
HAL Id: hal-00659437
https://hal.archives-ouvertes.fr/hal-00659437

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shortest Paths and Probabilities on Time-Dependent
Graphs - Applications to Transport Networks

Sébastien Felix, Jérôme Galtier

To cite this version:
Sébastien Felix, Jérôme Galtier. Shortest Paths and Probabilities on Time-Dependent Graphs - Ap-
plications to Transport Networks. 11th International Conference on ITS Telecommunications, Aug
2011, Saint-Petersburg, Russia. pp.56. �hal-00659437�

https://hal.archives-ouvertes.fr/hal-00659437
https://hal.archives-ouvertes.fr

Shortest Paths and Probabilities on Time-Dependent
Graphs - Applications to Transport Networks

Sebastien Felix
Orange Labs and Mascotte(INRIA/I3S/CNRS/Univ. de Nice)

905 rue Albert Einstein
06921 Sophia-Antipolis Cedex, France

Email: sebastien.felix@orange-ftgroup.com

Jerome Galtier
Orange Labs

905 rue Albert Einstein
06921 Sophia-Antipolis Cedex, France

Email: jerome.galtier@orange-ftgroup.com

Abstract—In this paper, we focus on time-dependent graphs
which seem to be a good way to model transport networks. In
the first part, we remind some notations and techniques related
to time-dependent graphs. In the second one, we introduce new
algorithms to take into account the notion of probability related
to paths in order to guarantee travelling times with a certain
accuracy. We also discuss different probabilistic models and show
the links between them.

I. INTRODUCTION

Since the number of vehicles is increasing, it implies an
increase of the time spent in congestion. A recent report ([13])
written by the Texas Transportation Institute shows that the
average American spent 34 hours stuck in traffic jams in 2009.
The cost caused by congestion was estimated at over 100
billion dollars in the United States in 2009. The evolution
of this cost is given in Fig. 1.

Fig. 1. Total cost of time spent in traffic congestion in the US (data source
: [13])

Another observation is that the number of sensors is
increasing as well, allowing us to have a better view of the
global traffic. It could allow us to have a precise value of
the flow on a given road at a given moment (using CCTV
cameras, phones, magnetic loops,...), to compute precise
Origin/Destination matrices (using GPS on smartphones,
particular projection,...) or to determine the travelling time of
a path. Since some studies (see [14] and [9]) have shown a

link between the load (or the flow) and the speed on a road,
then we can obtain information on the travelling time of a
path from the flow value on it. But in real-world networks,
the flow can be subject to some constraints. As we can see
in [2], there exists tools in order to deal with these restrictions.

Another interesting thing is that it is possible to determine
the means of transport if the user is provided with an ac-
celerometer and an electronic compass (see [11] and Fig. 2.).

Fig. 2. Accelerometer traces for distinct transportation modes (from
http://senseable.mit.edu/co2go/)

We can use this information to establish a better model to
manage traffic and optimise it to minimize the time spent in
congestion, and then the global cost of transport. Since the
evolution of the traffic is dynamic among time, we model it
using time-dependent graphs. We also include the notion of
probability in this model in order to compute paths whose
length is given with a certain accuracy.

This article is organised as follows : in Part II we introduce
the notion of time-dependent graphs and show its properties
in our specific context. Then in Part III we explain how time-
dependent graphs can be exploited to produce itinary results
under typical user constraints (given arrival, departure time, or
minimizing the delay). In Part IV we focus on the probabilistic
issues. We describe an efficient algorithm that can address a
large part of these problems but also exhibit more precise -
and complex - formulations and explain how to link them with
our work and the questions they raise. Finally, in part V we
explain how to use the information provided by some sensors
in order to have a more precise model of the traffic.

II. TIME-DEPENDENT GRAPHS

When we model transport networks, we are first interested
in shortest paths in terms of distance, time or cost. The fact
is that the travelling time could vary over time. In order
to model these networks, we use time-dependent graphs. A
time-dependent graph is given by a directed graph G and a
cost function c(e, t). We have |V (G)| = n and |E(G)| = m.
For every edge e ∈ E(G), we note c(e, t) = ce(t). The
travelling time of e = (u, v) at the moment t is given by
ce(t). Note that time-dependent graphs were already heavily
studied, see [1], [6] and [12].

In time-dependent graphs, we can define the First-
In-First-Out (FIFO) property as follow : A time-
dependent graph has the FIFO property if and only if
t1 < t2 ⇒ t1 + ce(t1) < t2 + ce(t2), for every e ∈ E(G).
This property implies that ce(t2)−ce(t1)

t2−t1 > −1. We can define
the weak FIFO property on time-dependent graphs by the
condition t1 < t2 ⇒ t1 + ce(t1) ≤ t2 + ce(t2) for every
e ∈ E(G). In this case we have ce(t2)−ce(t1)

t2−t1 ≥ −1. Note that
the FIFO property implies the weak FIFO property.

When we model transport networks, we have to notice
that if two users drive along e = (u, v) they could arrive
at the same time in v, although they did not arrive at the
same time in u. This could happens if one user waited in
u the next planned vehicle in which the other user is, or if
one user was stuck in congestion and was later joined by
the other user. So we will model transport networks using
time-dependent graphs with the weak FIFO property and
store the ce functions using a discrete structure. Moreover
for public transport networks, we will use piecewise affine
functions of slope −1 as cost functions. We can find more
details on time-dependent graphs with the FIFO property in
[4].

Let fe(t) := t + ce(t) for all e = (u, v) ∈ E(G). If we
leave u at the moment t, we will arrive in v at the moment
fe(t) at the latest. If ce has the weak FIFO property, we have
for all (x, y) ∈ R2 :

ce(x)− ce(y)

x− y
≥ −1⇒ ce(x)−ce(y)

x−y + x−y
x−y ≥ 0

⇒ (x+ce(x))−(y+ce(y)
x−y ≥ 0

⇒ fe(x)−fe(y)
x−y ≥ 0

We conclude that fe is non-decreasing. So if
ce has the weak FIFO property, we can define
f∗e (t) = max {z ∈ R/fe(z) ≤ t} (we also have
fe(t) = min {z ∈ R/f∗e (z) ≥ t}). If we want to be in
v at the moment t, we will have to leave u at the moment
f∗e (t) at the latest.

III. SHORTEST PATHS IN TIME-DEPENDENT GRAPHS

A. Single Source Shortest Paths

Computing the shortest path from one source s to another
vertex v takes almost as much time as computing the shortest
paths from s to all other vertices, see [10] and [5]. As we
can see in [3], we can adapt Bellman-Ford’s and Disjkstra’s
algorithms to compute the shortest paths from a vertex s to
all other vertices in time-dependent graphs. These algorithms
build the tree of the shortest paths from s to all other vertices.
It is possible to speedup a little the algorithms if we already
know a part of this tree.

We show here an adaptation of these algorithms; they take
as input the time-dependent graph (G, c), one vertex s and a
partial shortest path tree T rooted at s (we can take T = {s}
if no information is known). Their output are data that allow
us to rebuild the shortest paths tree Ts rooted at s which
contains all the shortest paths from s to all other vertices
starting at the moment t0.

For each vertex v, we aim to obtain the length dv of the
shortest s − v path starting from s at the moment t0. This
path is composed of the shortest s − pv path together with
the edge (pv, v). In fact pv is the predecessor of v in the
tree T . Let nv be the set of successors of v in T . For every
v ∈ V (G), we have v ∈ npv . Finally, lv is the arrival time
in v if we use the shortest s−v path starting at the moment t0.

We present here an algorithm which takes as input a partial
shortest paths tree T rooted at s and a time t0, and computes
dv , lv , pv and nv for every v ∈ V (T).

Algorithm 1: Tree rebuilding algorithm
Data: A time-dependent graph (G, c), a moment t0, a

vertex s ∈ V (G) and a partial shortest paths tree
T rooted at s.

Result: Shortest paths starting at the moment t0 from s
to all v ∈ V (T) and their length. We get the
outputs dv , lv , pv and nv for all v ∈ V (T). dv is
the length of the s− v path in T starting at the
moment t0, which consists in the s− pv path
together with the edge (pv, v).

1 Set ls = t0.
2 explore(s, T)

The procedure explore(v,T) is defined as follow :

Algorithm 2: explore(v,T)

1 for each e = (v, w) ∈ E(T) do
pw = v
nv = nv ∪ {w}
lw = lv + ce(lv)
dw = lw − t0
explore(w, T)

end

Now we describe an adaptation of Dijkstra’s algorithm for
time-dependent graphs :

Algorithm 3: Dijkstra algorithm (Shortest paths from one
source)
Data: A time-dependent graph (G, c), a moment t0, a

vertex s ∈ V (G) and a partial shortest paths tree
T rooted at s.

Result: Same output as Algorithm 1. We can notice that
for every w ∈ nv we have pw = v. If v is not
reachable from s starting at the moment t0, then
lv =∞ and pv = nv = ∅.

1 For each v ∈ V (T), compute dv , lv , pv and nv .
2 Set ls = t0 and lv =∞ for all v ∈ V (G) \ {s}.

Set R = V (T).
3 while R 6= V (G) do

Find v ∈ V (G) \R such that lv = min
w∈V (G)\R

(lw)

Set R = R ∪ {v}.
for all w ∈ V (G) \R such that e = (v, w) ∈ E(G)
do

if fe(lv) < lw then
lw = fe(lv)
npw = npw \ {w}
pw = {v}
nv = nv ∪ {w}

end
end

end
4 for each v /∈ V (T) do

dv = lv − t0
end

Proposition III.1. The Dijkstra’s algorithm for time-
dependent graphs works in O(m+ n ln(n)).

Proof: Obviously, the complexity of this algorithm is
the same as the complexity of Dijkstra’s algorithm for static
graphs.

1) Single Source Shortest Paths in a Time Window: If
(e1, e2, ..., ek−1, ek) is a shortest s − v path starting at the
moment t, we have lv(t) = fek ◦ fek−1

◦ ... ◦ fe2 ◦ fe1(t).
Since fe is non-decreasing for every e ∈ E(G), we can notice
that lv is non-decreasing as well. So if ce has the weak FIFO
property, we can define l∗v(t) = max {z ∈ R/lv(z) ≤ t}. If
we want to be in v at the moment t, we will have to leave s
at the moment l∗v(t) at the latest.

Let v ∈ V (G) \ {s}, to find the shortest path from s to v
starting at the moment t, we have to compute the sequence
(vn)n∈N where v0 = v and vi = pvi−1

for i ≥ 1. For some i0
we have vi0 = s, then the path (vi0 , ..., v1, v0) is the shortest
s− v path starting at the moment t.

Of course we can run this algorithm for many values of
t0. Then we could get the functions lv(t), dv(t), pv(t) and

nv(t) defined like in the previous algorithm and related to
the departure time t. We have to notice that if every ce(t)
has the weak FIFO property, then the function dv(t) has
also the weak FIFO property. Since we cannot run this
algorithm for every value t in an interval I , so we have to
compute it for a discrete set of values. Let I = [t1, t2] be
an interval in R, and ε ∈ R+ such that t2−t1

ε ∈ N. We set
Iε =

{
t1 + kε : k ∈

{
0, ..., t2−t1ε

}}
.

Proposition III.2. If f(t) has the weak FIFO property, then
we have min

t∈I
(f(t)) ≥ min

t∈Iε
(f(t))− ε.

Proof: Let tm ∈ I such that f(tm) = min
t∈I

(f(t)).

If tm ∈ Iε, the inequality holds. If tm /∈ Iε, let
t0 ∈ Iε such that t0 = max(t ∈ Iε/t < tm). We have
0 < tm − t0 < ε⇔ 1

tm−t0 >
1
ε .

If min
t∈I

(f(t)) < min
t∈Iε

(f(t))− ε, we have :

f(tm) < f(t0)− ε⇔ f(t0)− f(tm) > ε.

If we combine these two inequalities, we obtain :
f(t0)−f(tm)

tm−t0 > 1⇔ f(tm)−f(t0)
tm−t0 < −1.

So f(t) does not have the FIFO property, which is a
contradiction. Then min

t∈I
(f(t)) ≥ min

t∈Iε
(f(t))− ε.

So if we set ε > 0, we can run this algorithm and compute
dv(t) for t = t1+kε where 0 ≤ k ≤ t2−t1

ε . Since dv(t) has the
weak FIFO property, we have min

t∈I
(dv(t)) ≥ min

t∈Iε
(dv(t)) − ε.

So there will be a maximum uncertainty of ε between the
minimum and the computed value.

If we had chosen ce with the weak FIFO property for
some e ∈ E(G), the value rv(t0) := min

t≥t0
(lv(t)) would be the

moment when we could reach v at the earliest starting from
s at a moment t ≥ t0. Since in our study lv has the weak
FIFO property and hence is increasing, the minimum is of
course attained for t = t0.

2) Single Destination Shortest Paths: There is of course
some kind of dual problem, which is to find for every t ∈ R
a shortest path from every v ∈ V (G)\{s} to s arriving at the
moment t. It is possible to modify the previous algorithms in
order to solve that problem. We just have to use f∗e functions
instead of fe functions, replace each edge (u, v) in G by (v, u),
replace < by > and min by max in the previous algorithms.
The value lv(t) will be the latest moment when we need to
leave v in order to arrive in s before t.

B. Updating the Length of an Edge

In a transport network, we know that it is possible to
predict the flow on an edge if we know Origin-Destination
matrix over time and the flow on the whole network at a
given time. But there still exists impredictable events that

can increase the travelling time of an edge (accidents or
malfunction of some equipment). If such an event happens
on an edge we were going to cross, it would then be useful
to recompute a shortest path to our destination knowing how
the event will affect the traveling time.

We can easily take benefit from the shortest paths tree
obtained during the algorithm used to compute our desired
path. Let Ce,v(T) be the connected component of T \ e that
contains v. Suppose that we have run a shortest path algorithm
to find shortests path from s to all other vertices during the
interval I = [t1, t2]. Let Ts,t be the tree that contains shortest
paths starting from s at the moment t to all other vertices. We
have computed Ts,t for every t ∈ I . If an event happens on
an edge e = (u, v) and modifies the travelling time from δ1
to δ2, it will modify the shortest paths trees Ts,t for every t
from l∗u(δ1) to l∗u(δ2) (due to the definition of l∗u). We finally
just have to use one of the previous algorithms to build the
new shortest paths trees for t ∈ [l∗u(δ1), l∗u(δ2)] knowing that
Ce,u(Ts,t) is a partial shortest paths tree at the moment t.
Since we just have to compute for each t ∈ [l∗u(δ1), l∗u(δ2)]
the data for the vertices w ∈ Ce,v(Ts,t), the execution of this
algorithm is faster than a standard single source shortest path
algorithm though they have the same time complexity.

Proposition III.3. Let X be a discrete set of departure times
from s. Rebuilding the shortest paths tree after an update of an
edge’s length which affects the shortest paths from s starting
at t for t ∈ X can be done in O(|X| (m+ n ln(n))).

Proof: For each t ∈ X , we will have to run at worst a
full Dijkstra’s algorithm. So the complexity of this algorithm
is O(|X| (m+ n ln(n))).

Of course this idea could be adapted in the case where we
look for shortest paths from all vertices to a single vertex s
with very few changes.

IV. SINGLE SOURCE SHORTEST PATH INCLUDING
PROBABILITIES

In practice, we cannot guarantee an exact travelling time.
We could give such a time but only with a certain probability.
Some work has already been done on graphs with random
edge’s lengths, see [7] and [8]. Let G be a digraph. For each
edge e = (u, v), we have the function δe : R×R→ [0, 1] such
that δ(td, ·) is the probability density function of the random
variable that gives the duration of traversing e starting at td.
In other words, the probability of traversing e in duration ta
starting at td is ∫ ta

0

δ(td, z)dz.

. Let D(G) = {δe/e ∈ E(G)}, we say that (G,D(G))
is a time-dependent graph with probabilistic weights. If
pe(t1, tp) = pe(t2, tp) for every (t1, t2, tp) ∈ R3 and

e ∈ E(G), we say that (G,D(G)) is a static graph with
probabilistic weights.

We have
∫ +∞
−∞ δe(td, ε) dε = 1, ∀(e, td) ∈ E(G) × R.

If e = (u, v), let ∆−e (td) = inf {t ∈ R/δe(td, t) > 0}
(respectively ∆+

e (td) = sup {t ∈ R/δe(td, t) > 0}) be the
earliest moment (respectively the latest moment) when we
could reach v if we have left u at the moment td. We
set pe(td, tp) =

∫ tp
−∞ δe(td, ε) dε, the probability to traverse

e = (u, v) in a duration less than or equal to tp if we start at
t = td. Let td ∈ R, we set :

πe,td : [∆−e (td),∆
+
e (td)] → [0, 1]

t 7→ pe(td, t)

We note that πe,td is a bijection, so we can define :

ce : R× [0, 1] → R

(td, p) 7→ π−1e,td(p)

Let e, e′ ∈ E(G) and δe+e′ be the density function
of travelling times for the path e + e′. We can compute
δe+e′(td, tp), which is probability density to traverse e + e′

in a time tp if we started at the moment td. If e is traversed
in a time z, the probability density associated is δe(td, z).
Then e′ needs to be traversed in a time tp − z starting
at time td + z and the probability density associated is
δe′(td + z, tp − z). If we integrate the product of these
probability densities for every value of z, we obtain the
formula δe+e′(td, tp) =

∫ +∞
z=−∞ δe(td, z)δe′(td + z, tp − z)dz.

Notice that if the graph is static, the previous formula is
exactly the convolution of δe and δe′ .

Proposition IV.1. For every t1 ∈ R, we have :

pe+e′(td, tp) ≥ pe(td, t1) ∗ pe′(td + t1, tp − t1).

Proof: First, note that the FIFO property implies that for
all δ ≥ 0 and (td, tp) ∈

Using definitions, we obtain :

pe+e′(td, tp) =
∫ tp
t=0

δe+e′(td, t)dt

=
∫ tp
t=0

∫ +∞
z=−∞ δe(td, z)δe′(td + z, t− z)dzdt

=
∫ tp
z=0

δe(td, z)
∫ tp
t=z

δe′(td + z, t− z)dtdz
≥

∫ t1
z=0

δe(td, z)
∫ tp
t=z

δe′(td + z, t− z)dtdz

If we set u = t− z, we have :∫ tp
t=z

δe′(td + z, t− z)dt =
∫ tp−z
u=0

δe′(td + z, u)du

Then using formula (1) with δ = t1 − z, we obtain :∫ tp
t=z

δe′(td + z, t− z)dt ≥
∫ tp−t1
u=0

δe′(td + t1, u)du

We conclude that :

pe+e′(td, tp) ≥
∫ t1
z=0

δe(td, z)
∫ tp−t1
u=0

δe′(td + t1, u)dudz

≥
∫ t1
z=0

δe(td, z)dz ∗
∫ tp−t1
u=0

δe′(td + t1, u)du

≥ pe(td, t1) ∗ pe′(td + t1, tp − t1)

We can notice that if we set tp = t1 + t2, proposition IV.1
inplies :
pe+e′(td, t1 + t2) ≥ pe(td, t1) ∗ pe′(td + t1, t2).

If we start from u at t = td, we have a probability p to
traverse e in a duration less than or equal to ce(td, p). Let
e = (u, v) and e′ = (v, w) two edges of G. Let pa be the
probability to traverse ea in a duration less than or equal to
ta, starting from u at time td. Thanks to Proposition IV.1, the
probability to traverse e + e′ in a duration less than or equal
to ta + ce′(td + ta, pb) is at least pa ∗ pb. We can then define
the length of a path on which we fix the desired probabilities
for each edge.

We are now interested in computing the time needed to
traverse a path with a given accuracy (i.e. a given probability).
Typically, we want to be able to say that a path will be
traversed in a time less than or equal to tp with a probability
p (where p has already been fixed).

Let P = (e1, ..., en) be a path in G where ei = (vi−1, vi),
we note Pi = (e1, ..., ei) the sub-path of P containing
the i first edges. We can associate the travelling time
of P with a probability pi on ei for every n-uple
(p1, p2, ..., pn) ∈ [0, 1]

n. Let E = [0, 1]
n, we note Ei = [0, 1]

i.
Let X = (x1, ..., xn) ∈ E, we note Xi = (x1, ..., xi) ∈ Ei.

We can compute the time needed to traverse Pi starting from
v0 at t = td with the probabilities Xi, noted CPi(td, Xi), using
the recursive formula :
CPi(td, Xi) = CPi−1

(td, Xi−1) + cei(td +
CPi−1

(td, Xi−1), xi).

We can notice that CPi−1
(td, Xi−1) is the time needed to

traverse Pi−1 starting from v0 at t = td with the probabilities
Xi−1 and cei(td +CPi−1(td, Xi−1), xi) is the time needed to
traverse ei starting from vi−1 at t = CPi−1(td, Xi−1) with
the probability xi.

Let HPi,td(p) =

Xi ∈ Ei/
i∏

j=1

xj = p

 the subset of

Ei that contains all i-uples (p1, ...pi) that guarantee a total
travelling time with at least a probability p. Our goal is to find
the shortest travelling time for Pi with at least a probability p
and the corresponding i-uple in HPi,td(p). So we can define
cPi,td(p) = min

Xi∈HPi,td (p)
(CPi(td, Xi)) which corresponds to

the shortest travelling time for Pi starting at td with at least

a probability p.

Of course, it is not realistic to compute the exact value.
But we can still find an approximation, computing the
minimum of CPi(td, Xi) on a discrete subset of HPi,td(p).
Let η = 1 − 10−N with N ∈ N∗. We present here some
algorithms that give for a given s ∈ V (G) the length of
all shortest s − v paths with a probability higher than or
equals to ηM for M ∈ N∗. Since we are interested in
high probability paths, we can look for the minimum of
CPi(td, Xi) for Xi ∈ HPi,td(p) such that every xj belongs
to {ηq/0 ≤ q ≤M}.

We describe here such an algorithm based on Dijkstra’s
single source shortest path algorithm :

Algorithm 4: Algorithm for shortest path from one source
including probabilities

Data: A digraph G with ce(td, p) for every e ∈ E(G).
Result: For every v ∈ V (G) we have an output

(lv(n))0≤n≤M , where lv(i) = (ti, {p(v), tv}).
Note that ti is the time needed to reach v from s
with a probability higher than ηi if we start at
t = td, knowing we left the predecessor p(v) of
v at time tv

.
1 Set (ls(n))0≤n≤M with ls(i) = (td, ∅).

Set (lv(n))0≤n≤M with lv(i) = (∞, ∅) for all
v ∈ V (G) \ {s}.

2 for i = 0 to M do
R = ∅
while R 6= V (G) do

Find v ∈ V (G) \R such that
lv(i)[1] = min

w∈V (G)\R
(lw(i)[1]).

Set R = R ∪ {v}.
for all w ∈ V (G) \R such that
e = (v, w) ∈ E(G) do

for every j such that 0 ≤ j ≤ i do
if lw(i) [1] > lv(j) [1] + ce(lv(j) [1] , ηi−j)
then

Set lw(i) = (lv(j) [1] +
ce(lv(j) [1] , ηi−j), {v, lv(j) [1]})

end
end

end
end

end

Theorem IV.2. The algorithm for shortest path from one
source including probabilities works in O(M2(m+n ln(n))).

Proof: Each vertex will only be selected once in each loop
of the first for. Since in each iteration i of the first loop for
we have to do a basic Dijkstra’s algorithm with i comparisons,

we will need to do M(M−1)
2 comparisons for each vertex. So

the complexity of the algorithm for shortest path from one
source including probabilities is O(M2(m+ n ln(n))).

This algorithm is based on the fact that if
P = (v0, v1, ..., vn) is a shortest v0 − vn path whose
length is guaranteed with a probability p, then (v0, ..., vi)
is a shortest v0 − vi path whose length is guaranteed with
a probability p′p and (vi, ..., vn) is a shortest vi − vn path
whose length is guaranteed with a probability p

p′ for every
i = 1, ..., n. We have lvi(td, η

x) = min
j=0,...,x

(lvi−1
(td, η

j) +

c(vi−1,vi)(lvi−1(td, η
j), ηx−j)). Note that in the static case

we have lvi(η
x) = min

j=0,...,x
(lvi−1

(ηj) + c(vi−1,vi)(η
x−j)). We

present here an example of our algorithm applied on a static
graph in order to have a clear illustration.

Fig. 3. An example of the algorithm for shortest path from one source
including probabilities

We are now able to compute a higher bound of the time
needed to traverse a path with a given probability. We could
also be interested in the probability to traverse a path in a
time less than or equal to a given time t.

Let FPi,td(t) = {Xi ∈ Ei/CPi(td, Xi) ≤ t}. In fact the
measure of FPi,td(t) gives the probability to traverse the path
Pi in a time less than or equal to tp starting at t = td. Let
|FPi,td(t)| be the measure of FPi,td(t), we have :

|FPi,td(t)| =
∫
Xi−1∈Ei−1

pei(td + CPi−1
(td, Xi−1), t−

CPi−1
(td, Xi−1))dXi−1.

If we leave v0 at t = td, we will have at least a probability
|FPi,td(ta − td)| to arrive in vi before t = ta.

V. APPLICATIONS TO TRANSPORT NETWORKS

We saw in the previous sections that if we have for
every e ∈ E(G) a density function δe(td, tp) such that the
probability to traverse e in a time tp, if we started at t = td,
is
∫ tp
0
δ(td, z)dz. The main question is how to get these δe

functions.

Since the number of sensors is increasing, we could use the
data obtained to determine a lot of information. For example,
we can measure the time needed to traverse a path using
mobile phones, geolocation techniques or CCTV cameras.
We could also use mobile phones, magnetic loops or CCTV
cameras to directly estimate the flow value on a road at a
given moment, and since there is a function that makes a link
between the flow and the speed on a road (see [9] and [14]),
we can compute the time needed to traverse a path. Moreover,
we can use these sensors to determine O/D matrices and try
to predict the flow on a given road at a given moment using
multi-commodity flows.

All these techniques could be used to obtain information on
the flow, the load and the travelling time of a road and then
determine an approximation of the δe functions using statistics.

VI. CONCLUSION AND FURTHER WORK

We can now choose paths that guarantee a travelling time
with a certain probability in time-dependent graphs. In fact,
the obtained probability is lower than the real one since we
worked with a discrete model and considered the worst case
at each step.

We have expressed in this article different formulations
that give the probability related to a travelling time on a
given path. This opens the way for research work on better
approximations of this fonction. We can of course think of
an exact computation, but maybe also good approximations
will offer a good compromise between accurate computation
and real-time needs.

With this, Orange Labs continues to work on the precision
of its random models, gathering more information for a better
prediction of the traffic. We think that the random models
given by this research might have very specific properties
that could be exploitable for faster calculations.

In this paper, we have also merged together on purpose
”car” traffic problems and ”public transport” ones. Anyway,
it is clear that these conditions are very different in nature
(for instance, the ”car” model argues for the strong FIFO
property while the ”public transport ” implies only the weak
one), and naturally lead to different mathematical and/or
algorithmical issues. Both models are strongly different also
on their own impact to traffic jams. On-the-fly adaptation
strategies are also very different (rerouting with explosion of
the possible options for the first, multimodularity with lots of
specific cases, such as acceptation or not of alternative means
of transports as bikes, long pedestrian connections, etc...).

We would like to thank J. Chambon for many helpful
remarks.

REFERENCES

[1] I. Chabini. Discrete Dynamic Shortest Path Problems In Transportation
Applications: Complexity And Algorithms With Optimal Run Time.
Transportation Research Records, 1645:170–175, 1998.

[2] R. M. Colombo, P. Goatin, and M. Rosini. On the modeling and
management of traffic. Quaderni del Seminario Matematico di Brescia,
14, 2010.

[3] B. C. Dean. Continuous-Time Dynamic Shortest Path Algorithms, 1999.
[4] B. C. Dean. Shortest Paths in FIFO Time-Dependent Networks:

Theory and Algorithms. Technical report, Massachusetts Institute Of
Technology, 2004.

[5] E. W. Dijkstra. A Short Introduction to the Art of Programming, 1971.
[6] T. Flatberg, G. Hasle, O. Kloster, E. J. Nilssen, and A. Riise. Dynamic

and Stochastic Aspects in Vehicle Routing - A Literature Survey. STF90
A05413 SINTEF Applied Mathematics, page 16, 2005.

[7] M. Hua and J. Pei. Probabilistic Path Queries in Road Networks:
Traffic Uncertainty Aware Path Selection. In Proceedings of the 13th
International Conference on Extending Database Technology, EDBT
’10, pages 347–358, New York, NY, USA, 2010. ACM.

[8] M. Jamali. Learning to Solve Stochastic Shortest Path Problems.
Technical report, Sharif University of Technology, Tehran, Iran, 2006.

[9] E. Köhler and M. Skutella. Flows over time with load-dependent transit
times. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’02, pages 174–183, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Mathematics.

[10] B. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Publishing Company, Incorporated, 4th edition,
2007.

[11] V. Manzoni, D. Manilo, K. Kloeckl, and C. Ratti. Transportation mode
identification and real-time CO2 emission estimation using smartphones.
Technical report, Massachusetts Institute of Technology, 2010.

[12] G. Nannicini. Point-to-Point Shortest Paths on Dynamic Time-
Dependent Road Networks. 4OR, 8(3):327–330, 2010.

[13] D. Schrank, T. Lomax, and S. Turner. TTI’s 2010 Urban Mobility
Report. Technical report, Texas Transportation Institute, 2010.

[14] Y. Sheffi. Urban Transportation Networks. Prentice-Hall, New Jersey,
1985.

