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Abstract Methods to recognize humans’ facial expressions
have been proposed mainly focusing on 2D still images and
videos. In this paper, the problem of person-independent fa-
cial expression recognition is addressed using the 3D geom-
etry information extracted from the 3D shape of the face.
To this end, a completely automatic approach is proposed
that relies on identifying a set of facial keypoints, computing
SIFT feature descriptors of depth images of the face around
sample points defined starting from the facial keypoints, and
selecting the subset of features with maximum relevance.
Training a Support Vector Machine (SVM) for each facial
expression to be recognized, and combining them to form a
multi-class classifier, an average recognition rate of 78.43%
on the BU-3DFE database has been obtained. Comparison
with competitor approaches using a common experimental
setting on the BU-3DFE database shows that our solution
is capable of obtaining state of the art results. The same
3D face representation framework and testing database have
been also used to perform 3D facial expression retrieval (i.e.,
retrieve 3D scans with the same facial expression as shown
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by a target subject), with results proving the viability of the
proposed solution.
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1 Introduction

In recent years, automatic recognition of facial expressions
has been an active research field targeting applications in
several different areas such as Human–Machine Interaction,
Computer Graphics and Psychology. The first studies on this
subject date back to the late 1970s with the pioneering work
of Ekman [6]. In these studies, it is evidenced that the ba-
sic facial expressions can be categorized into six classes,
namely, anger, disgust, fear, happiness, sadness and sur-
prise, plus the neutral expression. This expressions catego-
rization has been also proved to be consistent across differ-
ent ethnic groups and cultures.

The Facial Action Coding System was developed by Ek-
man and Friesen [7] to code the facial expressions through
the movement of face points as described by the action units.
This work inspired many researchers to analyze facial ex-
pressions in 2D by tracking facial features and measuring
the amount of facial movements in still images and videos.
Almost all of the methods developed in 2D use distributions
of facial features as inputs to classification systems, and the
outcome is one of the facial expression classes. These ap-
proaches mainly differ in the facial features selected and the
classifier used to distinguish among the different facial ex-
pressions.

Recently, owing to the increasing availability of effec-
tive devices capable of acquiring high-resolution 3D data,
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there has been a progressive shift from 2D to 3D approaches
in order to perform face recognition and facial expression
recognition. The main motivation is the robustness of 3D fa-
cial shape to illumination changes, pose and scale variations.
Although many solutions have appeared to perform 3D face
recognition (see [2, 11, 12, 18, 24, 27]), still few works have
taken advantage of the 3D facial geometric information to
perform facial expression recognition. The initial solutions
to automatically perform facial expression recognition based
on 3D face scans used very small databases and categorized
just a few facial expressions [25]. Recently, the availability
of new facial expression databases, like those constructed at
the Binghamton University (BU-3DFE database) [34], and
at the Boǧaziçi University (Bosphorus database) [28], has
pushed the research on this topic. In particular, the BU-
3DFE database has become the de facto standard for com-
paring facial expression recognition algorithms. This is due
to the fact that, differently from other 3D face data sets, the
BU-3DFE database provides a precise categorization of fa-
cial scans according to Ekman’s six basic facial expressions
plus the neutral one, also providing different levels of ex-
pression intensities.

1.1 Previous work

Most of the works on 3D facial expression recognition can
be categorized as based on generic facial model or feature
classification.

In the first category, a general 3D face model is trained
with prior knowledge, such as feature points, shape and
texture variations, or local geometry labels. A dense cor-
respondence between 3D faces is usually required to build
the generic model. For example, in [25] a correspondence is
established between faces with expression and their neutral
pair by minimizing an energy function. A Morphable Ex-
pression Model (MEM) is constructed by applying Princi-
pal Component Analysis (PCA) to different expressions, so
that new expressions can be projected into points in a low-
dimensional space constructed by the eigen-expressions ob-
tained by MEM. Expression classification is performed by
comparing the Euclidean distances among projected points
in the eigen-expression space, and a recognition rate of
over 97% is reported on a small and private data set (just
25 subjects with 4 expressions per subject are included in
the data set). An approach inspired by the advances of Ant
Colony Optimization (ACO) and Particle Swarm Optimiza-
tion (PSO) is proposed in [19]. In this work, first anatomical
correspondence between faces is established using a generic
3D deformable model and the 83 manually detected facial
landmarks of the BU-3DFE database. Then, surface points
are used as a basis for classification, according to a set of
classification rules which are discovered by an ACO/PSO

based rule discovery algorithm. The performance of the al-
gorithm evaluated on the BU-3DFE database scored a to-
tal recognition rate of 92.3%. In [20], face recognition and
facial expression recognition are performed jointly by de-
coupling identity and expression components with a bilin-
ear model. An elastically deformable model algorithm that
establishes correspondence among a set of faces is pro-
posed. Construction of the model relies on manually iden-
tified landmarks which are used to establish points corre-
spondence in the training stage. Fitting these models to un-
known faces enables face recognition invariant to facial ex-
pressions and facial expression recognition with unknown
identity. A quantitative evaluation of the technique is con-
ducted on the BU-3DFE database with an overall 90.5% fa-
cial expression recognition. In [10], the shape of an expres-
sional 3D face is approximated as the sum of a basic facial
shape component, representing the basic face structure and
neutral-style shape, and an expressional shape component
that contains shape changes caused by facial expressions.
The two components are separated by first learning a ref-
erence face for each input non-neutral 3D face, and then,
based on the reference face and the original expressional
face, a facial expression descriptor is constructed which ac-
counts for the depth changes of rectangular regions around
eyes and mouth. Average recognition rates of 71.63% and
76.22% have been reported on the BU-3DFE database, re-
spectively, by not using and using a reference neutral scan
for each subject.

Approaches in the second category extract features from
3D face scans and classify them into different expressions.
In [33], a feature-based facial expression descriptor is pro-
posed and the BU-3DFE database is used for the first time.
The face is subdivided into 7 regions using manually anno-
tated landmarks, and primitive surface features are classi-
fied into basic categories such as ridge, ravine, peak, sad-
dle, etc., using surface curvatures and their principal direc-
tions. The authors reported the highest average recognition
rate of 83.6% using the primitive facial surface features and
a LDA classifier. The facial expressions of happiness and
surprise were reported to be the best identified with accu-
racies of 95% and 90.8%, respectively. Comparison with
the results obtained using the Gabor-wavelet and the Topo-
graphic Context 2D appearance feature-based methods on
the same database showed that the 3D solution outperforms
the 2D methods. 3D facial expression recognition on the
BU-3DFE database has been also performed in [29]. Among
the 83 facial landmarks labeling the 3D faces of the BU-
3DFE database, only six distance measures maximizing the
differences of facial expressions are selected. These six dis-
tance values are used to form a distance vector for the rep-
resentation of facial expressions as defined by the MPEG-4
Facial Definition Parameter Set [22]. The results obtained
from a neural network classifier using the 3D distance vec-
tors reach up to 98.3% in the recognition of surprise facial
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expression, whereas the average recognition performance
is 91.3%. In [30], a set of candidate features composed of
normalized Euclidean distances between the 83 facial land-
marks of the BU-3DFE database are first extracted. Then,
a feature selection method based on maximizing the aver-
age relative entropy of marginalized class-conditional fea-
ture distributions is used to retain just the most informative
distances. Using a regularized multi-class AdaBoost clas-
sification algorithm, a 95.1% average recognition rate for
the six basic facial expressions is obtained on a subset of
the BU-3DFE database. The neutral facial expression is not
classified; rather, as a preprocessing step, its features serve
as fiducial measures that are subtracted from the features of
the six basic facial expressions of the corresponding subject.
The approach proposed in [32] uses a modified PCA to clas-
sify facial expressions using only the shape information at
a finite set of fiducial points which are extracted from the
3D neutral and expressive faces of the BU-3DFE database.
The approach uses 2D texture images of the face to mark
interest regions around the eyebrows, eyes, nose and mouth,
and extracts facial contours in those regions with the help of
an active contour algorithm. Then, these contours are uni-
formly sampled and the sampled points are mapped onto
the 3D data set in order to generate a shape and color de-
scriptor of the interest-regions. An average recognition rate
of 81.67% is reported. In [14, 15] an approach based on
the shape analysis of local facial patches is proposed. The
patches are extracted around the 83 manually annotated fa-
cial landmarks of the BU-3DFE database, and the shape of
each patch is described by a set of curves representing the
surface points at the same Euclidean distance from the land-
mark. A Riemannian framework is then applied to compare
the shape of curves undergoing different facial expressions.
The length of the geodesic path that separates corresponding
curves provides a quantitative information about their shape
similarity. The best expression recognition results in the BU-
3DFE database have been obtained using these measures as
entries of a Multiboost classifier.

From the above review, it emerges that the large part of
existing works on 3D facial expression recognition rely on
the presence of landmarks accurately identified on the face.
Methods based on generic facial model use landmarks to es-
tablish correspondences between faces in the construction
of a deformable template face. Usually, these approaches
are also computationally demanding due to the deformation
process. Solutions based on feature classification in many
cases compute distances between landmarks and evaluate
how these distances change between expressional and neu-
tral scans. The fact is that several landmarks are not automat-
ically detectable and the precision required for their posi-
tioning demands for manual annotation in both training and
testing stages. Furthermore, several solutions require a neu-
tral scan for each subject in order to evaluate the differences

generated in the 3D scans by facial expressions with respect
to neutral reference scans. In practice, these factors limit the
applicability of many approaches.

1.2 Contribution and paper organization

A few recent works have shown that local descriptors com-
puted at salient keypoints can be usefully applied to describe
3D objects. In [18], a 3D keypoint detector and descriptor in-
spired by the Scale Invariant Feature Transform (SIFT) [13],
has been designed and used to perform 3D face recognition
through a hybrid 2D+3D approach that also uses the SIFT
detector and descriptor to index 2D textured face images.
In [16], SIFTs are used to detect and represent salient points
in multiple 2D range images derived from 3D face models
for the purpose of 3D face recognition. A similar idea is used
in [21] to perform 3D object retrieval by visual similarity,
but in this case points of a sampling grid are used, and SIFT
descriptors are computed for them. Finally, SIFT descrip-
tors have been also used in [35] to perform 2D expression
recognition from non-frontal face images.

Based on these studies, in this work we propose to use lo-
cal descriptors to perform person-independent 3D facial ex-
pression recognition. Differently from existing approaches,
we define a completely automatic solution that first detects
a set of facial keypoints, and then exploits the local charac-
teristics of the face around a set of sample points automat-
ically derived from the facial keypoints. In particular, SIFT
descriptors are computed around the sample points of the
face, are combined together and used as a feature vector to
represent the face. Before performing classification of the
extracted descriptors, a feature selection approach is used
to identify a subset of features with minimal-redundancy
and maximal-relevance among the large set of features ex-
tracted with SIFT. The set of selected features is finally used
to feed a set of classifiers based on Support Vector Ma-
chines (SVM). As it emerges from the experimental eval-
uation, the proposed approach is capable of achieving state
of the art results on the BU-3DFE database just relying on
few keypoints that are automatically detected and without
using neutral scans as reference. In addition, we used the
proposed face representation framework to perform experi-
ments of 3D facial expression retrieval. The idea is to use the
3D scan of a subject with a target facial expression as query,
and retrieve all the 3D scans of subjects that show the same
facial expression as the target one. This retrieval scenario
can have practical applications in several different contexts,
such as in Facial Character Animation, Psychology studies,
Medical Aesthetic, and so on. However, we did not find any
retrieval experiment in previous works on the analysis of 3D
facial expressions; results of our approach show its viability
also in this task.
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Fig. 1 BU-3DFE database: 3D face scans (with texture) of a sample subject showing the six basic facial expressions at the four levels of intensity
(from highest to low)

This work develops on our preliminary results presented
in [2], by extending the approach to a completely auto-
matic solution. To the best of our knowledge this is the first
work that proposes a fully automatic approach for person-
independent 3D facial expression recognition and also pro-
vides results for 3D facial expression retrieval.

The rest of the paper is organized as follows: In Sect. 2,
the characterizing elements of the BU-3DFE database are
summarized in order to motivate some of the choices that
guide our approach. A solution for the automatic identifica-
tion of facial keypoints is presented in Sect. 3. In Sect. 4,
the main characteristics of SIFT descriptors are described,
and their adaptation to our case is presented. The feature
selection approach used to reduce the set of SIFT features
and the SVM-based classification of the selected features
are addressed in Sect. 5. Experiments carried out with the
proposed approach, with results and comparative evaluation
are reported in Sect. 6. Finally, discussion and conclusions
are given in Sect. 7.

2 The BU-3DFE database

The BU-3DFE database was recently constructed at Bing-
hamton University [34]. It was designed to provide 3D fa-
cial scans of a large population of different subjects each
showing a set of prototypical emotional states at various lev-
els of intensities. There are a total of 100 subjects in the
database, divided between female (56 subjects) and male
(44 subjects). The subjects are well distributed across dif-
ferent ethnic groups or racial ancestries, including White,

Black, East-Asian, Middle-East Asian, Hispanic-Latino, and
others. During the acquisition, each subject was asked to
perform the neutral (NE) facial expression as well as the six
basic facial expressions defined by Ekman, namely, anger
(AN), disgust (DI), fear (FE), happiness (HA), sadness
(SA), and surprise (SU). Each facial expression has four lev-
els of intensity, respectively low, middle, high and highest,
except the neutral facial expression that has only one inten-
sity level. Thus, there are 25 3D facial expression scans for
each subject, resulting in 2500 3D facial expression scans
in the database. As an example, Fig. 1 shows the six basic
facial expressions of a sample 3D face at the four levels of
intensity.

Each 3D facial expression scan is also associated with a
raw 3D face mesh, a cropped 3D face mesh, a pair of tex-
ture images with two-angles of view (about +45° and −45°
away from the face frontal normal), a frontal-view texture
image, a set of 83 manually annotated facial landmarks, and
a facial pose vector. These data give a complete 3D descrip-
tion of a face under a specific facial expression. The cropped
and textured 3D face scan, and the 83 facial landmarks are
shown in Fig. 2(a). It can be observed that the landmarks
are distributed in correspondence with the most distinguish-
ing traits of the face, i.e. eyes, eyebrows, nose and mouth,
plus the face boundary, as summarized in Fig. 2(b). A more
detailed description of the BU-3DFE database can be found
in [34].

In this work, we only use the cropped 3D face scans
in order to perform expression recognition. The 83 facial
landmarks provided with each scan are considered just as
ground-truth in order to validate the proposed solution for
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Fig. 2 BU-3DFE database: (a) the 83 facial landmarks evidenced on a
textured 3D face scan with neutral expression; (b) the table reports the
number of manually identified landmarks for different regions of the
face

automatic identification of facial keypoints as discussed in
the next section.

3 Automatic identification of facial keypoints

The BU-3DFE database is the standard benchmark to com-
pare 3D facial expression recognition algorithms. However,
the fact that this database provides a set of 83 manually iden-
tified landmarks on the 3D face scans, and the inherent dif-
ficulty in automatically detecting the majority of these land-
marks both in 2D and 3D, has oriented the research towards
semi-automatic solutions for 3D facial expression recogni-
tion. In these solutions, the position of facial landmarks is
assumed to be known in order to achieve high facial expres-
sion recognition rates (see also the discussion on previous
work in Sect. 1.1). In practice, this reduces the applicability
of the existing solutions in the general case in which manual
annotation of the landmarks in 3D is not available or even
possible. To overcome this limitation, we propose a com-
pletely automatic solution to identify fiducial points of the
face that in the following will be referred to as keypoints.

Some preprocessing was applied to the cropped 3D face
scans before performing keypoint detection. First, spikes
in the 3D face were removed using median filtering in the
z-coordinate. Then, holes were filled using cubic interpola-
tion and 3D scans were resampled on a uniform square grid
at 0.7 mm resolution. The scans were also subjected to pose
normalization by iteratively performing PCA alignment and
resampling of the cropped portion of the face [17]. After
these steps, the 3D face scans were transformed to range
images where the gray value of each image pixel represents
the depth of the corresponding point on the 3D surface. As
an example, Fig. 3 shows the range images derived from the
3D face scans of a same subject under three different facial
expressions.

On the range images, the point with maximum gray value
has been used as initial estimate of the tip of the nose. This

Fig. 3 Range images derived from the 3D face scans of the same sub-
ject, for the expressions (highest level of intensity of the BU-3DFE
database): (a) anger; (b) disgust; (c) fear

Fig. 4 The 9 facial keypoints that can be automatically detected with
our approach, shown on: (a) a textured 3D face scan; (b) the range
image of the scan in (a)

point was used to crop a rectangular region of the face (fol-
lowing anthropometric statistical measures [8], the cropped
region extends 50 mm on the left and 50 mm on the right of
the nose tip, and 70 mm above and 50 mm below the nose
tip). The cropped region of the face is used for all the subse-
quent steps of the processing.

Our approach starts from the consideration that just a few
fiducial points of the face can be automatically identified
with sufficient robustness across different individuals. This
is supported by recent studies as that in [11], where methods
are given to automatically identify 10 facial fiducial points
on the 3D face scans of the Texas 3D Face Recognition
Database. Following this idea, we propose a general method
to automatically identify 9 keypoints of the face, namely, the
tip of the nose (pronasale, prn), the two points that define
the nose width (alare, al), the points at the inner and outer
eyes (endocanthion, en and exocanthion, ex, respectively),
and the outer mouth points (cheilion, ch), as evidenced on
the 3D face scan and range image of Figs. 4(a) and (b).

We used different algorithms in order to detect the key-
points. For the nose tip and the two alare points we used
solutions derived from the work in [11]. For the remaining
points (inner and outer eyes and outer mouth) we used a
solution based on the SIFT detector applied to local search
windows.
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Fig. 5 The magnitude of the (a) mean curvature H , where H < 0;
and of the (b) Gaussian curvature K where H < 0. A local maximum
of the Gaussian curvature can be observed in correspondence with the

nose tip. The blue plane shows a threshold equal to 1/2 of the maxi-
mum peak under which the local maxima are discarded

3.1 Nose tip and alare points

Given a 3D face scan in a frontal upright canonical pose, the
following operations are applied:

Nose tip (pronasale, prn) The point of the range image
with maximum gray value is used as initial estimate of the
tip of the nose. This position is refined using the prop-
erty of the surface curvature. The Gaussian surface cur-
vature (K) and the mean surface curvature (H ) of the fa-
cial range images are computed from their first and second
derivatives [5]. In so doing, due to the sensitivity of second
derivatives to surface noise, the surface is smoothed with a
Gaussian filter and the surface is approximated using a bi-
quadratic polynomial [4]. According to [11], the region sur-
rounding the tip of the nose is convex (H < 0) and has high
elliptic Gaussian curvature (K > 0) (see Figs. 5(a) and (b)).
Following this observation, the nose tip is determined in the
convex part of the central region of the face as the point with
a local maximum of the elliptic Gaussian curvature which is
closest to the initial estimate of the nose tip.

Nose width (alare, al–al) The search of the alare points is
performed in a window of 50 mm width and 42 mm height
centered on the nose tip [11]. In this region, the edges of the
facial range images are identified using a Laplacian of Gaus-
sian (LoG) edge detector with σ = 3 pixels. The edges of

the left and right part boundaries of the nose are detected by
traversing outwards horizontally in both directions from the
tip of the nose and by retaining the first edges encountered.
Then, the points along the nasal boundary with high negative
curvature (“critical” points) are detected. In order to com-
pute the boundary curvature, the contour is coded counter-
clockwise according to the Freeman chain code [26]. In or-
der to eliminate the hard discontinuities due to the inversion
of the phase of the chain code, the code is unwrapped [3].
Then, a derivative of Gaussian (doG) filter is applied to the
chain code in order to smooth and derive it. This corresponds
to good approximation to the curvature of the contour. Fi-
nally, the critical points are identified in correspondence
with the local minima of the derivative that correspond to
maxima of the curvature. The two alare points are selected as
the outer left and outer right critical points. As an example,
Fig. 6(a) shows the window centered on the nose tip used
for the search of the alare points; Fig. 6(b) shows in blue the
detected nose tip and the alare keypoints on the contour of
the nose; in Fig. 6(c) the identification of the critical points
using the doG of the unwrapped chain code is reported.

3.2 Inner and outer eyes, outer mouth

The detection of the remaining fiducial points (i.e., inner and
outer eyes, outer mouth) proceeds in cascade using the loca-
tion of the nose tip and the alare points to identify search
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Fig. 6 (a) The window centered on the nose tip used for the search
of the alare points; (b) the detected edges (white line), the contour of
the nose (in red), the critical points (in purple), and the selected alare
points (in blue) (the nose tip is also evidenced in blue at the center

of the window); (c) the unwrapped chain code of the contour (dashed
red line), the smoothed chain code (black line), its first derivative (blue
line) and the critical points (in purple)

windows on the face. Following the studies of Farkas and
Munro [9] and the application in [11], the search windows
are determined as:

Inner eyes (endocanthion, en–en) The vertical extent
(y-coordinate) of the search window in pixels is bounded
by 0.126 × |prny − vy | ≤ y − prny ≤ 0.570 × |prny − vy |,
v being the upper point of the face. The horizontal bounds
(x-coordinate) for the inner left and inner right eyes are
prnx ≤ x ≤ alleft

x + 0.5 × |alleft
x − alright

x | and al
right
x − 0.5 ×

|alleft
x − alright

x | ≤ x ≤ prnx, respectively.

Outer eyes (exocanthion, ex–ex) The initial positions of
the outer corners of the left and right eyes are given by
(enleft

x + |enleft
x − enright

x |, (enleft
y + enright

y )/2) and (enright
x −

|enleft
x − enright

x |, (enleft
y + enright

y )/2), respectively. A rectan-
gular search window of 34 mm width and 20 mm height is
then identified around these points.

Outer mouth (cheilion, ch–ch) The vertical limits of the
mouth are determined by detecting the upper and lower lip
regions with elliptic Gaussian curvature [11]. These regions
are used to define the vertical limits of the search windows.
The locations of the alare points are used to constrain hor-
izontally the search window for the left and right mouth
corners with the respective bounds, alleft

x ≤ chleft
x ≤ alleft

x +
0.7 × |alleft

x − alright
x | and alright

x − 0.7 × |alleft
x − alright

x | ≤
chright

x ≤ alright
x .

In [11], both the 2D texture and the 3D geometry of the
face are used to identify the keypoints in these search win-
dows. In our approach, we designed a completely 3D solu-
tion that only relies on 3D data to identify the keypoints. To

this end, the SIFT detector algorithm is run in the en–en,
ex–ex and ch–ch search windows. In fact, SIFT has been
defined on 2D gray-scale images and includes a keypoints
detector and a feature extractor [13]. By definition, key-
points detected by SIFT are mainly located at corner points
of an image, so that they can be useful to capture signifi-
cant anthropometric face points. The SIFT point detected at
the highest scale is retained as keypoint of the search win-
dow.

As an example, Fig. 7(a) shows, for a sample subject, the
keypoints detected with our approach and the search win-
dows of the left part of the face for en, ex and ch. The 3D
surface of these search windows and the keypoints identified
on the corresponding range images are also shown in (b)–(d)
of Fig. 7 for en, ex and ch, respectively. Each detected key-
point is represented by a circle of radius proportional to the
scale at which the keypoint is detected (the orientation of
the radius also shows the dominant orientation of the SIFT
descriptor). It can be observed that a few keypoints are de-
tected in each search window and the keypoints identified
at the largest scale (i.e., centers of the largest circles in the
range images on the right of Figs. 7(b) and (d)) well identify
the searched fiducial points.

Experiments on the accuracy of keypoint detection are
reported in Sect. 6.4.

4 SIFT features of facial sample points

The nine automatically detected keypoints are used as ref-
erence to derive a set of sampling points on the face. This
is obtained by considering 8 lines that connect pairs of key-
points, as shown in Fig. 8(a). In particular, these lines con-
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Fig. 7 (a) Keypoints detected
and the search windows for en,
ex and ch in the left part of the
face. In (b), (c) and (d) the 3D
rendering of the search windows
in (a) are reported on the left,
and the corresponding keypoints
identified on the range images
of the windows are reported on
the right. In the range images on
the right of (b), (c) and (d) a
circle is centered on each SIFT
detected keypoint in the
window: the radius of the circle
is proportional to the scale at
which the keypoint is detected,
whereas the orientation of the
radius shows the dominant
orientation of the SIFT
descriptor. The keypoint with
maximum radius (i.e., the
keypoint detected at the largest
scale) is retained as fiducial
point in the window

nect the nose tip to the lower point of the face (line 1), the
outer mouth with the outer eyes (lines 2, 3), the inner eyes
with the mid points of lines 2 and 3 (lines 4, 5), the outer

mouth points each other (line 6), and the alare points with
the outer mouth (lines 7, 8). Lines are sampled uniformly
with a different number of points as reported in the Table of
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Fig. 8 (a) The eight lines along which the sample points are located
(the cropped region of the face is also reported); (b) the number of
sample points and their indices grouped according to the surface line
they belong to

Fig. 8(b). According to this, the face is sampled with a total
number of 79 points.

In order to capture salient features that characterize dif-
ferent facial expressions in 3D, we compute local descrip-
tors around the 79 sample points of the face. The SIFT fea-
ture extraction algorithm has been used for this purpose,
so as to derive SIFT descriptors. A detailed explanation of
the SIFT keypoint detection and feature extraction is given
in [13]. In the following, we just summarize the main idea
of SIFT descriptor and its adaptation to our context. Briefly,
a SIFT descriptor of a small image patch, for example of
size 4 × 4, is computed from the gradient vector histograms
of the pixels in the patch. There are 8 possible gradient di-
rections, and therefore the total size of the SIFT descrip-
tor is 4 × 4 × 8 = 128 elements. This descriptor is normal-
ized to enhance invariance to changes in illumination (not
relevant in the case of range images), and transformed in
other ways to ensure invariance to scale and rotation as well.
These properties make the SIFT descriptor capable of pro-
viding a compact and powerful local representation of the
range image and, as a consequence, of the face surface.

The following settings have been used for the extraction
of SIFT descriptors (we employed the publicly available im-
plementation of SIFT given in [31]):

– For each range image, SIFT descriptors are computed at
the 79 sample points;

– At these points, SIFT descriptors are computed at scale
equal to 3. In order to achieve invariance to image rota-
tion, the descriptor is computed relative to an orientation
given by the dominant direction of local image gradient
evaluated at the assigned scale;

– The orientation histograms of 4 × 4 neighbor regions of
each sample point are used to calculate the SIFT descrip-
tor. By computing the 128-dimensional SIFT descriptor at
each of the 79 sample points, a feature vector with 10112
components is obtained to represent each range image.

To reduce the dimensionality and improve the signif-
icance of the features, only the features with maximal-

relevance and minimal-redundancy have been selected using
the feature selection analysis reported in Sect. 5.

5 Selection of relevant SIFT features

Feature selection is mainly motivated by the curse of dimen-
sionality, which states that in presence of a limited number
of training samples, each one represented as a feature vec-
tor in Rn, the mean accuracy does not always increase with
vector dimension (n). Rather, the classification accuracy in-
creases until a certain dimension of the feature vector and
then decreases. In other words, the higher the dimensional-
ity of the feature space, the higher the number of training
samples required to achieve the same classification accu-
racy. Therefore, the challenge is to identify m out of the n

features which will yield similar, if not better, accuracies as
compared to the case in which all the n features are used in
a classification task.

In the proposed analysis, feature selection is performed
using the minimal-redundancy maximal-relevance (mRMR)
model [23]. For a given classification task, the aim of
mRMR is to select a subset of features by taking into ac-
count the ability of features to identify the classification la-
bel, as well as the redundancy among the features. These
concepts are defined in terms of the mutual information be-
tween features.

Given two discrete random variables x and y, taking val-
ues in {si}Ni=1, their joint probability P(x, y) and the respec-
tive marginal probabilities P(x) and P(y), the mutual infor-
mation between x and y is defined as the difference between
the Shannon’s entropy of x and the conditional entropy of x

given y, that is: I (x, y) = H(x) − H(x|y), where the en-
tropy is used as measure of the uncertainty of a random
variable. In practice, this expression states that if from the
uncertainty of x is subtracted the uncertainty of x once y is
known, the information (in bits) that the variable y provides
about x is obtained. According to this, mutual information
provides a measure of the dependency of variables, and can
also be computed as:

I (x, y) =
N∑

i=1

N∑

j=1

P(si, sj ) log
P(si, sj )

P (si)P (sj )
. (1)

The work in [23] proposes to jointly maximize the de-
pendency between a feature variable xi and the classifica-
tion variable l and minimize the dependency between pairs
of feature variables xi , xj . Thus, the task of feature selection
is posed as selecting from the complete set of n features Sn,
a subset Sm of m < n features that maximizes:

1

m

∑

xi∈Sm

I (xi, l) − 1(
m
2

)
∑

xi ,xj ∈Sm

I (xi, xj ). (2)
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This expression takes into account the relevance of fea-
tures with the class label while penalizing redundancy
among them. Since the search space of subsets of m ele-
ments in Rm is too big to be explored in practice, Sm is
determined incrementally by means of a forward search al-
gorithm. Having a subset Sm−1 of m−1 features, the feature
xi ∈ {Sn − Sm−1} that determines a subset {xi, Sm−1} maxi-
mizing (2) is added. It can be shown that this nested subset
strategy is equivalent to iteratively optimizing the following
condition:

max
xi∈Sn−Sm−1

(
I (xi, l) − 1

m − 1

∑

xj ∈Sm−1

I (xj , xi)

)
. (3)

Experiments in [23] show that for subsets of more than
20 features, the Sm obtained by this method achieves a more
accurate classification performance than the subset obtained
by maximizing the I (Sm, l) value (that is, the mutual infor-
mation between the whole subset of variables and the classi-
fication label l), while the required computation cost is sig-
nificantly lower.

5.1 SVM classification

In our approach, the mRMR algorithm is applied to the set
of 10112-dimensional feature vectors representing the faces.
Each vector vf = (f1, . . . , f10112) is constructed by con-
catenating the 128-dimensional SIFT descriptors computed
at the face sample points, orderly from 1 to 79. A data dis-
cretization is applied to the vectors as preprocessing step.
This is obtained by computing the mean value μk and the
standard deviation σk for every feature fk . Then, discretized
values f̂k are obtained according to the following rule:

f̂k =

⎧
⎪⎨

⎪⎩

2 if fk < μk − α · σk,

3 if μk − α · σk ≤ fk ≤ μk + α · σk,

4 if fk > μk + α · σk,

(4)

α being a parameter that regulates the width of the dis-
cretization interval (it is equal to 0.2 in our experiments).
The overall set of discretized feature vectors is used to feed
the mRMR algorithm so as to determine the features which
are more relevant in discriminating between different facial
expressions of 3D face scans of different subjects.

The facial expression recognition problem is a multi-
classification task that, in our approach, is faced as a com-
bination of separated instances of one-vs.-all classification
subproblems. For each subproblem, face scans showing
one expression are assumed as targets (positive examples),
whereas all the other scans with any different expression are
considered as negative examples. Repeatedly, the target ex-
pression is changed among the six basic expressions pro-
vided by the BU-3DFE database, so that the sets of positive

and negative examples change. Due to this, mRMR feature
selection is performed independently for each classification
subproblem. In general, this results into different features
providing the minimal-redundancy and maximal-relevance
for the purpose of discriminating across different facial ex-
pressions. Then, just the most relevant features identified for
every expression are retained from the original feature vec-
tors in order to train the classifiers. This results into vectors
v

expr

f̂
= (f̂p1, . . . , f̂pNexpr), where p1, . . . , pNexpr are the in-

dices of the feature components selected in the original vec-
tor, and the subscript is the label of a particular expression.

The selected features are then used to perform facial ex-
pression recognition using a maxima rule between six one-
vs.-all SVM classifiers, each with a radial basis function ker-
nel of standard deviation equal to one (the publicly avail-
able SVMLight implementation of SVM has been used:
http://svmlight.joachims.org/).

6 Experimental results

Experiments on the BU-3DFE database have been con-
ducted using a setup similar to that in [10]. In particular,
we performed a series of experiments in each of which 60
randomly selected subjects are used with the two highest-
intensities scans for each of the six basic facial expres-
sions (i.e., each experiment includes 720 scans). The ran-
dom selection of the subjects approximately guarantees that,
in each experiment, the person- and gender-independency
are preserved, and a good distribution of the subjects across
the various ethnic groups. In each experiment, six one-vs.-
all SVM classifiers, one for each expression, are trained
and tested using the feature vectors v

expr

f̂
and 10-fold cross-

validation. According to this, the 60 subjects are split into
ten subsets, each containing 6 subjects. Of the 10 subsets,
one subset is retained to test the model, and the remaining
9 subsets are used as training data, that is, the training set
contained 54 subjects (648 scans), and the test set contained
6 subjects (72 scans). The ratio between positive and neg-
ative examples in the train and test subsets is equal to the
ratio existing in the original data set. Using 10-fold cross-
validation, training is repeated 10 times, with each of the
10 subsets used exactly once as the test data. Finally, the
results from the ten steps are averaged to produce a single
estimation of the performance of the classifier for the exper-
iment. In this way, all observations are used for both training
and test, and each observation is used for test exactly once.
However, as pointed out in [10], since average recognition
accuracies can vary from experiment to experiment, in order
to permit a fair generalization and obtain stable expression
recognition accuracies, we run 100 independent experiments
and averaged the results (1000 train and test sessions in to-
tal).

http://svmlight.joachims.org/
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Table 1 Most relevant features for each expression according to
mRMR. Pairs (k, r) are reported, where k is the number of the sample
point according to the numbering of Fig. 8(b), and r is the correspond-

ing relevance (in percentage). Values in each column are ordered by
decreasing relevance scores

Rank Anger Disgust Fear Happiness Sadness Surprise

k, r k, r k, r k, r k, r k, r

1 69, 100.0 57, 100.0 43, 100.0 52, 100.0 63, 100.0 7, 100.0

2 70, 92.3 58, 92.3 43, 81.2 42, 99.3 63, 96.9 6, 96.0

3 69, 77.7 68, 90.6 44, 77.1 19, 94.0 64, 96.8 8, 94.8

4 67, 76.7 7, 84.8 28, 75.6 51, 93.7 71, 96.0 5, 94.6

5 69, 75.0 5, 84.4 71, 74.0 52, 92.7 71, 93.0 8, 90.3

6 69, 73.8 49, 84.2 44, 73.7 42, 92.0 64, 88.7 4, 88.1

6.1 Feature selection

According to the feature selection analysis in Sect. 5, just
the most relevant SIFT features identified with mRMR are
used to perform 3D facial expression recognition. Table 1
summarizes, for the six basic expressions, the outcomes of
mRMR by using the pair (k, r), where k is the index of
the sample point according to the numbering reported in
Fig. 8(b), and r represents the relevance (given in percent-
age) of the feature selected for the k sample point. The rel-
evance value is obtained as the mutual information value
returned by the mRMR algorithm, normalized by the mu-
tual information of the most important feature. Actually, it
should be noted that mRMR can select and use for classifi-
cation either none, one or more than one of the 128 features
of the SIFT descriptor at a particular sample point. From
the table, it can be observed that sample points from which
the most relevant SIFT features are extracted vary across
expressions. In addition, the values reported in each col-
umn show as the relevance decreases with different trends
from expression to expression. To account for this, only
the features with a relevance not lower than 50% are re-
tained among the 10112-dimensional SIFT feature vector,
and these features are used to perform expression recogni-
tion. According to this, the first 18, 12, 8, 14, 16 and 20 fea-
tures are used, respectively, for the anger, disgust, fear, hap-
piness, sadness, and surprise expressions. Considering all
the expressions, SIFT features of just 33 sample points are
used for recognition (see the Table in Fig. 9(b)). In addition,
the results indicate that, with our approach, the large part of
the information about facial expressions is conveyed by the
local descriptors of sample points located in the mouth and
cheek regions of the face, as shown in Fig. 9.

6.2 Expression recognition

Using the selected mRMR features and SVM classification,
3D facial expression categorization is performed. The aver-

Fig. 9 (a) The sample points for which at least one feature of the SIFT
descriptor is selected for expression classification by the mRMR algo-
rithm; (b) the number of selected points per line

Table 2 Average confusion matrix (percentage values)

An Di Fe Ha Sa Su

An 78.43 2.15 3.50 1.24 13.01 1.67

Di 3.33 77.05 4.32 6.89 3.41 5.00

Fe 1.24 13.56 67.50 11.12 2.17 4.41

Ha 0.83 0.91 19.02 77.42 0.91 0.91

Sa 17.73 0.0 0.91 2.50 78.86 0.0

Su 0.0 6.01 2.68 0.0 0.0 91.31

age recognition accuracies are computed by performing 100
independent runs, each including 10-fold cross-validation
on the two highest intensities scans of 60 randomly selected
subjects (720 scans per independent experiment).1 The re-
sults are reported in Table 2 using the average confusion
matrix as performance measure. Rows of the table are the

1The identifiers of the 60 randomly selected subjects in each of the 100
experiments are publicly available upon request from the correspond-
ing author.
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Table 3 Comparison of this work with respect to Gong et al.
(Gong) [10], Wang et al. (Wang) [33], Soyel and Demirel (Soyel) [29],
and Tang and Huang (Tang) [30]. The average (AVG) expression recog-
nition rates, in percentage, computed on all the six expressions and all
the independent experiments are reported

This work Gong Wang Soyel Tang

AVG 78.43 76.22 61.79 67.52 74.51

true expressions to classify, whereas columns represent the
results of the classification. The overall recognition rate is
equal to 78.43%. It can be observed that surprise is recog-
nized with very high accuracy, whereas fear results in the ex-
pression more difficult to recognize (mainly confused with
disgust and happiness). High confusion between happiness
and fear, and between sadness and anger are also observed.
Looking at Fig. 1, the difficulty to discriminate between
sadness and anger can be motivated by the fact that these
two expressions are very similar and can be discriminated
mainly observing the differences in the eyes and eyebrows
regions. However, these regions are typically acquired with
noise by 3D scanners, so that we do not consider sampling
points in these parts of the face (the en–en and ex–ex points
are identified, but no sampling lines are considered between
these points).

6.3 Comparative evaluation

In Table 3 the results of our approach are compared against
those reported in [10] on a same experimental setting (the
setting details are reported in Sect. 6.2).

For the approaches in [29, 30, 33], results are replicated
from those reported in [10].2 Some differences between
the approaches listed in the table should be noted: Soyel
and Demirel [29] use distances between manually identi-
fied landmarks (11 in total); Tang and Huang [30] use both
distances between manual landmarks (83 in total), and neu-
tral scans to normalize distances; Wang et al. [33] use man-
ual landmarks (64 in total) to segment face regions; Gong
et al. [10] obtain their best results subtracting neutral scans
from depth region masks of the eyes and mouth. In compar-
ison, our approach does not use neutral scans, but just relies
on 9 automatically detected keypoints and 79 sample points
derived on lines connecting the keypoints. In particular, it
can be observed that our approach outperforms other solu-
tions, with larger differences with respect to works that do
not use neutral scans.

2We point out that the results reported in the original works of [29, 30,
33] are different from those summarized in [10]. However, these results
are obtained for diverse experimental settings and thus do not permit a
fear comparison. Due to this, we refer to the results in [10] that have
been obtained for the same experimental setting of this work.

Table 4 The RMSE for x, y, and z coordinates, and the mean and
standard deviation of the ADE (all measured in mm) for the 9 auto-
matically located keypoints with respect to their manually annotated
positions (BU-3DFE, high and highest expressions scans)

Landmark RMSE ADE

x y z mean stdev

prn 0.693 1.139 1.382 1.780 0.720

alleft 0.756 1.818 1.544 2.330 0.911

alright 0.804 1.732 1.476 2.251 0.873

enleft 1.316 1.481 1.143 2.152 0.774

enright 1.552 1.620 1.171 2.377 0.868

exleft 3.225 2.070 2.126 4.132 1.455

exright 3.463 2.207 2.130 4.358 1.552

chleft 3.546 2.860 2.639 4.970 1.732

chright 3.699 2.997 2.707 5.193 1.743

6.4 Keypoints positional accuracy

The set of 83 manually annotated landmarks provided with
the BU-3DFE database (see Fig. 2) also includes the manual
annotation of 8 of the 9 keypoints that are derived automati-
cally with the approaches presented in Sect. 3. The nose tip
is missing in the BU-3DFE, so this landmark was manually
annotated in order to perform the experiment.3 These manu-
ally annotated landmarks provide a ground-truth to evaluate
the positional Root Mean Square Error (RMSE) of the 9
automatically located keypoints. Given the category k of a
landmark (k = 1, . . . ,9), the ground-truth coordinates of this
landmark in the ith scan lki = (xk

i , yk
i , zk

i ), and the automat-

ically derived estimation of the landmark l̂ki = (x̂k
i , ŷk

i , ẑk
i ),

the RMSE for the x-coordinate is defined as (similar defini-
tions hold for the y- and z-coordinate):

RMSE(x̂k) =
√√√√ 1

N

N∑

i=1

(
x̂k
i − xk

i

)2
, (5)

where N is the number of scans used in the evaluation (i.e.,
N corresponds to the 1200 scans of the BU-3DFE database
with the high and highest expression intensities used in the
expression classification experiments). The Absolute Dis-
tance Error (ADE) in 3D is also computed as the Euclidean
distance between a manually annotated landmark and its au-
tomatic estimation. The mean and standard deviation values
of the ADE are reported in Table 4, together with the RMSE
computed independently for the three coordinates x, y and
z of each landmark.

3The annotation files for the nose tip are publicly available upon re-
quest from the corresponding author.
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Fig. 10 Example range images showing the automatically detected
keypoints (+) and their manually located positions (•)

It can be observed that the 9 keypoints were detected with
different accuracies (two examples are shown in Fig. 10).
The mean ADE for each of the 9 keypoints was less than
5.193 mm. The average ADE across all the 9 fiducial points
was 3.283 mm.

The nose tip point (prn) was located most reliably in 3D
(within 1.780 mm of its manual locations), followed by the
inner corners of the eyes (en–en) points. The alare points
were also located reliably for all the faces in the database.
The corners of the mouth (ch–ch) were detected least reli-
ably (the mean ADE for the left and right cheilion are equal
to, respectively, 4.970 and 5.193 mm), preceded only by the
outer corners of the eyes (ex–ex) with a mean ADE of 4.132
and 4.358 mm, respectively, for the left and right exocan-
thion.

The quite large errors observed for the ex–ex and ch–ch
points with respect to the others can be motivated by the
fact that manual annotations are carried out on 3D textured
models so that the texture image largely influences the visual
perception of the location of facial landmarks (especially for
ex–ex and ch–ch due to the eyelashes and the lips, respec-
tively). Differently, our completely automatic approach only
relies on 3D data and would require, for a more fear evalu-
ation of the positional accuracy of the keypoints, a ground-
truth directly derived from the 3D face scans. In addition, the
scans with the high and highest level of expression intensi-
ties were used for the detection of keypoints. Since these
scans show very large expression variations, the regions of
the face close to the mouth and eyes are modified to a large
extent, thus making the location of the corresponding key-
points less accurate.

6.5 Facial expression retrieval

The proposed framework for 3D facial expression represen-
tation and classification can be also used to perform 3D fa-
cial expression retrieval. In a retrieval scenario, the idea is
that the 3D scans of subjects with given facial expressions
are used as target queries and the 3D scans of subjects that

Table 5 Precision and recall values on the BU-3DFE (percentage val-
ues)

An Di Fe Ha Sa Su

Precision 77.23 77.30 68.93 78.07 80.17 88.39

Recall 78.43 77.05 67.50 77.42 78.86 91.31

show the same facial expression as the target one are re-
trieved. For example, given a query scan of a subject with
happy expression, a retrieval task permits to find all scans
of subjects in the database with happy expression. This can
have practical applications in different contexts, such as fa-
cial character animation, psychology studies, medical aes-
thetics, etc.

In order to be applied for retrieval purposes, our frame-
work for 3D facial expressions representation and classifi-
cation requires that: First, the expression of the query scan
is determined using SVM; Then, all the database scans
that are classified in the same category of expression as
the query are retrieved. Following this experimental setup,
the retrieval results can be directly derived from Table 2.
The standard precision and recall figures of merit that are
used as performance measures of retrieval can be computed
as:

precision = tp

tp + fp
, recall = tp

tp + f n
, (6)

where tp, fp and f n are, respectively, the true positives,
false positives, and false negatives. These values can be de-
rived from Table 2, considering that the rows of the table are
the true expressions, and the columns represent the corre-
sponding classification. As a consequence, for each expres-
sion: (i) the true positives (tp) are on the principal diagonal
of the confusion matrix; (ii) the false positives (fp) are the
sum of non-diagonal values of the columns of the matrix;
(iii) the false negatives (f n) are the sum of non-diagonal
values of the rows of the matrix. According to this, preci-
sion and recall values are derived using (6) and are reported
in Table 5.

To the best of our knowledge, derivation of the precision
and recall performance is unique in the literature of 3D fa-
cial expression recognition. In particular, the results show
an average performance close to 80% both for precision and
recall.

7 Discussion and conclusions

In this paper, we proposed a completely automatic approach
for person-independent facial expression recognition from
3D facial scans. The approach grounds on three main orig-
inal contributions: (i) a solution to automatically detect 9
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fiducial points of the face (keypoints) located in morpho-
logically salient regions of the face; (ii) a local based de-
scription of the face that computes SIFT features on a set of
sample points of the face derived starting from the 9 key-
points; (iii) a feature selection solution for the identifica-
tion of the salient SIFT features. Using a multi-class SVM
classification on a large set of experiments, an average fa-
cial expression recognition rate of 78.43% has been ob-
tained for the six basic facial expressions on the publicly
available BU-3DFE database. Remarkably, the comparative
analysis shows that our completely automatic approach per-
forms similarly or better than methods that use manual an-
notation of the face. The experiments also evidence that
the proposed solutions for automatic identification of fa-
cial keypoints can locate fiducial points of the face with
an accuracy compatible with the needs of an expression
recognition approach. Finally, we also used the proposed
face representation and classification framework to derive
results of 3D facial expression retrieval. To this end, the 3D
scans of subjects with a target facial expression are used as
queries, with the goal to find all the 3D scans of subjects
that show the same facial expression as the target scans. Re-
call and precision results show an average performance close
to 80%.

The proposed approach can be extended in different di-
rections in order to improve the facial expression recogni-
tion. On the one hand, methods to automatically identify
further keypoints of the face could be defined so as to cap-
ture additional information in different regions of the face.
In particular, in the current solution no keypoints are de-
tected in the eyebrows region that, instead, is significantly
modified by some expression changes (see for example the
disgust, fear and surprise expressions in Fig. 1). On the
other hand, the use of SIFT descriptor computed in corre-
spondence with a set of sample points has proved its va-
lidity, but different solutions could be tried to capture the
local 3D shape of the face. The idea is that different local
face descriptors could be encompassed in our framework,
provided that these local descriptors be sensible to varia-
tions originated by facial expressions. Finally, the retrieval
perspective can be made more specific by developing a tai-
lored retrieval approach. Following the common practice of
retrieval applications, this could renounce to the classifica-
tion framework in order to define a solution which uses fea-
ture extraction and matching between query and database
scans.

As future work, we plan also to evaluate the robustness
of the proposed approach when applied to the scans of the
BU-3DFE database with the lower and medium levels of
expression intensities. These scans pose further challenges
due to the small face variations induced by the low level
of expression changes, and results on these subsets have
not yet appeared in the literature of 3D facial expression

recognition. Both the extensions to the proposed approach
mentioned above could be tried to make our solution capa-
ble of accurately discriminating between small expression
changes.
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