Fix the column permutation of M to be π

4: for each row i in Mπ do

5: Let W π
i be the weight vector for row i of M

6: Let [a, b] be the maximum consecutive subarray on W π
i

7: Update Mπ
i = [a, b]

8: end for

9: for each pair of rows i, j in Mπ do

10: if Mπ
i ⊂ Mπ

j then

11: Let A = Mπ
j \M

π
i

12: Let WA be the weight vector for A

13: Let [a, b] be the solution of the maximum consecutive subarray of WA

14: Update Mπ
i preserving Mπ

j \Mπ
i = [a, b]

15: end if

16: end for

17: Sort rows [a, b] of Mπ in an ascending order of as, while deciding ties with the
ascending order of their bs.

necessary to make the matrix fully banded. Therefore, an important component
of this fixed-permutation algorithm is the initial permutation that is given to
the algorithm.

For a fixed permutation π of the columns, the Fixed Permutation algorithm
computes exactly β(Mπ) in polynomial time. This will be always an upper bound
of β̃(M). The number of comparisons between rows made by the algorithm will
be at most n · (n− 1)/2. Since every comparison requires at most n comparisons
(line 12 (c)), the final complexity of the algorithm is of the order O(n3).

Finally we have the following property derived from the above algorithm.

Proposition 4. If a permutation π of the columns is fixed, Mba for Mπ is
solvable in polynomial time.

4.2 Algorithms for bidirectional Mba

Next we study the properties of the algorithms for the Bidirectional Mba
problem. Again we will use the same principle of assuming a fixed column
permutation π. The basic idea here is also simple: first solving optimally the
consecutive-ones property for bidirectional flips on the Mπ and after that, re-
solving Sperner conflicts between rows. Algorithm 2 gives the outline of the
Bidirectional Fixed Permutation algorithm.

The first simple observation we use is the following.

Proposition 5. If a permutation π of the columns is fixed, the minimum num-
ber of bidirectional flips that lead to a consecutive-ones relation on Mπ can be
solved exactly in linear time.

To see this consider a n×m matrix of weights W where each non-zero entry
of M will be assigned a +1 in W , and each zero entry of M will be assigned a
weight of −1. This kind of weight matrix assumes equal cost between the two
types of flips.

W j
i =

{

+1 if M j
i = 1

−1 if M j
i = 0

In this form, the problem of finding the optimal consecutive-ones solution with
bidirectional flips for Mπ

i corresponds to solving the maximum subarray problem
on Wπ

i . The aim of the maximum subarray problem is, for a given array of
numbers, to find a consecutive subarray such that the sum of the numbers in the
subarray is maximum. This can be done in linear time in the size of the array
by making use of a scan-line algorithm [12]. In essence, for a solution [a, b] of the
maximum subarray algorithm over Wπ

i , we should update Mπ
i with consecutive

ones between the columns a and b, while setting to 0s the rest of its entries.
This corresponds to lines 4–8 in Algorithm 2. Note that weights of the matrix
W can be tuned according to the apriori knowledge of the application. In this
way we would be solving the weighted Bidirectional Mba. As an example,
after substituting +2 for +1, 0-to-1 flips have half the cost of 1-to-0 flips.

In the second phase (lines 9–16) the algorithm proceeds by removing the
Sperner conflicts between the rows of Mπ, which at this stage already ex-
hibit a consecutive-ones property. The useful technical observation comes from
Lemma 2: A matrix M will be fully banded as long as the augmented M̂ has
consecutive ones. Therefore, to eliminate all possible Sperner conflicts between
the row intervals of Mπ, the algorithm simply has to go through all the extra
rows described in M̂ and make them consecutive ones. When propagating the
changes back to Mπ we would end up with a banded matrix. As above, we can
make use of the maximum subarray problem on the extra rows of M̂ to solve the
problem exactly for bidirectional flips. It only remains to update rows in Mπ so
that they are kept consistent with the changes made over M̂ . The final obtained
solution on Mπ will be always banded. Basically, this corresponds exactly to de-
ciding the best number of bidirectional flips that will eliminate Sperner conflicts
in a pairwise comparison of rows in Mπ. The final complexity of the algorithm
is O(n2m).

The Bidirectional Fixed Permutation algorithm, however, is not optimal
for the Bidirectional Mba problem on Mπ. The problem resides in the second
phase: rows are compared in a pairwise fashion and globally beneficial updates
may be missed. In general, it seems that the Bidirectional Mba problem
would be still hard for a fixed permutation of the columns.

Example 4. To illustrate the Bidirectional Fixed Permutation algorithm con-
sider the matrix in Example 2.

1 0 1 0
1 1 1 1
0 1 1 0
0 1 1 0

1 1 1 0
1 1 1 1
0 1 1 0
0 1 1 0

1 1 1 0
1 1 1 0

0 1 1 0
0 1 1 0

Under this given fix column permutation, the algorithm would transform first
the matrix into a consecutive-ones relation; as shown before, this can be solved
exactly by finding the consecutive maximum subarray problem for each row. In
the example, this corresponds to flipping second 0 in the first row to a 1 (notice
that we could have also flipped any of the 1s of the first row into a 0 with
the same final cost). In the second phase, the algorithm resolves the conflicts
between the rows: there are two conflicts between the second row and the third
and fourth row respectively, which will be resolved after flipping the last 1 of the
second row into a 0.

As a final step in both Algorithm 1 and Algorithm 2, it only remains to sort
the rows with the preorder given by the row intervals to visually exhibit the fully
banded structure. The banded pattern in original dataset is described by this
row-ordering.

4.3 Finding good column permutations

An essential component of Algorithm 1 and Algorithm 2 is to identify a good
column permutation that will be fixed since the beginning; new algorithms that
lift this restriction will be introduced in the next section. Intuition says that a
good permutation will tend to put similar columns close enough to each other
in the order. If the matrix exhibits banded structure, an order based on the
similarity between columns should also preserve the band. We define next several
similarity measures to compare columns and use two different methods to find
a proper order.

One measure of similarity between two columns is the correlation similarity.
Given two columns Ma and M b the correlation similarity is:

CorrS(Ma, M b) = (1 + ρab)/2,

where ρab represents the Pearson coefficient between the columns. Values range
from 1 (identical columns) to 0 (anticorrelated columns).

As an alternative we will use the overlapping measure computed by the Jac-
card coefficient:

J(Ma, M b) =
|Ma ∩M b|

|Ma ∪M b|
.

This similarity measure captures the particularities of our problem where columns
should be increasingly overlapping one with the other. It takes the highest value
of 1 when columns Ma and M b are exactly the same. The overlapping similarity
for non-intersecting columns is 0. Other straightforward measures we will use
are the dot product and the Hamming distance metric between columns.

In order to find a good permutation of the columns preserving the similarity
or distance relationship, we consider a complete undirected graph whose nodes
are the columns of the input matrix M . The weight of an edge {a, b} is defined by
the similarity between a and b. This similarity can be defined by any of the mea-
sures mentioned above. We will use two methods to find a good order between

Algorithm 3 The Alternating algorithm for Mba or Bidirectional Mba

1: Input: An n × m binary matrix M , a number of iterations t

2: Output: A permutation κ of rows and a permutation π of columns
3: Initialize π with a random permutation of the columns
4: Let A = Mπ

5: repeat

6: Apply a fixed column permutation algorithm on A

7: Transpose the current matrix A = AT

8: until reaching t iterations
9: Return the pair of row–column permutations, κ and π, with the best band found.

columns: spectral ordering [3] and approximation of the minimum Hamiltonian
path (by means of constructing a minimum spanning tree) [12]. Note that simi-
larity measures will be transformed into distances for the Hamiltonian path.

5 Lifting the fixed column permutation requirement

Algorithm 1 and Algorithm 2 are dependent on fixing a column permutation
beforehand. In this section we propose algorithmic strategies that avoid this
dependency: two new methods (Alternating and Simulated Annealing) and
a pre-existing method (Barycentric), now adapted to solve band-problems.

5.1 Alternating method

The first of these strategies follows from Proposition 3. It means that in practice
we can solve the Mba problem or Bidirectional Mba problem on either M
or MT . This suggests the following alternating approach: solving the problem of
finding a good row permutation given the current column permutation (with any
of the fixed permutation algorithms 1 or 2) and then, transposing the matrix
to iterate with the current configuration until convergence, or until a certain
number of iterations is reached. The pseudo-code of this Alternating algorithm
is shown in Algorithm 3.

Notice that the alternating strategy just described does not necessarily con-
verge for all matrices. Indeed, it is not possible to guarantee that the value of
β̃(M) or β̃B(M)—the approximated value for β(M) and βB(M) respectively—
will decrease after each iteration. To stop the alternating process, we bound the
number of iterations by an input parameter t. The output of this algorithm is the
pair of row–column permutations that achieved the best value of β̃(M) among
the t iterations.

5.2 Barycentric method

Another strategy that transposes the matrix is presented by the Barycentric

algorithm, originally proposed in [33]. In essence, the Barycentric algorithm

finds good permutations of both rows and columns based on a barycenter mea-
sure (average position of 1s in a row). Let the barycenter of row i be defined as
follows:

Barycenter(i) =

∑

j=1..m j ·M j
i

∑

j=1..m M j
i

.

The Barycentric algorithm first computes the barycenter for all rows, then
it orders (stable ordering) the rows from smallest to largest barycenter, and
finally, it transposes the matrix M to iterate again following the same strategy
until convergence. Notice that this sorting process does not use flips or compute
in any way the borders of the band at any iteration. Indeed, Barycentric only
orders rows and columns according to the barycenter measure in an iterative
fashion.

5.3 Simulated annealing method

Finally, we present a simulated annealing metaheuristic to find a good approxi-
mation of the global minimum for the Mba and Bidirectional Mba problems.
We do not expect this stochastic method to be as competitive in terms of run-
ning time as the other algorithms presented this far. In general, the simulated
annealing strategy comes with a high computational cost, but it yields near-
optimal results in most cases. For this reason we use this strategy as a reference
method for comparing the different bandedness solutions.

Simulated annealing [18] is a general stochastic optimization method, used
successfully to solve various combinatorial problems. In band-related problems,
different row–column permutations of the matrix are interpreted as “states” and
minimum-flips costs as “energy values”. We seek an order of rows and columns
for the matrix M that produces the smallest energy, that is βB(M). The search
space includes all permutations of rows and columns.

The simulated annealing algorithm starts with a random state and a large
temperature parameter T , for example 10.0. The algorithm keeps track of the
current state S of the system all the time. The temperature is decreased at
each iteration of the algorithm until a pre-determined number of iterations has
passed. At each iteration, a new candidate state S′ is generated stochastically by
function Neighbor(S). The new state S′ is then accepted as a new current state
with probability min{1, e((E(S)−E(S′))/T)}, where E is the energy function whose
minimum we seek. In our case, this energy function is the minimum number
of flips needed to make the matrix fully banded, with the restriction that both
current row and column permutations remain fixed. An optimal polynomial-time
algorithm (Optimal Visual Band) for the problem is given shortly. Algorithm 4
shows the scheme of the simulated annealing strategy.

We next define the technical details for the auxiliary functions Neighbor and
Optimal Visual Band for the simulated annealing algorithm.

Picking a neighbor The most important requirement for the function Neighbor

is that all states (in our case, permutations) in the search space should be ac-

Algorithm 4 The Simulated Annealing algorithm for Mba or Bidirec-
tional Mba
1: Input: An n × m binary matrix M , a number of iterations t, a large temperature

T and a temperature multiplier α ∈ [0.95, 1)
2: Output: A permutation κ of rows and a permutation π of columns
3: Initialize state S = M and energy E = Optimal_Visual_Band(S)
4: Initialize best solution: Sbest = S and Ebest = E

5: repeat

6: Pick a neighbor S′ = Neighbor(S)
7: Compute energy E′ = Optimal_Visual_Band(S′)
8: if E′ < E then

9: Update best solution Sbest = S′ and Ebest = E′

10: end if

11: Update S = S′ and E = E′ with probability min{1, e((E−E′)/T)}
12: Decrease temperature T = T · α
13: until reaching t iterations
14: Return the row–column permutations of the best solution Sbest.

cessible by repeating the candidate generation process sequentially. We consider
several candidate generation methods [34] for finding good permutations and
we apply them in our 2-dimensional permutation problem. For all these meth-
ods we treat an ordering as a cycle: after the last row the first row follows. We
summarize the methods here.

– Swap-k: Choose two random rows and swap them; do the same for two
random columns. Repeat k times.

– Adj-swap-k: Randomly choose a row index r, then swap (adjacent) rows r
and r + 1; do the same for a randomly chosen column. Repeat k times.

– Reverse: Choose two random row indices r and r′. Starting from r, move
forward in row-order until r′ is found. Reverse the order of all encountered
rows, including r and r′. Do the same for columns.

– Relocate: Choose two random row indices r, r′, and a random integer k ∈
{1, . . . , n}. Starting from r, move forward in row-order until r′ is found. Shift
all encountered rows k steps forward in row-order. Do the same for columns.

– Reverse+Relocate: Apply both reverse and relocate methods simultane-
ously: first choose a set of rows, then relocate the rows and reverse their
order. Do the same for columns.

Finding the optimal visual band For Simulated Annealing to produce
good results, we must compute energy values accurately and efficiently. To this
end, we propose a polynomial-time exact algorithm Optimal Visual Band when
both row and column permutations are fixed.

A fully banded matrix is visually banded, if the row–column permutations of
the matrix conform to bandedness. The problem to be solved is as follows: given
a binary matrix M with fixed row–column permutations and a non-negative

weight matrix W , find the minimum cost of transformations needed to make the
matrix visually banded.

Let a tuple of column indices 〈s, e〉 represent the interval [s, e− 1] including
columns positions s, . . . , e − 1; the tuple of indices 〈s, s〉 represents an empty
interval. The cost of an interval on a row is the total cost for transforming the
row so that the values inside the interval are all 1s and other values are 0s. The
goal is to define intervals on each row r in M so that the intervals of 1s across
the rows have visual bandedness property and the total cost is minimum.

In order to simplify the algorithm, assume that the weight matrix W has
been split in two separate matrices: W1 for the costs of transforming 1s and W0

for the costs of transforming 0s. If M c
r = 1, then W1c

r = W c
r and W0c

r = 0,
otherwise W1c

r = 0 and W0c
r = W c

r .
The algorithm, which is based on dynamic programming, goes through all

rows one by one. It ensures that the 3-dimensional array C contains optimal
cumulative costs for intervals on the previous rows. Using array C, it evaluates
the cost of each interval on current row with respect to M and W and stores the
cumulative interval cost in C. Visual bandedness of intervals is preserved at all
times. For each triplet of indices r, s, e, varying along the row indices for r and
along the column indices for s and e, we update array C(r, 〈e, s〉) via a classical
recurrence:

C(1, 〈1, 1〉)←
∑

j=1...m

W1
j
1

C(r, 〈s, e〉)←min{r1,r2,r3}, where

r1 = C(r, 〈s, e− 1〉) + W0e−1
r −W1e−1

r

r2 = C(r, 〈s− 1, e〉)−W0s−1
r + W1s−1

r

r3 = C(r − 1, 〈s, e〉) +
∑

j=1...s−1

W1j
r +

∑

j=s...e−1

W0j
r +

∑

j=e...m

W1j
r

The recurrence is only applied to triplets of indices r, s, e that satisfy 1 ≤ r ≤
n and 1 ≤ s ≤ e ≤ m+1, where n is the number of rows and m is the number of
columns. As seen in the initialization of the recurrence, the interval of the first
row starts as empty; the cost of this interval is the sum of costs of all errors: all
1s on that row. We next describe the three recurrence operators r1,r2,r3 used
in the recurrence.

– The value of r1 is available if and only if s < e. It represents moving the end
of the interval one position ahead on row r, essentially adding one entry to
the interval. This either introduces an error with cost W0e−1

r , or eliminates
an error with cost W1e−1

r .
– The value of r2 is available if and only if s > 1. It represents moving the

start of the interval one position ahead on row r, thus removing the leftmost
entry from the interval. This either introduces an error with cost W1s−1

r , or
eliminates an error with cost W0s−1

r .

– Value r3 is available if and only if r > 1. It represents fixing the interval
on previous row r − 1 and proceeding to the next row r of M . Initially, the
interval for row r is identical to that of row r − 1, updating the cumulative
cost as follows: all 1s outside the current interval are errors, as well as all 0s
inside the interval. Each error contributes to the total cumulative cost.

Once the recurrence has completed, the optimal solution is the minimum
cumulative cost among the last-row entries of C: min1≤s≤e≤m+1{C(n, 〈s, e〉)}.
An exact sequence of optimal intervals can be traced by storing the operator
used on each entry.

The time complexity for the Optimal Visual Band is O(nm2), caused by
the size of array C. Each sum-operation in the recurrence can be evaluated in
constant time: instead of using the costs in W1 and W0 directly, we construct
cumulative weight matrices of both W1 and W0 on rows beforehand and evaluate
the sums using these matrices. Memory consumption can be lowered to O(m2),
if cumulative costs for row r − 1 are replaced by costs for row r as they are
computed; the time consumption remains unchanged.

6 Algorithms for Mbs

Next we turn to the banded submatrix problem Mbs. Consider a solution matrix
of a band-algorithm. As is common in information retrieval, we can compute,
for each row and column the number of true positive (TP) entries as the number
of 1s in the row (or column) that were not transformed into a 0. That is, they
correspond to relevant 1s contained in the row (column) for bandedness. Simi-
larly, the false positive (FP) entries of a row (or column) correspond to original
0s that were transformed into 1s by the algorithm. Finally, false negatives (FN)
are represented by those original 1s that were switched into 0 by the banded
algorithm.

From here many different measures for evaluating the performance of the
banded retrieval system can be computed. For example we can consider preci-
sion =TP/(FP+TP), recall=TP/(FP+FN) or accuracy=(TP+ TN)/n of each
one of the row and column vectors. The algorithm proposed is called Iterative

row–column elimination. As the name indicates, it will eliminate rows/columns
one at a time, by selecting the one with worst performance so far. Pseudocode
of the algorithm is shown in Algorithm 5.

7 Experiments

In this section we give experimental ground of the bandedness concept. We
demonstrate that our algorithms are computationally effective and produce good
results in synthetic datasets. On top of that, we show that the algorithms are
able to find banded patterns in a variety of real datasets from life sciences. The
banded structures in Figure 2 were found by Alternating algorithm.

Algorithm 5 The Iterative row–column elimination algorithm for Mbs

1: Input: An n × m binary matrix M and an integer k

2: Output: A submatrix M ′ of M

3: repeat

4: Compute ǫ, the number of flips estimated for Mba or Bidirectional Mba

problem on M

5: Rank columns/rows with a performance measure
6: Select the column/row i with worst performance
7: Remove i from M

8: until ǫ ≤ k

7.1 Synthetic Data

Data generation Briefly, we generated synthetic data as follows. For given n
and m and a width parameter 2w, we generate a fully banded matrix by means
of a random walk in the matrix grid. Starting at coordinate (0, 0) of an n ×m
matrix initially set to all zeros, the random walk chooses to move either one
step down (i.e. from (i, j) to (i+1, j)) or one step to the right (i.e. from (i, j) to
(i, j+1)) with equal probabilities. Whenever a step to the right is chosen, we will
set to 1 all the w entries above the current position and all the w entries below
the current position (or less than w, if i < w). The random walk is designed so
that it always reaches the final position (n, m). When it does, the matrix has a
clear solid band of maximum thickness 2w like shown in Figure 1.

Additionally we can introduce noise by flipping the original values, 0 to 1 or 1
to 0, according to given probabilities. We use Pr(0→ 1) as the noise probability
for 0-to-1 flips and Pr(1→ 0) for 1-to-0 flips.

We generated samples of 50 × 55 binary matrices, which are used in all
synthetic data experiments. The width parameter was 2w = 30, which yields
approximately 50% fill of 1s. Before running the experiments on these matrices,
noise was added and row–column permutations were randomized. We prepared
a variety of test settings, including both balanced noise (when Pr(1 → 0) is the
same as Pr(0→ 1)) and unbalanced noise (when they are different), and different
weighting schemes.

In all the synthetic experiments we generated 30 sample matrices for each
one of our parameter settings. The values in the figures of this section are the
averages of the values obtained from the samples. We will next summarize the
performance exhibited by our algorithms on synthetic data.

Methods The algorithms used in experiments include Alternating,Barycentric,
and Simulated Annealing, as well as Fixed Permutation and Bidirectional

Fixed Permutation coupled with several similarity measures and column-ordering
methods. Eventually, we used Optimal Visual Bandmethod to evaluate minimum-
flips values β̃B(M) for each algorithm after row–column permutations were fixed
by each one of the methods.

In order to make the evaluation of algorithms more reliable, we introduce two
new methods, Original and Random. In Random method, row–column permuta-
tions are selected randomly. Another competitor is Original method, which has
access to the original “correct” permutations. By correct we mean that the orig-
inal fully banded structure was generated under these permutations. Once noise
has been added, the matrix is no longer fully banded, but Original gives good
permutations nonetheless.

As expected, the Bidirectional Fixed Permutation strategy outperformed
the Fixed Permutation in all cases where noise exists, so we decided to leave
the Fixed Permutation algorithm out of the results presented next. For the
Bidirectional Fixed Permutation algorithm, we sorted columns via the spec-
tral ordering with three similarity measures: Pearson correlation, dot prod-
uct, and Jaccard similarity. We also experimented with finding good columns-
orderings via the Hamiltonian path approximation (specifically, minimum span-
ning tree approximation) with both Hamming distance and Jaccard distance.
For visual clarity, only the best results are shown: spectral ordering using dot
product and Hamiltonian ordering with Jaccard distance.

For the Simulated Annealing method, we first compare the different neigh-
bor schemes: Swap-k and Adj-swap-k for k ∈ {1, 2, 4}; Reverse, Relocate,
and Reverse+Relocate. Results are shown in Figure 5(a). The number of
iterations was one million and the starting temperature was 10. These param-
eters produced results that we consider near-optimal. In terms of convergence
speed, Swap-1 proved to be the fastest, as seen in Figure 5(a). This scheme was
chosen to be the neighbor scheme for all experiments that include Simulated

Annealing.

Because of the 2-dimensional nature of band-problems, the number of it-
erations that Simulated Annealing needs is larger than other ordinary per-
mutation problems of same size. We studied the convergence of Simulated

Annealing with Swap-1 scheme extensively by using different number of itera-
tions and temperature-multipliers. Using a large multiplier requires significantly
more iterations, which makes the largest multiplier values impractical for this
experimental setting. We chose a running-time limit of 2 minutes and settled
for multiplier α = 0.9999 with 100000 iterations. Other parameter choices that
satisfy the time limit were tested but they failed to produce superior results
consistently. The chosen parameter combination is conservative: temperature is
allowed to drop low enough so that further improvement is unlikely, thus reduc-
ing variance. These parameters yield solutions that have, on average, 3% higher
cost than those from one million iterations.

In most cases, both Alternating algorithm and Barycentric algorithm con-
verge very fast, taking less than 30 iterations in average to find good permuta-
tions, regardless of matrix size and initial permutations. After the first iterations,
the Alternating algorithm does not strictly converge towards an optimal so-
lution, but starts oscillating between good and very good solutions, as seen in
Figure 5(b). Because of this, we return the best solution among the first 100
iterations.

S
S

S

S

S
S S S S S

Simulated annealing convergence

Iteration

m
in

im
um

 fl
ip

s

S
S

S

S

S S S S S S

S
S

S

S
S

S S S S S

A A

A

A

A A A A A A

A
A

A

A

A A A A A A

A A

A

A

A
A A A A A

R
R

R

R
R

R R R R R

L
L

L

L

L
L

L
L

L
L

B B

B

B

B

B B B B B

A
S
A
B
A
L
S
R
S

Adj−swap−2
Swap−4
Adj−swap−1
Reverse+Relocate
Adj−swap−4
Relocate
Swap−2
Reverse
Swap−1

0 100000 200000 300000 400000 500000

500

600

700

800

(a) Simulated Annealing

Alternating method convergence

iteration

m
in

im
um

 fl
ip

s

1 41 81 121 161 201

500

600

700

800

(b) Alternating

Fig. 5. Left part (a) shows the convergence analysis and comparison of neigh-
bor schemes for Simulated Annealing algorithm. The fastest converging schemes
are swap-1 and reverse. Right part (b) shows the convergence analysis for the
Alternating algorithm. On the y-axis: minimum number of flips necessary to make
the matrix fully banded; on the x-axis: number of iterations used.

Results A summary of the main results follows; first, we use the minimum-flips
as quality measure and then a notion of rank correlation measure.

We added balanced noise to the sample of 30 synthetically generated fully
banded matrices and then run each of the presented algorithms to obtain the
β̃B(M) values for the matrices. The average results from the 30 runs were then
computed for each method, as shown in Figure 6(a). We can see that both
Alternating algorithm and Simulated Annealing algorithm consistently per-
form as well as the Original method, and at higher noise levels, they perform
even better. The reason is that the original banded structure starts to disappear
with more noise—the original permutation is no longer the best one with respect
to minimum-flips value. The other methods do not beat Original until extreme
noise levels. We discovered that the Hamiltonian path method (in a fixed per-
mutation algorithm) has large variance, caused by non-optimal cycle-to-path
transformations.

In the unbalanced noise case we chose to fix one of the noise probabilities
Pr(0 → 1) = 0.1 and added different noise levels of Pr(1 → 0) to the input
matrices; again, with a sample of 30 matrices in total. To make the compari-
son reliable, we use an equal cost weighting scheme. As in the balanced noise
case, the average result of 30 runs was collected for each method; the results are
shown in Figure 6(b). Again, the Alternating algorithm and the Simulated

Annealing algorithm perform very well, beating the Original method at noise
levels Pr(1 → 0) > 0.25. Overall, Alternating seems to produce best aver-
age results, although we noticed its variance to be a bit larger than that of the
Simulated Annealing algorithm. Curiously, the Barycentricmethod performs

Average minimum−flips

Pr(0<−>1), log scale

m
in

im
um

−
fli

ps
 a

ve
ra

ge

A
A

A
A

A

A

A

A

S S
S

S

S

S

S

S

B
B

B

B

B

B

B

B

H H H
H

H

H

H
H

D
D

D
D

D

D

D

D

O
O

O
O

O

O

O

O

R R R R R R R R

A
S
B
H
D
O
R

Alternating
Simulated annealing, 100k
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product
Original permutations
Random permutations

0.00 0.01 0.02 0.04 0.08 0.16 0.32 0.5

0

200

400

600

800

1000

1200

(a) Balanced noise

Average minimum−flips

Pr(1−>0) (fixed Pr(0−>1)=0.10)

m
in

im
um

−
fli

ps
 a

ve
ra

ge

A

A

A

A

A

A

A

A
A A

A
A

A

A

A

A

A

A

A

A

A

S

S

S

S

S

S

S

S
S S

S
S

S

S

S

S

S

S

S

S

S

B

B

B

B

B

B

B

B
B

B
B

B

B

B

B

B

B

B

B

B

B

H

H

H

H

H
H

H

H H H

H
H

H

H

H

H

H

H

H

H

H

D

D

D

D

D

D

D

D
D

D
D

D

D

D

D

D

D

D

D

D

D

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

R

R

R

R

R

R

R

R

R

R

R

A
S
B
H
D
O
R

Alternating
Simulated annealing, 100k
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product
Original permutations
Random permutations

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.0

100

200

300

400

500

600

700

(b) Unbalanced noise

Fig. 6. Left part (a) shows the average minimum-flips comparison of the different
methods on synthetic data when balanced noise has been added to the original matrices;
the x-axis corresponds to the variation of noise for both Pr(0 → 1) and Pr(1 → 0). Right
part (b) shows the average minimum-flips comparison of methods on synthetic data
with unbalanced noise; the x-axis corresponds to the variation of noise for Pr(1 → 0)
(where Pr(0 → 1) = 0.1 is fixed all the time). The average value of 30 samples is shown
for both plots. Alternating and Simulated Annealing are the best performers.

poorly here: at high noise levels, the results hardly beat a random permutation.
Spectral methods perform a bit better, whereas the results for Hamiltonian meth-
ods are two-fold: mediocre results at low noise levels; good results at high noise
levels.

Finally, we would like to know how well our methods can recover the original
permutations after we have added noise and randomly reordered the rows and
columns. For this we use Spearman rank correlation, which compares two sets of
rankings and computes a correlation coefficient that describes the similarity of
the rankings. Here we understand a ranking as an ordering of rows and columns.
We compare two rankings, namely original and recovered: the original ranking
matches the row order in the generation process of noiseless data; the recovered
ranking comes from the new row ordering retrieved by any of our algorithms.
Correlation 1.0 means perfect agreement between rankings; values close to 0.0
indicate that there is no correlation between the two.

The rank correlation results for balanced noise are shown in Figure 7(a).
We see that none of the methods dominates others: at low noise levels under
0.15, Spectral methods are able to recover the original order almost perfectly;
from 0.15 to 0.30, the Alternating algorithm seems to be the best choice; at
levels of noise over 0.30, the Barycentric method is the best. Overall, these
three methods are very good in recovering the original row order. Hamiltonian

Rank correlation with ties

Pr(0<−>1)

ra
nk

 c
or

re
la

tio
n

m
ea

n
A A A

A
A

A
A

A

A

B
B B

B
B

B B

B

B

H

H

H H

H

H
H

H

H

D D D
D

D

D

D

D

D

A
B
H
D

Alternating
Barycentric
Hamiltonian+Jaccard
Spectral+Dot product

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.2

0.4

0.6

0.8

1.0

(a) Balanced noise

Rank correlation with ties

Pr(1−>0) (fixed Pr(0−>1)=0.10)

ra
nk

 c
or

re
la

tio
n

m
ea

n

W W W
W

W
W W W

W
W W W

W

W

W

W
W

B B B B B B
B

B B
B

B
B

B B

B

B

B

I I

I I

I

I
I

I

I I

I

I
I

I

I I

E E E E
E

E
E E

E
E

E
E

E E

E
E

E

W
B
I
E

Alternating+Weights
Barycentric
Hamiltonian+Jaccard+Weights
Spectral+Dot product+Weights

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

0.2

0.4

0.6

0.8

1.0

(b) Unbalanced noise

Fig. 7. Left part (a) shows the average rank correlation comparison of all the meth-
ods on synthetic data with balanced noise. On the y-axis: Spearman rank correlation
measure; on the x-axis: variation of noise for both Pr(0 → 1) and Pr(1 → 0) (balanced
noise scenario). Spectral methods, Alternating, and Barycentric all produce good
results. Right part (b) shows the average rank correlation comparison of all the meth-
ods on synthetic data with unbalanced noise. On the y-axis: Spearman rank correlation
measure; on the x-axis: variation of noise for Pr(1 → 0) (unbalanced noise scenario,
where Pr(0 → 1) = 0.1 is fixed). Basic Barycentric method performs well by itself;
Spectral methods and Alternating are equally good, when the weight parameter is
employed.

methods, however, are able to find the original order only at lowest noise levels.
Occasionally the Alternating method converges towards local minimum, as
demonstrated by correlation value below 1.0 with noiseless data.

Figure 7(b) shows the rank correlation results for unbalanced noise. To deal
with unbalanced noise we analyze the input data and pass a weight parameter to
the methods (except for Barycentric). We use a simple but effective weighting
scheme: compute the relative proportion of 1s and 0s in input matrix, namely
p1 and p0, where p1 + p0 = 1. If the weight for a 0-to-1 flip is 1, then the weight
of a 1-to-0 flip is log(p1)/ log(p0).

Unlike other methods, Barycentric is unaffected by the nature of noise
(balanced or unbalanced), and does not need a weight parameter. Once the
appropriate weight parameter is analyzed from input data, Alternating and
Spectral methods perform very well. Until noise level 0.6 these methods are
the best at recovering original band-order. As it was the case with balanced
noise, Hamiltonian methods have larger variance and difficulties at recovering
the original order.

The following table shows the running times (ms) for the methods on a 3.1
GHz Intel machine. All synthetic matrices have 50% fill and 10% balanced noise.

Runtime (ms) Barycentric Alternating Hamiltonian Spectral Simulated

Matrix size (100 iterations) (100 iterations) Annealing

50 × 50 2 12 4 8 136000
200 × 200 24 150 120 170 –
800 × 800 240 2110 4850 12050 –

3200 × 3200 4250 44300 344800 1163000 –

The Barycentric and Alternating are the fastest methods, even though
both perform 100 iterations. Their running times increase steadily along the
matrix size, while the increase is more pronounced for Hamiltonian and Spectral
methods. Overall, all these methods are fast and able to handle even larger
matrices in reasonable time.

In the next sections we will present a series of real data applications. We will
use the algorithms that are most appropriate for the data. Given the analysis
in synthetic data these algorithms will be either Alternating, Barycentric
or Bidirectional Fixed Permutations that uses the Spectral method and
dot product for fixing the column permutation. Notice that even if Simulated
Annealing could give good results, it is too time consuming for practical real
data.

7.2 Mammals Data

The Mammal dataset consists of presence/absence records of European mam-
mals: for 2179 cells of size 40 × 40 km2 we have binary information about
124 different species. The full version of the Mammal dataset is available for
research purposes upon request from the Societas Europaea Mammacologica
(www.european-mammals.org).

Figure 8(a) shows the band obtained by the Alternating method that al-
lows bidirectional flips with equal costs. The discovered structure of sites and
mammals is interesting in itself: it shows a highly nested pattern from sites and
species so far unknown in the dataset. Nested patterns have been widely studied
in ecological applications because they give insight into the processes that govern
the distribution of species. The correlation between the order of the sites and
the temperature variable is 0.64, which is high for life-science data. Intuition
is that the number of mammal species increases to some extent with tempera-
ture and few species live in cold conditions. Furthermore, of the 54155 total 1s
in the dataset, 70% of them are accumulated within the borders of the band
retrieved by Alternating algorithm (see Figure 8(b)). This means we found a
dense structure. The matrix needs 23997 bidirectional flips to become a fully
banded matrix.

As a comparison, Figure 8(c) depicts the band obtained by the Barycentric

method. The bidirectional flips needed to make this matrix fully banded is 42041
flips. Nonetheless, the row ordering has high correlation with certain variables

Mammal species

E
ur

op
ea

n
si

te
s

(a) Mammals data by
Alternating

Mammal species

E
ur

op
ea

n
si

te
s

(b) Mammals data band by
Alternating

Mammal species

E
ur

op
ea

n
si

te
s

(c) Mammals data by
Barycentric

Fig. 8. Reordered Mammals data. Left part (a) shows the data reordered by the
Alternating algorithm, using equal-cost as a weighting scheme. Middle part (b) shows
the borders of the band, that is all the 1s in original Mammals data that belong to
the structure. In total the band includes 70% of all the 1s. Right part (c) shows the
data as reordered by the Barycentric algorithm. The order of locations has strong
correlations with latitude coordinates (0.92) and average temperatures (−0.85) of the
locations.

associated with the location, such as latitude coordinate (0.92) and average tem-
perature (−0.85). It seems that both Alternating and Barycentric produce
reasonable, yet visually different results here: Alternating prefers large dense
clusters of 1s, whereas Barycentric assumes that all rows and columns belong to
the banded pattern. Which shape is preferable depends on application. Note that
assigning different weights for flips causes the Alternating method to change
the shape of the band.

7.3 Dialect Data

The Dialect dataset [14], originally published in 1940, contains data about the
usage of dialectical features in spoken Finnish language. The data is in binary
form and represents 1334 phonological features and their usage in 506 munici-
palities.

The basic division of Finnish dialects has long remained static among lin-
guistics. The division into two dialects results in Western and Eastern dialects;
further divisions bring out more detail inside these two main dialects. The known
division into eight dialect areas is shown in Figure 9(a).

We used both the Alternating algorithm and the Barycentric algorithm
on the Dialect data to uncover a band structure. The best ordering found by the
Alternating method after 1000 iterations is shown in Figure 10(a). It visually
indicates a band where 65% of the original 1s belong to the banded pattern,
despite the noise in the data. For comparison purposes, Figure 10(b) shows

(a) Traditional division into 8 di-
alect areas

(b) Municipalities in band-order

Fig. 9. Left part (a) shows the traditional division of Finnish municipalities into eight
areas by their dialectical features. Right part (b) visualizes the ordering of munic-
ipalities interpolated from the band discovered by the Alternating algorithm. The
position of a municipality in band-order is depicted by its color, ranging from black to
white. The ordering of the band has captured the main variation between Western and
Eastern dialects.

the band of the Barycentric method. The two bands are very different: while
Alternating aims at creating dense bands of 1s, the Barycentric method aims
at creating wider banded patterns.

Interestingly, the order obtained for municipalities in the band from the
Alternating algorithm can be interpreted as a crude estimate of the language
spoken in a municipality: the order captures the variation from Western dialects
to Eastern dialects. Indeed, the municipalities interpolated from the ordering of
the band are plotted in Figure 9(b). We can see that this interpolation is very
similar to the known division shown aside in Figure 9(a), despite some outliers.
The outliers are explained by the small number of data points (1s) for those
municipalities. Of course the dialectical variation cannot be fully described by a
single ordering: some municipalities do not really fit anywhere in the linear order,
for example those in Karelia. Note that the results show many geographically
coherent dialect areas, although the algorithm did not have access to spatial
information about the municipalities.

Municipalities

di
al

ec
t f

ea
tu

re
s

(a) Alternating band

Municipalities

di
al

ec
t f

ea
tu

re
s

(b) Barycentric band

Fig. 10. Left part (a) shows the best band found by the Alternating algorithm on the
Dialect data. This band is 54461 flips away from being fully banded. The right part (b)
shows the band found by the Barycentric algorithm. This band is 105410 flips away
from being fully banded.

species

si
te

s

Fig. 11. Paleontological data reordered by Alternating method that assumes a weight-
ing scheme where the cost of a 1-to-0 flip is four times that of a 0-to-1 flip.

7.4 Paleontological Data

The Paleontological data contains information of fossils genera in Europe [15]1.
Columns correspond to genera and rows correspond to sites. There are 124 sites
and 139 genera. The banded structure found in the Paleontological dataset is
shown in Figure 11. The result is given by the Alternating method.

1 From August 31, 2007, the version of the dataset selects all columns with at least
10 occurrences and all rows with at least 10 genera present.

As is common with data gathering in real life, the paleontological data has
more missing 1s than false 1s. Therefore 0-to-1 flips should be preferred over
1-to-0 flips. In general it is difficult to decide for a real life application which are
the best weights, and many criteria for “correct” band-shape can be given. On
this data, we decided to give to 1-to-0 flips a weight that is four times larger
that that of a 0-to-1 flip, as it matches with our estimation of error rates.

7.5 DNA Amplification Data

The DNA amplification data is available upon request from the authors in [26].
It contains information on the DNA copy number amplifications recorded in
4590 cases (rows) and 393 band specific chromosomal locations (columns). A 0
denotes no DNA copy number amplification in the corresponding chromosomal
location, and a 1 denotes a finding in the DNA copy number amplification in
the location. More than this we also have available the neoplasm labels (can-
cer label) coupled to the cases of the matrix. The goal is to investigate DNA
amplifications in different neoplasms types. This justifies a solution where dif-
ferent subsets of columns and rows can be evaluated separately, so we will run
our Iterative row-column elimination algorithm. We use the performance
measures of accuracy and recall as a deletion criteria of rows and columns, while
allowing a maximum of 100 flips in the retrieved submatrices.

Figures 12(a) and 12(b) show the two retrieved submatrices (from the original
data) found by accuracy and recall. For both submatrices we observe immedi-
ately that they exhibit a very clean banded structure (almost zero noise outside
the band). They both preserve nicely the column permutation of the chromo-
somes, and moreover, each one of these submatrices identifies a different reduced
collection of cancer types.

8 Related Work

The property of consecutive ones in binary matrices is particularly important
in presence/absence data of paleontological applications [29]. The question of
determining how far away a given matrix is from satisfying the consecutive-
ones property corresponds to counting Lazarus events. This is also known as the
seriation problem, to which Spectral ordering has been shown to produce good
approximations [3].

Another important ecological concept related to the structure of binary ma-
trices is nestedness [23]. A dataset is nested if for all pairs of rows one row is
either a superset or subset of the other. From this definition it is direct to see that
all nested matrices are banded, although the reverse does not hold. Bandedness
is therefore a generalization of these ecological concepts.

A fully banded binary matrix is also known in some contexts as the mono-
tone consecutive arrangement of ones [32]. Then, we can establish a connection
between banded matrices and zero-partitionable matrices from [20]. We say that

Chromosomes

P
at

ie
nt

s

(a)

Chromosomes

P
at

ie
nt

s

(b)

Fig. 12. Two submatrices from the DNA data. On the left (a), the submatrix with
1402 rows and 282 columns, using accuracy as the elimination criteria. On the right
(b), the submatrix of 291 rows and 244 columns, using recall as the elimination criteria.
Permutations on the columns were fixed by the spectral ordering with dot product
similarity. The number of flips to obtain a full band is at most 100.

a binary matrix is zero-partitionable if the rows and columns can be indepen-
dently permuted such that each 0 can be labeled with R or C in such a way that
every position to the right of an R is an R and every position below a C is a C.

Therefore, any matrix satisfying the consecutive ones property will be always
zero-partitionable, we only need to list rows in nondecreasing order of the posi-
tion of their left most ones. The inverse statement is not true. This establishes
the following hierarchy between classes of matrices,

N ⊂ B ⊂ SC1P ⊂ C1P ⊂ Z

where N are nested matrices, B are banded matrices, SC1P are simultaneously
consecutive-ones on row and columns, C1P are consecutive-ones matrices on
rows, and Z are zero-partitionable matrices.

We cannot ignore the relation of banded matrices with the field of numerical
analysis [4, 13, 31]. The solutions there also find good permutations to confine
non-zero entries to the main diagonal band. Noisy data is, however, a problem
for them, as the algorithms require that all 1s must be close to the main diagonal.
The approach in this paper allows banded structures outside the main diagonal.

In data mining, bands are closely related to reorderable matrices, see e.g. [8,
22]: this is a simple visualization method to explore multivariate or multidimen-
sional data; the basic principle is to transform a multidimensional data set into
a 2D interactive graphic. The graphical presentation of a data set closely resem-
bles the underlying matrix in that it contains rows and columns which can be
permuted, allowing different views of the data set. The problem of reorderable
matrices can be applied to real-valued data and to binary data. The property of

bandedness can be seen as a subcase of reorderable matrices where we only have
binary values and the visualization must satisfy the band constraints. Therefore,
our contribution offers new algorithms and theoretical properties for a special
case of reorderable matrices.

Finding a band structure is closely related to biclustering problems [21] and
subspace clustering [25, 28]: the goal is to identify groups of columns and rows
that exhibit similar value patterns (for example, similar expression patterns in
the case of microarray data). Many combinatorial problems have been studied
around biclustering and the associated bipartite graph. The most related one
to the one we study here is the edge editing problem, consisting in adding or
removing the fewest edges from a bipartite graph so that it becomes a vertex
disjoint union of complete bipartite graphs. However, the definitions are slightly
different, as in our case the different biclusters (groups of columns and rows with
ones) do not require to be vertex disjoint.

Finally, our approach can be see as a cluster ranking approach, as in [7].
Rather than simply partitioning a network into clusters, a cluster ranking al-
gorithm also orders the clusters by their strength. In our problem, the different
“clusters” or groups of rows are mapped into a one-dimensional rank provided by
the columns of the same matrix. An important difference with those approaches
is that we do not depend on parameters such as the number of clusters, which
is a well studied problem in clustering categorical data [11].

9 Conclusions

We introduce the new concept of banded structures for binary data and char-
acterize exactly its combinatorial properties. We first establish how row and
column permutations affect the structure of the band and derive a polynomial
test for bandedness. Based on the derived properties, we propose principled al-
gorithms to approach two important combinatorial problems related to bands:
minimum banded augmentation and maximum banded submatrix.

A first set of algorithms relies on fixing a column permutation beforehand. We
then lift this column permutation requirement and propose two new algorithms
that search for both column and row permutations at the same time. We show in
synthetically generated data that our proposals are able to find banded structures
efficiently.

Experiments on real data show that bands potentially occur in many ap-
plications, and here we concentrate on datasets from life sciences and a word
dialect data. For two of the datasets, we discover previously unknown bands
that have natural interpretations in the final order of rows and columns. Our
results suggest that a hierarchy of mammals exists in Mammals occurrence data.
For the word dialect data we have discovered that the band order has captured
the main variation between Eastern and Western dialects of the Finnish lan-
guage. In bandedness real life binary data is given a combinatorial treatment so
as to uncover hidden structure in the data.

References

1. R. Agrawal, T. Imieliński, and A.Swami. Mining association rules between sets of
items in large databases. In SIGMOD’93, pages 207–216, 1993.

2. F. Alizadeh, R. M. Karp, L. A. Newberg, and D. K. Weisser. Physical mapping
of chromosomes: A combinatorial problem in molecular biology. Algorithmica,
13(1/2):52–76, 1995.

3. J. Atkins, E. Boman, and B. Hendrickson. A spectral algorithm for seriation and
the consecutive ones problem. SIAM J. Comput., 28(1):297–310, 1999.

4. C. Aykanat, A. Pinar, and U. Çatalyürek. Permuting sparse rectangular matrices
into block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879,
2004.

5. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

6. A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. Mooney. Model-based
overlapping clustering. In KDD’05, pages 532–537, 2005.

7. Z. Bar-Yossef, I. Guy, R. Lempel, Y. S. Maarek, and V. Soroka. Cluster ranking
with an application to mining mailbox networks. Knowl. Inf. Syst., 14(1):101–139,
2008.

8. J. Bertin. Graphics and graphic information processing. pages 62–65, 1999.

9. K. S. Booth. PQ-tree algorithms. PhD thesis, 1975.

10. P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modifica-
tion problems. Disc. Appl. Math., 154(13):1824–1844, 2006.

11. K. Chen and L. Liu. “Best k”: critical clustering structures in categorical datasets.
Knowl. Inf. Syst., 20(1):1–33, 2009.

12. T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press
and McGraw-Hill, 1990.

13. E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices.
In Proceedings of the 1969 24th ACM national conference, pages 157–172, 1969.

14. S. Embleton and E. Wheeler. Computerized dialect atlas of Finnish: Dealing with
ambiguity. Journal of Quantitative Linguistics, 7(3):227–231, 2000.

15. M. Fortelius. Neogene of the old world database of fossil mammals (NOW).
http://www.helsinki.fi/science/now/, 2008.

16. G. Garriga, E. Junttila, and H. Mannila. Banded structure in binary matrices. In
KDD’08, pages 292–300, 2008.

17. M. Girvan and M. Newman. Community structure in social and biological net-
works. Proc. National Academy of Sciences USA, 99(12):7821–7826, 2002.

18. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

19. D. Knuth. The Stanford GraphBase: a platform for combinatorial computing.
ACM, New York, NY, USA, 1993.

20. I.-J. Lin and D. B. West. Interval digraphs that are indifference digraphs. In Graph
theory, Combinatorics, and Algorithms, pages 751–765, 1992.

21. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data anal-
ysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 1(1):24–45, 2004.

22. E. Mäkinen and H. Siirtola. Reordering the reorderable matrix as an algorithmic
problem. In Diagrams ’00: Proceedings of the First International Conference on
Theory and Application of Diagrams, pages 453–467. Springer-Verlag, 2000.

23. H. Mannila and E. Terzi. Nestedness and segmented nestedness. In KDD’07, pages
480–489, 2007.

24. R. M. McConnell. A certifying algorithm for the consecutive-ones property. In
SODA’04, pages 768–777, 2004.

25. G. Moise, A. Zimek, P. Kröger, H. Kriegel, and J. Sander. Subspace and projected
clustering: experimental evaluation and analysis. Knowl. Inf. Syst., 21(3):299–326,
2009.

26. S. Myllykangas, J. Himberg, T. Böhling, B. Nagy, J. Hollmén, and S. Knuutila.
DNA copy number amplification profiling of human neoplasms. Oncogene, 25:7324–
7332, 2006.

27. C. H. Papadimitriou. The NP-completeness of the bandwidth minimization prob-
lem. Computing, 16:263–270, 1976.

28. L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:
a review. SIGKDD Explor. Newsl., 6(1):90–105, 2004.

29. K. Puolamäki, M. Fortelius, and H. Mannila. Seriation in paleontological data
using Markov chain Monte Carlo methods. PLoS Computational Biology, 2, 2006.

30. F. S. Roberts. Indifference graphs. In Proof Techniques in Graph Theory, pages
139–146, 1969.

31. R. Rosen. Matrix bandwidth minimization. In ACM national conference, pages
585–595, 1968.

32. M. Sen and B. K. Sanyal. Indifference digraphs: A generalization of indifference
graphs and semiorders. SIAM Journal on Discrete Mathematics, 7(2):157–165,
1994.

33. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics,
11(2):109–125, 1981.

34. P. Tian, J. Ma, and D. Zhang. Application of the simulated annealing algorithm
to the combinatorial optimisation problem with permutation property: An inves-
tigation of generation mechanism. European Journal of Operational Research,
118(1):81–94, 1999.

35. A. Tucker. A structure theorem for the consecutive 1’s property. Journal of Com-
binatorial Theory, Series B, 12(2):153–162, 1972.

