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Divergence-free Wavelets and High Order Regularization

S. Kadri-Harouna · P. Dérian · P. Héas · E. Mémin

Abstract Expanding on a wavelet basis the solution of
an inverse problem provides several advantages. First of
all, wavelet bases yield a natural and efficient multireso-
lution analysis which allows defining clear optimization
strategies on nested subspaces of the solution space. Be-
sides, the continuous representation of the solution with
wavelets enables analytical calculation of regularization
integrals over the spatial domain. By choosing differen-
tiable wavelets, accurate high-order derivative regular-
izers can be efficiently designed via the basis’s mass
and stiffness matrices. More importantly, differential
constraints on vector solutions, such as the divergence-
free constraint in physics, can be nicely handled with
biorthogonal wavelet bases. This paper illustrates these
advantages in the particular case of fluid flow motion
estimation. Numerical results on synthetic and real im-
ages of incompressible turbulence show that divergence-
free wavelets and high-order regularizers are particu-
larly relevant in this context.

Keywords Divergence-free wavelets · High order
derivatives regularization · optic-flow estimation

1 Introduction

Prior models used to solve ill-posed inverse prob-
lems such as image restoration, surface reconstruction
or optic-flow estimation often involve differential con-
straints or smoothing term incorporating high-order
derivatives [24]. In particular in the context of optic-
flow estimation, numerous regularization models [10,23]
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involving penalization of first or second order deriva-
tives of the estimated velocity have been proposed in
order to make this estimation problem well-defined, be-
ginning with the original work of Horn and Schunck
[10]. However, although estimation of optical flow is
an old and well-known problem, it still remains very
challenging for deformations metrological issues or for
the measurement of fluid flows [9]. Indeed, optical flow
standards are in general designed from almost rigid mo-
tions consideration and do not include physical consid-
erations on the observed phenomenon occurring even-
tually at different spatial scales. Several attempts have
been carried out in order to introduce some physical
constraints, such as incompressibility [7,26] or second
order regularization functional preserving blobs of curl
and divergence [9].

In addition, inverse problems often involve non-
linear models relating the data term to the unknown.
Dealing with non-linearities and the multi-scale struc-
ture of motion is particularly challenging for the es-
timation of deformation fields generated by physical
processes. Gaussian multiresolution frameworks [1] or
combined integrated/variational formulations [22] have
been proposed to circumvent non-linearity and achieve
long range displacement estimation from consecutive
images. However, the former solutions suffer from a
non nested minimization formulation that may impact
estimation accuracy, while the latter provide poor re-
sults for non-textured images such as images visualiz-
ing the transport of a passive scalar. Even worth, as
these optic-flow multiresolution schemes work only at
very few distinct scales without any explicit connection
between scales, estimation of erroneous large scale mo-
tions affects severely the whole estimation process. The
divergence free constraint ensuing from a volume pre-
serving transformation is in general quite problematic



2 S. Kadri-Harouna et al.

to impose as it comes to solve a Poisson equation which
is intrinsically a non local problem. Let us note that
the combination of local non linear advection diffusion
equation with a global divergence free constraint consti-
tutes one of the major difficulties of Navier-Stokes equa-
tions numerical simulation. This constraint is imposed
through the pressure field which acts as a Lagrangian
penalty variable and requires advanced discretization
schemes on staggered grid to prevent oscillations [6].

In order to circumvent some of the difficulties as-
sociated to traditional optical flow multiresolution ap-
proaches, and to enable a relevant multi-scale motion
estimation, an optical flow scheme based on the wavelet
expansion of the motion field has been introduced by
Wu et al. [25]. This technique has however a prohibitive
computational cost in O(N6), where N is the number of
wavelet coefficients. An extension of this work reducing
the algorithm complexity has recently been proposed
[4]. Besides, considering the introduction of a mass pre-
serving constraint, divergence-free wavelets define natu-
ral bases for the solutions of the incompressible Navier-
Stokes equations. By the localization of basis functions
both in scale and space and by their implicit representa-
tion in term of divergence-free motions, these wavelets
perfectly describe the vortex structures appearing at
various scales of the incompressible flow. These bases
have been already used in the simulations of the Navier-
Stokes equations and for the analyses of incompressible
fluid flows, with good results [5]. Additionally, expand-
ing the solution on regular wavelet bases enables the
easy computation of high-order derivatives and regular-
ization integrals. That have to be mandatory included
to cope with the so called aperture problem, which pre-
vents any parametric motion estimation onto too small
spatial support.

Gathering these ingredients and constraints, this
work aims at proposing a wavelet-based motion esti-
mator that incorporates a high-order smoothing term
and a divergence-free condition. Such estimator which
extends the approaches of [4,25] is particularly relevant
for the estimation of an incompressible fluid flow from
two consecutive images. The divergence free constraint,
characterizing the physics of incompressible fluid flows,
is imposed by directly estimating coefficients of the
optical flow projection onto a divergence-free wavelet
basis. The methodology takes also benefits from the
wavelet continuous formulation to approach or compute
exactly high-order regularization integrals, and avoid
unstable discrete approximations of the derivatives. In
addition, in order to lower the algorithm complexity, ef-
ficient quasi-Newton optimization techniques based on

wavelets filter banks and the tensor structure of the
separable bases are proposed.

The paper is organized as follows. Section 2 gives a
brief overview of the concerned problems and highlights
the paper contribution. In Section 3 and Section 4, we
recall the basic ingredients of optic-flow computation
and wavelets basis construction. In Section 5, we per-
form the biorthogonal wavelet expansion of the motion
field which, as we shall see, is necessary to constrain the
solution to live in the divergence-free vectorial space.
Two approaches for wavelet-based high-order regular-
ization are then introduced in Section 6. Numerical re-
sults performed on synthetic and real images of 2D and
3D turbulent flows are finally presented and analyzed
in Section 7.

2 Problematic and Contributions

From a more general point of view, this paper concerns
regularized solution u∗ of inverse problem written in
variational form as

u∗ ∈ argmin
u∈E

Fd(u) + γFr(u), (1)

where E denotes the space of feasible solutions, Fd is
a data model adequation term, Fr incorporates some
regularization constraints on the solution (smoothness,
Sobolev norm, differentiation operators norm) and γ >
0. In this paper, the solution of (1) is searched in terms
of its wavelet serie discrete coefficients.

Wavelet bases have the great advantage of providing
algorithms for the fast computation of derivative oper-
ators. In this context, this paper proposes two simple
yet efficient approaches to implement high-order differ-
ential constraints on the solution appearing in Fr: a dis-
crete intuitive approximation method and a continuous
and exact approach, which is theoretically more accu-
rate but requires wavelet basis connection coefficients
computation. The former has the advantage to yield
a linear computational complexity, but is restricted to
isotropic regularization operators, whereas the latter
can be used to encode any differential smoothing func-
tional. In this paper we apply the method to the case of
optical flow estimation and show that this methodology
improves state of the art results.

This paper also provides an elegant wavelet-based
framework for implementing optimization problem sub-
ject to differential constraints. The latter, which are
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often imposed by the physic, are of particular impor-
tance in image-based fluid flow or medical images anal-
ysis. Among them, well-known constraints are the di-
vergence free condition for incompressible flows or the
curl free condition for irrotational flows. The original-
ity of the contribution is to propose an efficient and ef-
fective framework incorporating those differential con-
straints directly in the wavelet basis construction. Such
a methodology is not restricted only to motion estima-
tion. It could be as well applied to surface reconstruc-
tion, tensor field denoising or other computer vision
applications that necessitate the respect of differential
constraints.

3 Basic Principles of Optical Flow Techniques

This section describes briefly the motion estimation
problem, and in particular how it is solved on the canon-
ical basis or on a truncated wavelet basis. The purpose
here is not to compare the various approaches proposed
so far but rather to introduce general ingredients of
wavelets representations and how a motion estimation
issue may be handled within such a framework.

3.1 Problem Formulation

Given two images denoted I1(x) and I0(x), motion es-
timation aims as finding a velocity field u = (u1, u2)T

minimizing the Displaced Frame Difference (DFD)
equation1:

I1(x + u(x))− I0(x) = 0, (2)

hypothesizing a brightness conservation along the tra-
jectory of a 2D image point. Most often, the solution is
obtained by minimizing a data adequation term of the
form:

Fd(u) =
1

2

∫
R2

ρ (I1(x + u(x))− I0(x)) dx, (3)

where ρ may be a robust penalty function. However, for
the clarity of the presentation, we will only consider in
the following a standard quadratic cost function. Such
a functional is not convex because of the non-linearity
of the image function I1. It is in addition ill-posed as it
relies on a scalar constraint for a 2D vector field un-
known. To cope with this strong limitation either a

1 In the following, we will restrict ourselves to the study of
DFD equation, but the approach remains valid for any other in-
tegrated data model. Indeed, for other image modalities, many
other brightness evolution models have been proposed in the lit-
erature to link the image intensity function to the sought velocity
field [15].

reduced dimensional parametric representation of the
solution or an additional global smoothing constraint
is included in the functional. Let us note that in the
former case the support of the parametric representa-
tion must be sufficiently large in order to circumvent
homogeneous photometric areas or step regions with a
unique gradient direction for which motion estimation
remains ill-posed (the so-called aperture problem).

For small displacements and smooth intensity gradi-
ent the Displaced Frame Difference may be replaced by
its linear differential counterpart, the so-called optical
flow constraint equation:

∂tI(x, t) +∇I(x, t) · u(x, t) = 0.

We present hereafter strategies to deal with cases
that depart significantly from such a linear assump-
tion (large displacements for instance). This problem
occurs particularly within the context of fluid flows,
where large velocity fluctuations may be observed un-
der condition of low time-sampling frequency.

3.2 Estimation on Standard Basis

An incremental multiresolution strategy stemming from
Gauss Newton non-linear least squares is the common
method used in optical flow estimation to deal with
large displacements [1]. This scheme consists to settle
an incremental estimation based on the displaced frame
difference linearization around the current estimation.
This approach is in general coupled with a multireso-
lution pyramidal representation of the image data ob-
tained by successive low pass filtering and subsampling.
At a given resolution level, the motion field obtained
at coarser level is refined considering a linearization of
the DFD around the coarse estimate. This scheme is
applied within a coarse-to-fine strategy until the finest
resolution level. A severe drawback of the method is
that the incremental estimation is thus driven at each
resolution level on slightly different data (due to low
pass filtering and subsampling), resulting theoretically
to different minimization problems at each level. This
multiresolution construction hence does not generate a
family of nested subspaces of solutions.

4 Standard Wavelet-Based Method

As opposed to the previous strategy, the wavelet-based
optical flow approach first introduced by Wu et al. [25]
provides a natural and mathematically consistent mul-
tiresolution estimation framework that does not face
the theoretical limitations mentioned in Section 3. This
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approach performs the joint estimation of the coeffi-
cients of each scalar component of optical flow u de-
composed on a wavelet basis. This decomposition is co-
herent with the idea used in standard optical flow mul-
tiresolution strategy: the inner products with scaling
functions are somehow analogous to low-pass filtering
operations used for a pyramidal representation. Indeed,
wavelet multiresolution analysis is defined by projec-
tions onto approximation spaces related to the different
scaling functions. The main drawback of the method de-
scribed in [25] lies in its high computational cost, caused
by the necessity to explicitly evaluate the functional
Hessian. Recently, a new wavelet-based method that
overcomes this computational burden was proposed by
Dérian et al. [4]. The main objective in this section is
to briefly introduce this method and the principles that
underlies the construction of wavelet bases.

4.1 Wavelet Bases

To construct wavelet bases, we recall the formalism of
multiresolution analysis developed by Mallat [16]. This
context leads to the fast wavelet transform algorithm.

By definition [16], a multiresolution analysis of
L2(R) is a sequence of closed subspaces denoted
{Vj}j∈Z that satisfy:

(i) Vj ⊂ Vj+1, ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R).

(ii) For all f ∈ L2(R) and ∀ j, k ∈ Z:

f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

and

f(x) ∈ V0 ⇔ f(x− k) ∈ V0.

(iii) There exists a function ϕ such that {ϕ(.− k)}k∈Z
is a Riesz basis of V0.

The function ϕ is called scaling function. From def-
inition (ii), ϕ satisfies a two-scale (or refinement) rela-
tion:

ϕ(x) =
∑
k∈Z

hk
√

2ϕ(2x− k), hk ∈ R. (4)

The mask {hk}k∈Z is called scaling function filter.
Moreover, one can prove that the support of {hk}k∈Z
coincides with the support of ϕ [3]. The parameter j
defines the resolution or the details level. Definition (i)

allows to decompose Vj+1 as:

Vj+1 = Vj ⊕Wj , (5)

where Wj denotes the topological complement, which
is not unique. The wavelet basis is defined as an un-
conditional basis of Wj . Thus, using (ii), the wavelet
generator ψ ∈W0 is defined by its two-scale relation in
V1:

ψ(x) =
∑
k∈Z

gk
√

2ϕ(2x− k), gk ∈ R. (6)

Similarly, the mask {gk}k∈Z is called wavelet filter. Set-
ting for j, k ∈ Z, ϕj,k = 2j/2ϕ(2jx − k) and ψj,k =

2j/2ψ(2jx− k), we have:

Vj = span{ϕj,k : k ∈ Z}, Wj = span{ψj,k : k ∈ Z}.

Orthogonal wavelet basis concept consists in defining
Wj as the orthogonal complement of Vj :

Vj+1 = Vj ⊕Wj , Wj = Vj+1 ∩ (Vj)
⊥. (7)

More generally, one can define Wj as:

Vj+1 = Vj ⊕Wj , Wj = Vj+1 ∩ (Ṽj)
⊥. (8)

where {Ṽj}j∈Z is another multiresolution analysis of
L2(R) with scaling ϕ̃ and wavelet ψ̃ . In this case,
(Vj , Ṽj) is referred as a biorthogonal multiresolution
analysis of L2(R). This biorthogonaly property is ex-
pressed on the scaling function and wavelet bases by
[3]:

〈ϕj,k, ϕ̃j,k′〉 = δk,k′ , ∀ j, k, k′ ∈ Z,
〈ψj,k, ψ̃j′,k′〉 = δk,k′δj,j′ , ∀ j, j′, k, k′ ∈ Z,
〈ϕj,k, ψ̃j,k′〉 = 0, ∀ j, k, k′ ∈ Z,
〈ϕ̃j,k, ψj,k′〉 = 0, ∀ j, k, k′ ∈ Z,

where δk,k′ denotes the Kronecker symbol and < ., . >

the L2(R) inner product:

〈ϕj,k, ϕ̃j,k′〉 :=

∫
R
ϕj,k(x)ϕ̃j,k′(x)dx. (9)

One remarks that orthogonal multiresolution analysis is
a particular case of the biorthogonal one, where ϕ = ϕ̃

and ψ = ψ̃.

This construction of wavelet bases can be extended
easily to L2(Rd) (d > 1) in higher dimension, using ten-
sor product of the one-dimensional wavelet basis [16].
Precisely, for any pair of vectors u and v of Rd, we
define the matrix of tensor product u⊗ v by:

[u⊗ v]i,j := uivj , 1 ≤ i, j ≤ d. (10)

Then, using (10) and from a multiresolution analysis
{Vj}j∈Z of L2(R), with scaling function ϕ, we define
the space Vj ⊗ Vj by:

Vj⊗Vj = span{ϕj,k1⊗ϕj,k2 : k1, k2 ∈ Z}, j ∈ Z, (11)
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(a) Scaling function ϕ⊗ ϕ. (b) Wavelet ϕ⊗ ψ.

(c) Wavelet ψ ⊗ ϕ. (d) Wavelet ψ ⊗ ψ.

Fig. 1: Example of 2D scaling function and wavelet generators:
case of Daubechies orthogonal wavelet ψ with three vanishing
moment.

with

ϕj,k1 ⊗ ϕj,k2(x, y) := ϕj,k1(x)ϕj,k2(y). (12)

Thus, the spaces (Vj ⊗ Vj)j∈Z constitute a multireso-
lution analysis of L2(R2). The corresponding wavelet
spaces are defined using the following two-scale rela-
tion:

Vj+1 ⊗ Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj) .

We have then three types of wavelet generators in
L2(R2):

ϕ⊗ ψ(x, y) := ϕ(x)ψ(y) associated to V0 ⊗W0,

ψ ⊗ ϕ(x, y) := ψ(x)ϕ(y) associated to W0 ⊗ V0,
ψ ⊗ ψ(x, y) := ψ(x)ψ(y) associated to W0 ⊗W0.

This wavelet basis construction is called isotropic con-
struction. It is built from one parameter of dilatation
at each scale.

Figure1 shows the plot of isosurfaces of the scal-
ing function generator ϕ ⊗ ϕ and the associated three
wavelet generators in the isotropic construction, for
Daubechies orthogonal wavelet ψ with three vanish-
ing moment [16]. In general, we have (2d − 1) types
of wavelet generators in L2(Rd), see [16] for details.

From relation (i) and equation (5), it is easy to see
that the spaces Vj verify:

Vj = V0 ⊕W1 ⊕ · · · ⊕Wj−1, j > 0.

Then, instead of having three wavelet basis generators
in L2(R2), an alternative is to use one wavelet genera-
tor with two parameters of translation and dilatation.
In this case, it is called anisotropic wavelet basis. This
setting consists in decomposing Vj ⊗ Vj as:

Vj ⊗ Vj = (V0 ⊗ V0)

j−1⊕
j1,j2=0

(Wj1 ⊗Wj2)

= (V0 ⊕W1 ⊕ · · · ⊕Wj−1)⊗ (V0 ⊕W1 ⊕ · · · ⊕Wj−1) .

The corresponding wavelet basis is thus constituted by:

{Ψj,k(x, y) := ψj1,k1(x)ψj2,k2(y) : j1, j2, k1, k2 ∈ Z} .

In general, this construction is extended to higher
dimension (d > 2), with one wavelet generator and d

parameters of translation and dilatation. Schematically,
the isotropic decomposition of Vj ⊗ Vj is illustrated by
Figure 2 and the anisotopic one is illustrated by Figure
3.

For vector space (L2(Rd))d, the construction is done
in accordance for each component. For example, a mul-
tiresolution analysis of (L2(R2))2 is provided by:

Vj = (Vj ⊗ Vj)× (Vj ⊗ Vj) :=

Vj ⊗ Vj

Vj ⊗ Vj

 . (13)

4.2 Fast Wavelet Transform

The multi-scale analysis of f ∈ L2(R) consists in its
decomposition in a coarse approximation P0(f) ∈ V0
and the sum of details Qj(f) ∈Wj :

f = P0(f)+
∑
j≥0

Qj(f), Qj(f) = Pj+1(f)−Pj(f). (14)

For biorthogonal multiresolution analyses, these projec-
tions are defined by:

Pj(f) :=
∑
k∈Z

cj,kϕj,k and cj,k = 〈ϕ̃j,k, f〉, (15)

and

Qj(f) :=
∑
k∈Z

dj,kψj,k and dj,k = 〈ψ̃j,k, f〉. (16)

The fast wavelet transform (FWT) algorithm allows to
compute in practice the sequences of scaling function
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coefficients {cj,k = 〈f, ϕ̃j,k〉, k ∈ Z} and wavelet coef-
ficients {dj,k = 〈f, ψ̃j,k〉, k ∈ Z} from {cj+1,k, k ∈ Z}.
To this end, ones uses the following two-scale relations
[16]:

cj,k =
∑
l∈Z

h̃l−2kcj+1,l and dj,k =
∑
l∈Z

g̃l−2kcj+1,l.

This algorithm can be summarized schematically by:

cJ → cJ−1 → cJ−2 → . . . c1 → c0
↘ ↘ ↘ ↘

dJ−1 dJ−2 . . . d1 d0

The inverse transform (IWT) is computed using the
following reconstruction relation [16]:

cj+1,k =
∑
l∈Z

hk−2lcj,l +
∑
l∈Z

gk−2ldj,l,

which algorithm is also schematically pictured as:

c0 → c1 → c2 → . . . cJ−1 → cJ
↗ ↗ ↗ ↗

d0 d1 d2 . . . dJ−1

The theoretical complexity of the FWT and IWT
algorithms is about O(N = 2J), see [16]. In higher di-
mension (d > 1), for the sake of simplicity and easy
implementation, we will use the anisotropic setting: to
compute the fast wavelet transform in this case, it suf-
fices to apply the one dimensional transform along each
direction.

4.3 Standard Wavelet-Based Flow Estimation

Let us introduce some shorthand notations: the 2D scal-
ing function basis of Vj ⊗ Vj is denoted Φj , and Ψj,
|j| ≤ j the corresponding anisotropic wavelets basis.
Similarly for the dual space Ṽj⊗ Ṽj with Φ̃j and Ψ̃j. For
f ∈ L2(R2), the associated multi-scale projectors are
denoted:

Pj(f) = 〈Φ̃j , f〉Φj , Qj(f) = 〈Ψ̃j, f〉Ψj, |j| ≤ j,

and we make the same conventions in (L2(R2))2 with:

Pj(f) = 〈Φ̃j , f〉Φj , Qj(f) = 〈Ψ̃j, f〉Ψj, |j| ≤ j.

With the previous shorthand notations, the method
of [4] consists in searching, at each scale j, motion field
uj represented on a wavelet basis at scale j:

uj(x) = djΨj(x), dj = 〈Ψ̃j,u〉, |j| ≤ j, (17)

Fig. 2: 2D Isotropic Fast Wavelet Transform scheme.

where Ψj is the selected 2D wavelet basis and dj the
vector of unknown coefficients that have to be esti-
mated to represent the sought motion components. In-
corporating (17) in the (DFD) equation and setting
I1(x,dj) = I1(x + djΨj(x)), the gradient of Fd ac-
cording to the unknown coefficients reads:

∇Fd(dj) =

∫
[I1(x,dj)− I0(x)]∇I1(x,dj) ·Ψj(x)dx.

As a consequence, components of the gradient ∇Fd(dj)
of the functional are simply given by the coefficients of
the wavelet decomposition of the two components of
gradient:

[I1(x,dj)− I0(x)]∇I1(x,dj), (18)

on the considered dual wavelet basis. For a given mo-
tion field, they can be easily computed using a 2D fast
wavelet transform [16], with the filter bank associated
to Ψj. This proposed coarse-to-fine estimation strat-
egy enables to capture large displacements: at large
scales, the decomposition of (18) is obtained by convo-
lutions with the atoms of the wavelet basis having the
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Fig. 3: 2D Anisotropic Fast Wavelet Transform scheme.

largest support. A gradient descent method is used then
to minimize efficiently the functional Fd. The aperture
problem can be here jointly addressed by reducing the
problem dimension with a simple basis truncation: coef-
ficients associated to smallest scales are not estimated,
finest wavelet supports is large enough to cope with ho-
mogeneous areas or gradients unique direction (linear
step in-between two homogeneous regions). Obviously,
the choice of this finest scale is not an easy issue in
general. It should be clearly handled with some adap-
tive strategy. The other solution consists in adjoining
an additional smooth constraint to the functional. This
will be detailed in Section 6.

Let us suppose images of size 2J × 2J . To estimate
the motion at scale j < J , starting with an initial co-

efficients dj of length 2× 2j × 2j , one step of the opti-
mization procedure requires to:

1. Compute uj at fine grid points by extrapolation.

2. Compute I1(x + uj) using interpolation.

3. Evaluate Fd on uj using quadrature formula.

4. Compute ∇I1(x + uj) with finite difference method.

5. Compute the gradient ∇Fd(dj) to implement a gra-
dient descent method.

Wavelet bases are used only in Step 1 and
Step 5. Precisely, Step 1 corresponds to an in-
verse fast wavelet transform on coefficients dj and
Step 5 corresponds to the fast wavelet transform of
[I1(x + uj)− I0(x)]∇I1(x + uj). Thus, the theoretical
complexity of these steps is O(N), with N = 2J × 2J .

Additionally to the necessarily introduction of regu-
larization term to reach the finest scale levels it is also in
some situation mandatory to consider additional phys-
ical constraints in the estimation process. This is the
case when one aims for instance at estimating volume
preserving or diffeomorphic transformation. Such con-
straints are generally imposed through differential con-
straints. Wavelet bases specifically designed to satisfy
theses relations may be advantageous. In the follow-
ing, we show how the estimation of a volume preserv-
ing transformation may be taken into account in the
wavelet design.

5 Divergence-Free Wavelet-Based Method

Vector field analysis is ubiquitous in almost all the sci-
entific domains. The Helmholtz decomposition theo-
rem, sometimes referred as the fundamental theorem
of vector calculus, states that any sufficiently smooth
vector field u ∈ (L2(Rd))d can be decomposed uniquely
in the form:

u = udiv + ucurl, (19)

with

div(udiv) = 0 and curl(ucurl) = 0. (20)

Constraints like (20) appear in many computer vision
problems (for example in medical image registration
[12], image restoration [21], optical flow estimation [19,
20], or in engineering problems (incompressible turbu-
lence flow simulation).
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In the case of optical flow estimation, since the cost
function defined in (3) is under constrained, to make its
minimization mathematically well-posed, it is impor-
tant to introduce some prior knowledge on the kind of
typical flow one expects to estimate. The estimation of
diffeomorphic transformation [21] or of mass preserving
fluid flow [19,20] leads to consider divergence-free mo-
tion field. To achieve this, the minimization is coupled
with a resolution of incompressible Stokes system of
partial differential equations, which requires discretiza-
tion on staggered grids to get stable solution [26].

Wavelet bases can be designed to implicitly rep-
resent divergence-free or curl-free motions [5]. With-
out loss of generality, we will focus on the divergence-
free constraint. The curl-free constraint or the two con-
straints both can be treated similarly. Then, the pur-
pose of this section is to detail the construction of
anisotropic divergence-free wavelet bases in (L2(R2))2

that are used to define a new divergence-free wavelet
based method for optical flow estimation.

5.1 Divergence-Free Wavelet Basis

The objective here is to build an anisotropic wavelet
basis for the divergence-free functions space Hdiv(R2)

defined by:

Hdiv(R2) = {u ∈ (L2(R2))2 : ∇ · u = 0}. (21)

Alternatively, the space Hdiv(R2) can also be seen as
the curl2 vector potential space [6]3:

Hdiv(R2) = {u = curl(χ) : χ ∈ H1(R2)}. (22)

Let us recall the following formal identities, valid for
d = 2 and d = 3:

div(curl) = 0 and curl(∇) = 0.

From (22), to construct a multiresolution analysis of
Hdiv(R2), it is natural to take the curl of a "regular"
scalar multiresolution analysis of H1(R2).

For practical reasons, the effective divergence-free
wavelet bases have to be compactly supported and also
to give rise to a fast divergence-free wavelet transform

2 For d = 2, we define curl(χ) := (∂yχ,−∂xχ).
3 H1(Rd) denotes the classical Sobolev space:

‖f‖2
H1(Rd)

= ‖f‖2
L2(Rd)

+ ‖∇f‖2
L2(Rd)

algorithm. Such wavelet bases exist and can be fortu-
nately easily constructed. They have been introduced
first by Lemarié-Rieusset [14].

Before further introducing this construction, we first
give some technical precisions. Since the curl operator
introduces derivation operators, it is important to an-
swer to the following questions: what is the derivative of
a scaling function? What is the derivative of a wavelet?
Does differentiation preserve the L2(R) orthogonality
property of a wavelet basis?

Using integration by part, to answer the last ques-
tion we have:∫
R
ϕ′k(x)ϕ′`(x)dx = −

∫
R
ϕk(x)ϕ′′` (x)dx.

Thus, if {ϕj,k : k ∈ Z} is an orthogonal basis, this
property is preserved by differentiation if and only if
ϕ = −ϕ′′: which is for instance true for sinus or cosinus
basis.
The answers to the first two questions are supplied by
the following results proved by Lemarié-Rieusset [13]:

Proposition 1
Let (ϕ1, ϕ̃1) be a pair of biorthogonal scaling functions
associated to biorthogonal wavelets (ψ1, ψ̃1), with ϕ1 ∈
C1+ε(R), ε > 0. Then there exists another biorthogo-
nal scaling functions (ϕ0, ϕ̃0) and biorthogonal wavelets
(ψ0, ψ̃0), satisfying:

d

dx
ϕ1(x) = ϕ0(x) − ϕ0(x− 1), (23)

and

d

dx
ϕ̃0(x) = ϕ̃1(x+ 1) − ϕ̃1(x). (24)

The associated wavelets verify:

ψ1(x) = 4

∫ x

−∞
ψ0 and ψ̃0(x) = −4

∫ x

−∞
ψ̃1. (25)

Hence, according to Proposition 1, the derivative of a
scaling function is expressed as a finite difference on
neighboring hoods of another scaling function and the
derivative of a wavelet is another wavelet. Figure 4
shows the plot of an example of these scaling functions
and wavelets satisfying Proposition 1 and related by
differentiation and integration.

Let (V 1
j )j∈Z and (V 0

j )j∈Z be one-dimensional mul-
tiresolution analyses of L2(R) provided by ϕ1 and ϕ0

respectively, with ϕ1 and ϕ0 defined by Proposition 1.
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Since we use tensor product construction in higher di-
mension, each sequence of space, namely:

V 1
j ⊗ V 0

j = span{ϕ1
j,k1(x)ϕ0

j,k2(y), k1, k2 ∈ Z}, j ∈ Z,

or

V 0
j ⊗ V 1

j = span{ϕ0
j,k1(x)ϕ1

j,k2(y), k1, k2 ∈ Z}, j ∈ Z,

form a multiresolution analysis of L2(R2). Moreover, to
compute the fast wavelet decomposition, in the mul-
tiresolution generated by V 1

j ⊗V 0
j , it suffices to use the

filters of (ϕ̃1, ψ̃1) in the x direction and those of (ϕ̃0, ψ̃0)

in the y direction. The reconstruction is done with the
filters of (ϕ1, ψ1) and (ϕ0, ψ0) respectively.

From relations (23) and (24), one can derive two
interesting properties of biorthogonal multiresolution
analyses (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ):

Corollary 1 [13]
Let (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) be two BMRAs of L2(R) that

satisfy Proposition 1, then we have:

(a)
d

dx
V 1
j = V 0

j , Ṽ 0
j =

∫ x

−∞
Ṽ 1
j , (26)

and

(b)
d

dx
P1
j (f) = P0

j (
d

dx
f),

d

dx
P̃0
j (f) = P̃1

j (
d

dx
f),

(27)

for f ∈ H1(R).

The interest of relations (26) and (27) appears in
the numerical implementation of fast divergence-free
wavelet transform. These relations allow to build a mul-
tiresolution analysis of (L2(R2))2 that preserves the
divergence-free property [14].

As stated in (22), the space Hdiv(R2) corresponds
to the curl of H1(R2) scalar potential. Then, taking
the curl of any multiresolution analysis of H1(R2) will
provide a multiresolution analysis of Hdiv(R2). How-
ever, let us consider a "regular" scalar multiresolution
analysis of H1(R2) generated by spaces V aj ⊗ V bj , with
V aj 6= V bj . Taking the curl of a such multiresolution
analysis, we get:

curl[V aj ⊗ V bj ] =

∣∣∣∣∣∣
V aj ⊗ (V bj )

′

−(V aj )
′ ⊗ V bj

(28)

Then, to deal with the divergence-free wavelets con-
tained in curl[V aj ⊗ V bj ], we have to manipulate four

−4 −3 −2 −1 0 1 2 3
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−1
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1

2

3
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(a) Scaling function ϕ̃1.
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(b) Wavelet ψ̃1.
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(c) Scaling function ϕ1.
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(d) Wavelet ψ1.
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(e) Function d
dx
ϕ1.
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−40
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(f) Wavelet d
dx
ψ1 = 4ψ0.

Fig. 4: Example of biorthogonal generators and primal deriva-
tives: case of B-Spline generators (ϕ1, ϕ̃1) with 3 vanishing mo-
ments.

different types of biorthogonal wavelet filter banks as-
sociated respectively to the one-dimensional BMRAs
that appear in (28): V aj , (V aj )′, V bj and (V bj )′. To over-
come this problem, the two-dimensional scalar multires-
olution analysis that we will consider is generated by
spaces V 1

j ⊗ V 1
j .

Using Lemarié-Rieusset’s results (23) and (24), one
can easily prove that:

curl(V 1
j ⊗ V 1

j ) ⊂
(
V 1
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 1

j

)
= Vj . (29)

Moreover, the multiresolution analysis of (L2(R2))2

provided by spaces Vj =
(
V 1
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 1

j

)
pre-

serves the divergence-free condition:

∀ u ∈ Hdiv(R2), div(Pj(u)) = P 0
j (div(u)) = 0,

where

Pj =
(
P1
j ⊗ P0

j

)
×
(
P0
j ⊗ P1

j

)
,

and

P 0
j = P0

j ⊗ P0
j .
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Accordingly, the divergence-free scaling functions
spaces are defined by:

Vdivj = span < Φdiv
j,k ; k ∈ Z2, j ∈ Z >, (30)

where

Φdiv
j,k = curl[ϕ1

j,k1 ⊗ ϕ
1
j,k2 ] =

∣∣∣∣∣∣∣
ϕ1
j,k1
⊗ (ϕ1

j,k2
)
′

−(ϕ1
j,k1

)
′ ⊗ ϕ1

j,k2

Similarly, for j,k ∈ Z2, the associated anisotropic
divergence-free wavelet spaces are defined by:

Wdiv
j,k = span < Ψdiv

j,k ; j, k ∈ Z2 >, (31)

with

Ψdiv
j,k = curl[ψ1

j1,k1 ⊗ ψ
1
j1,k2 ] =

∣∣∣∣∣∣
ψ1
j1,k1

⊗ (ψ1
j2,k2

)′

−(ψ1
j1,k1

)′ ⊗ ψ1
j2,k2

Differentiating the relations of equation (25), we get:

(ψ1(x))′ = 4ψ0(x) and (ψ̃0(x))′ = −4ψ̃1(x), (32)

thus,

Ψdiv
j,k =

∣∣∣∣∣∣
2j2+2ψ1

j1,k1
⊗ ψ0

j2,k2

−2j1+2ψ0
j1,k1

⊗ ψ1
j2,k2

These wavelets are biorthogonal [5] and every vector
field u ∈ Hdiv(R2) can be decomposed uniquely as:

u =
∑

j, k ∈ Z2

〈u, Ψ̃div
j,k 〉Ψdiv

j,k =
∑

j, k ∈ Z2

ddivj,k Ψdiv
j,k , (33)

where 〈., .〉 denotes the (L2(R2))2-inner product be-
tween two vector functions. On Fig. 5, we plot an exam-
ple of vector fields and corresponding vorticities of the
divergence-free scaling function generator and wavelet
generator, constructed from Coifflet ϕ1 and ψ1 with ten
vanishing moments.

Remark 1
In practice, as mentioned earlier two types of
divergence-free wavelet can be built: the isotropic con-
struction [14] and the anisotropic one [5]. The isotropic
divergence-free wavelet construction on Rd uses (d −
1)(2d − 1) types of wavelet generators with one pa-
rameter of dilatation and d parameters of translation,
while the anisotropic one uses only (d − 1) types of
wavelet generators with d parameters of dilation and
translation. Thus, for d = 2, we have one divergence-
free wavelet generator in the anisotropic construction.

(a) Generator curl (ϕ1 ⊗
ϕ1)

(b) Generator curl (ψ1 ⊗
ψ1)

(c) Vorticity of curl (ϕ1 ⊗
ϕ1)

(d) Vorticity of curl (ψ1 ⊗
ψ1)

Fig. 5: Vector fields and vorticity of divergence-free scaling func-
tions and wavelets generators constructed from Coifflet ϕ1 and
ψ1 with ten vanishing moments.

5.2 Fast Divergence-Free Wavelet Transform

By construction, we have seen that the vector spaces
Vj =

(
V 1
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 1

j

)
constitute a multires-

olution analysis of (L2(R2))2 and this multiresolu-
tion analysis preserves the divergence-free constraint.
From a standard anisotropic vector wavelet decom-
position associated to Vj , the objective of this sec-
tion is to describe how to compute in practice the
anisotropic divergence-free wavelet decomposition of
any u ∈ Hdiv(R2).

The standard anisotropic vector wavelet associated
to Vj are:

Ψ1
j,k =

∣∣∣∣∣∣
ψ1
j1,k1

⊗ ψ0
j2,k2

0

, Ψ2
j,k =

∣∣∣∣∣∣
0

ψ0
j1,k1

⊗ ψ1
j2,k2

.

Since u = (u1, u2) belongs to (L2(R2))2 and
(Ψ1

j,k,Ψ
2
j,k)j,k∈Z2 is a wavelet basis of (L2(R2))2, we

get:

u =
∑

j,k∈Z2

d1
j,k Ψ1

j,k +
∑

j,k∈Z2

d2
j,k Ψ2

j,k. (34)

Through an easy calculation, by identification one can
show that:

u1 =
∑

j,k∈Z2

d1
j,k ψ

1
j1,k1 ⊗ ψ

0
j2,k2 ,
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and

u2 =
∑

j,k∈Z2

d2
j,k ψ

0
j1,k1 ⊗ ψ

1
j2,k2 .

Following [5] and using the relation:

Ψdiv
j,k = 2j2+2Ψ1

j,k − 2j1+2Ψ2
j,k, (35)

we find:

ddivj,k =
2j2+2

4j1+2 + 4j2+2
d1
j,k −

2j1+2

4j1+2 + 4j2+2
d2
j,k, (36)

and

d1
j,k = 2j2+2ddivj,k , d2

j,k = −2j1+2ddivj,k . (37)

Therefore, decomposition and reconstruction asso-
ciated to divergence-free wavelets is simply performed
using scalar wavelet filter banks. Finally, the algorithm
is of low complexity and its structure remains identical
to the scalar case.

The algorithm is summarized then as follows. Start-
ing with u = (u1, u2), to get the divergence-free wavelet
coefficients ddivj,k , do:

1a. Compute d1
j,k associated to u1 in V 1

j ⊗ V 0
j .

2a. Compute d2
j,k associated to u2 in V 0

j ⊗ V 1
j .

3a. Compute ddivj,k from d1
j,k and d2

j,k using (36).

For the reconstruction, do:

1b. Compute d1
j,k and d2

j,k from ddivj,k using (37).

2b. Compute u1 from d1
j,k in V 1

j ⊗ V 0
j .

3b. Compute u2 from d2
j,k in V 0

j ⊗ V 1
j .

Steps 1a and Step 2a correspond to a two dimen-
sional fast wavelet transform. Step 3a is a change of
basis which theoretical complexity is linear, thus the
theoretical complexity of the decomposition phase is
about O(N). As the same, Step 3b is a change of basis,
Steps 2b and Step 3b correspond to an inverse two di-
mensional fast wavelet transform, the theoretical com-
plexity of recomposition phase is also about O(N) .

5.3 Divergence-free Wavelet-based Flow Estimation

The estimation method developed in this section pro-
vides a solution to the optical flow estimation problem
subject to a divergence-free constraint. The proposed
approach falls within the context of wavelet-based mul-
tiresolution methods [4] sketched in the previous sec-
tion. Then, the velocity field u is searched in terms of
its divergence-free wavelet projection (33)

u(x) =
∑

j,k∈Z2

ddivj,k Ψdiv
j,k (x),

and its estimation is reduced to the estimation of its
divergence-free wavelet coefficients. At a scale j, let us
adopt the notation:

I1(x,ddivj ) = I1(x +
∑

|j|≤j,k∈Z2

ddivj,k Ψdiv
j,k (x)).

The ddivj coefficients are hence defined as the minimiz-
ers of the objective function:

Fd(d
div
j ) =

1

2

∫
R2

[
I1(x,ddivj )− I0(x)

]2
dx, (38)

where ddivj is now defined as the set of the divergence-
free wavelets coefficients {ddivj,k }. Optimization is car-
ried out by a quasi-Newton method (LBFGS), where
a BFGS approximation of the Hessian relying solely
on the current gradient is handled. The optimal gradi-
ent step is in addition given in the sense of the strong
Wolf conditions [18]. Obviously, besides the evaluation
of the functional Fd, the descent optimization algorithm
requires the computation of its gradient at each itera-
tion step. These computations also are facilitated by the
wavelet formulation. As a matter of fact, the gradient
∇Fd(ddivj ) corresponds to:

∇Fd =

∫
R2

[I1(x,ddivj )−I0(x)]∇I1(x,ddivj ) ·Ψdiv
j,k (x)dx,

Let ∇Ix1
(x,ddivj ) and ∇Ix2

(x,ddivj ) denote the scalar
components of vector [I1(x,ddivj )− I0(x)]∇I1(x,ddivj ):

∇Ix1
(x,ddivj ) = [I1(x,ddivj )−I0(x)]∂x1

I1(x,ddivj ), (39)

and

∇Ix2
(x,ddivj ) = [I1(x,ddivj )−I0(x)]∂x2

I1(x,ddivj ). (40)

Since,

∇I1(x,ddivj ) ·Ψdiv
j,k (x) = ∂x1I1(x,ddivj )ψ1

j1,k1 ⊗ (ψ1
j2,k2)′

− ∂x2
I1(x,ddivj )(ψ1

j1,k1)′ ⊗ ψ1
j2,k2

and

(ψ1
j,k)′ = 2j+2ψ0

j,k,
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the computation of ∇Fd(ddivj ) thus reduces to a simple
linear combination of two sets of scalar coefficients ob-
tained by a two dimensional fast wavelet transforms
[16]: the scalar wavelet coefficients of ∇Ix1

(x,ddivj ),
in the wavelet basis generated by ψ1

j1,k1
⊗ ψ0

j2,k2
, and

those of ∇Ix2
(x,ddivj ), in the wavelet basis generated

by ψ0
j1,k1
⊗ψ1

j2,k2
. Precisely, let d̃1

j,k and d̃2
j,k be the set

of these coefficients:

d̃1
j,k =

∫
R2

∇Ix1(x,ddivj )ψ1
j1,k1 ⊗ ψ

0
j2,k2dx,

d̃2
j,k =

∫
R2

∇Ix2
(x,ddivj )ψ0

j1,k1 ⊗ ψ
1
j2,k2dx,

we get:

∇Fd(ddivj ) = [2j2+2d̃1
j,k − 2j1+2d̃2

j,k]. (41)

Remark 2
The coefficients used in the computation of ∇Fd(ddivj )

correspond to the dual scalar wavelet bases. To be more
precise, according to (15), by definition coefficients d̃1

j,k

correspond to the decomposition of ∇Ix1
(x,ddivj ) on

the scalar basis generated by {ψ̃1
j1,k1

⊗ ψ̃0
j2,k2
} and d̃2

j,k

correspond to the decomposition of ∇Ix2(x,ddivj ) on
the scalar basis generated by {ψ̃0

j1,k1
⊗ ψ̃1

j2,k2
}.

As in the standard wavelet method, to estimate the
motion at scale j < J , starting with initialization coeffi-
cients ddivj of length 2j×2j , one step of the optimization
procedure requires to:

1c. Compute uj at fine grid points by extrapolation.

2c. Compute I1(x + uj) using spline interpolation.

3c. Evaluate Fd(ddivj ) on uj using quadrature formula.

4c. Compute ∇I1(x + uj) with finite difference method.

5c. Compute the gradient ∇Fd(ddivj ).

Step 1c uses the inverse fast divergence-free wavelet
transform, to compute uj at fine grid points, from its
divergence-free wavelets coefficients (see Section 5.2).
Step 5c uses (41). Thus, the theoretical complexity of
the algorithm is also O(N).

The main advantage of this divergence-free wavelet
method, compared to the standard wavelet method, is
that it reduces the solution space to a specific sub-
space respecting the imposed constraint. In addition,
the number of degrees of freedom is divided by two: the

length of [ddivj ] is 2j × 2j , instead of 2× 2j × 2j . Obvi-
ously, at fine resolution this method faces the same lim-
itation as any basis with respect to the aperture prob-
lem.

6 High-Order Regularization

The resolution of inverse problems is complicated by the
fact that these problems are generally ill-conditioned.
It is therefore necessary to add constraints that reduce
the space of possibilities to achieve a unique solution.
In this section, we are interested by constraints on the
regularity of the solution, expressed through high-order
differentiation operators. Without loss of generality, we
describe methods for computing these operators effec-
tively using wavelet bases, in the case of optical flow
estimation.

Optical flow estimation is one class of inverse prob-
lem. Morever, as mentioned earlier equation (2) is a
scalar constraint involving two unknowns u1 and u2.
Following [4], in Sections 4 and Section 5, we have
shown that truncating at small scales the wavelet ex-
pansion of the solution u yields to interesting coarse
scale polynomial approximations of the solution. Nev-
ertheless, in the context of optical flow and especially
in the context of fluid motion, the accurate estima-
tion at small scales constitutes a crucial issue. A com-
mon approach is to introduce some prior knowledge on
the solution regularity [10,26]. Subsequently, the ob-
jective is to investigate this technique in the context
of standard wavelet-based method and divergence-free
wavelet-based method.

To make well-conditioned the problem of optimiza-
tion with the functional defined in (3), one adds a con-
vex regularization term Fr. The objective function Fd
given by (3) is then replaced by:

F (u) = Fd(u) + γFr(u), (42)

with the parameter γ > 0 that balances data and reg-
ularization terms. The value of this weight needs to be
adapted, which might be a non-trivial task in practice.

In the following, we focus on three different high-
order regularizers terms Fr(u). Some of them have
proven to be particularly adapted to fluid flows [9].
They are all based on the quadratic penalization of
high-order derivatives.

A first possibility is to penalize discrepancies of the
velocity field in each direction from a polynomial of
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degree n (i.e penalize derivative of order n ∈ N∗):

Fr(u) =

∫
R2

∑
1≤i≤2
1≤`≤2

∣∣∂nxi
u`(x)

∣∣2 dx. (43)

Other approaches consist in favoring coherent vortex
blobs by a second-order curl regularization:

Fr(u) =

∫
R2

|∇(∂x2
u1(x)− ∂x1

u2(x))|2 dx, (44)

or approaching solutions of the heat equation:

Fr(u) =

∫
R2

∑
1≤`≤2

|∆u`(x)|2 dx. (45)

One can notice that regularizers (44) and (45) be-
come identical in the case of divergence-free flows. In-
deed, there exist a stream function χ such as:

u = curl χ, with χ ∈ H1(R2). (46)

From the definition of curl operator in 2D, one can
prove that:

−∆χ = curl (u), (47)

and this implies:

|∇curl (u)|2 = |−∇∆χ|2 = |∂x1
∆χ|2 + |∂x2

∆χ|2 . (48)

Using again equation (46), we obtain:

|∆(u)|2 = |∆(curl χ)|2 = |∂x1
∆χ|2 + |∂x2

∆χ|2 . (49)

In most classical methods, the operators of differ-
entiation that appear in the previous regularizers (43),
(44) and (45) are evaluated using finite difference meth-
ods. This leads to complex advanced discrete schemes
that must be carefully designed to avoid numerical in-
stabilities or oscillations.

The wavelet context offers an ideal setting to make
such computation accurately with less effort. In this
paper, we present two different wavelet-based schemes
for high-order regularization of inverse problems. Both
regularization schemes do not rely on any finite dif-
ference discrete approximation of spatial derivatives.
The first approach, which is described in section 6.1,
is a discrete approximation of regularization integrals.
It presents the advantage to be intrinsically very sim-
ple since regularization is achieved by penalization of a
subset of wavelet coefficients. The second scheme, which
is described in section 6.2, constitutes a very interest-
ing approach since it enables the exact computation of
continuous regularization integrals without much more
effort. In the two cases, the underlying algorithms have
the same theoretical complexity.

6.1 Operator Discrete Approximation Method

In this section we describe an intuitive discrete approx-
imation of the high-order regularization integral (43).
The method is based upon differentiation properties of
wavelets.

In Proposition 1 we see that the derivative of a reg-
ular wavelet basis is another wavelet basis, with analo-
gous properties of L2(R) signal decomposition and re-
construction. Then, for n ∈ N∗ and sufficiently smooth
biorthogonal wavelet generators (ψ, ψ̃), let (θ, θ̃) be the
biorthogonal wavelet generators obtained by applying
successively n time the relations of equation (25):

dn

dxn
ψ = 4nθ and

dn

dxn
θ̃ = (−4)nψ̃. (50)

For any smooth function f ∈ L2(R), we have:

dn

dxn
f(x) =

∑
j,k∈Z

d̄j,kθj,k(x), d̄j,k =<
dn

dxn
f, θ̃j,k > .

Since {θj,k}j,k∈Z is a Riesz basis of L2(R), we have:

‖ d
n

dxn
f‖L2(R) ∼ ‖d̄j,k‖`2(Z2).

Formally, using integration by part and relation (50),
we get:∫
R

dn

dxn
f(x)θ̃j,k(x)dx = (−4)n2nj

∫
R
f(x)ψ̃j,k(x)dx.

Setting dj,k =< f, ψ̃j,k >, one obtains:

d̄j,k = (−4)n2njdj,k,

thus

‖ d
n

dxn
f‖L2(R) ∼ ‖(−4)n2njdj,k‖`2(Z2). (51)

Since the computation of coefficient dj,k =< f, ψ̃j,k >

involves only f instead of dn

dxn f , the penalization of
wavelet coefficients’ amplitude thus enables to control
the amplitude of the derivative of the estimated signal.
A proof of previous formal calculations can be found in
[13] and the results can be extended easily to the case
of 2D signals.

To control derivatives of motion components in the
neighborhood of points in Ω ⊂ R2, which is defined as
the set of translation at the finest scale of the dyadic
discrete wavelet decomposition, one can use (51):

Fr(u) ∼
∑
j,k

4nj |d`j,k|2, ` = 1, 2, (52)
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where d`j,k denotes the set of wavelet coefficients of u`:
〈u`(x), ϕ̃j,k1 ⊗ ψ̃j,k2(x)〉, 〈u`(x), ψ̃j,k1 ⊗ ϕ̃j,k2(x)〉 and
〈u`(x), ψj,k1 ⊗ ψj,k2(x)〉.

Since each coefficient is weighted by 4nj in (52), the
term Fr(u) can be thus expressed in quadratic form:

Fr(u) ∼ dTΛjd, (53)

where Λj is a diagonal matrix, whose entries are 4nj and
d the vector of wavelet coefficients {d`j,k}`=1,2. Then,
the gradient of Fr(u) according to d corresponds to:

∇Fr(d) ∼ Λjd.

6.2 Operator Continuous Approximation Method

The great advantage brought by the continuous opti-
cal flow representation with a finite set of coefficients
of sufficiently "regular" wavelets, is that computation is
done on the basis functions. More precisely, it enables
the exact calculation of continuous spatial derivatives
appearing in Fr, and the exact computation of the in-
tegrals and their gradients. This becomes possible since
one knows how to compute exactly the elements of mass
and stiffness matrices of compactly supported wavelet
basis. To this end, we use the following results proved
by Beylkin [2]:

Proposition 2
Let ϕ ∈ L2(R) be a scaling function. The function Iϕ
of its autocorrelation at a point x defined by:

Iϕ(x) =

∫
R
ϕ(y)ϕ(y − x)dy, (54)

satisfies a two scales relation:

Iϕ(x) =
∑
k∈Z

ikIϕ(2x− k), (55)

where

ik =
∑
`∈Z

h`h`−k. (56)

Similarly, the function Jϕ of the correlation of ϕ and
its derivative of order n at a point x, defined by:

Jϕ(x) =

∫
R
ϕ(y)ϕ(n)(y − x)dy, (57)

also satisfies a two scales relation:

Jϕ(x) =
∑
k∈Z

jkJϕ(2x− k), with jk = 2nik. (58)

In addition, values of Jϕ on integer points verify:∑
`∈Z

`nJϕ(`) = (−1)nn!. (59)

By proposition 2, the inner products of the form
< ϕj,k, ϕj,k′ > and < ϕ

(n)
j,k , ϕ

(n)
j,k′ > are eigenvectors of

the matrices of terms ik and jk respectively. In prac-
tice, these terms are computed by solving an eigen-
value problem if the scaling function ϕ ∈ L2(R) is com-
pactly supported. To get the wavelet inner products
< ψj,k, ψj,k′ > or < ψ

(n)
j,k , ψ

(n)
j,k′ >, it suffices to use the

two scales relation satisfied by the wavelet ψ to return
to the scaling function basis.

Once we can compute the mass matrix and stiff-
ness matrix of a wavelet basis, the computation of the
regularization term Fr becomes easy. In order to clarify
these points, let us explicit the computation of the term∫
R2

∣∣∂nx1
u1
∣∣2 dx in the case of anisotropic divergence-free

wavelet-based method, the other terms being treated
similarly. From the definition of the divergence-free
wavelets, we obtain:

u1 =
∑

j,k∈Z2

2j2+2ddivj,kψ
1
j1,k1 ⊗ ψ

0
j2,k2 . (60)

Thus:

∂nx1
u1 =

∑
j,k∈Z2

2j2+2ddivj,k ∂
n
x1
ψ1
j1,k1 ⊗ ψ

0
j2,k2 , (61)

and∫
R2

∣∣∂nx1
u1
∣∣2 dx =

∫
R2

∂nx1
u1 · ∂nx1

u1dx (62)

=
∑

ddivj,k ddivj′,k′R
j1,j

′
1

k1,k′1
M

j2,j
′
2

k2,k′2
, (63)

where M and R are respectively the one dimensional
mass and stiffness matrices of the basis {ψ0

j,k} and
{ψ1

j,k}. Accordingly, their coefficients are given by:

M
j2,j

′
2

k2,k′2
= 2j2+j

′
2+4〈ψ0

j2,k2 , ψ
0
j′2,k

′
2
〉,

R
j1,j

′
1

k1,k′1
= 〈 d

n

dxn
ψ1
j1,k1 ,

dn

dxn
ψ1
j′1,k

′
1
〉.

As (62) is a quadratic form, its gradient is simply given
by:

∂ddiv
j,k

∫
R2

∣∣∂nx1
u1
∣∣2 dx =

∑
j′,k′∈Z2

ddivj′,k′R
j1,j

′
1

k1,k′1
M

j2,j
′
2

k2,k′2
. (64)

To compute the regularization term, we use the ten-
sor structure of the basis, unlike [25] where the two-
dimensional basis functions are used. This allows us
avoiding the calculation and storage of a large matrix,
hence reducing greatly the complexity of the algorithm:

[∂ddiv
j,k

∫
R2

∣∣∂nx1
u1
∣∣2 dx] = R[ddivj,k ]M.
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In addition, the computation of these matrices is done
once for all on the scaling functions basis. To come back
to the wavelet basis it suffices to use one-dimensional
fast wavelet transform (FWT) on each row and column.
Thus the theoretical complexity of this gradient com-
putation is at most O(N3), which is much lower than
the O(N6) complexity of [25].

Remark 3
Since dn

dxnψj,k(x) = 4n2jnψ
(n)
j,k (x), the entries of the ma-

trixR defined by (64) are proportional to 16n4nj . Thus,
the parameter γ > 0 which matches the effect of the reg-
ularization term Fr must be small enough to attenuate
this weighting.

7 Numerical Results

7.1 Synthetic Images of Turbulence

In this section, the quality of optical flow estimation is
evaluated on two different synthetic image sequences:
a sequence of Particle Image Velocimetry (PIV) (re-
ferred subsequently as "particle images") and images of
an advected and diffused passive scalar (referred subse-
quently as "scalar images"). Both sequences depict the
same bi-dimensional incompressible turbulent flow. The
dynamic of the fluid flow is given by a direct numeri-
cal simulation of 2D incompressible Navier-Stokes equa-
tions at Re = 3000, using the vorticity conservation
equation and the Lagrangian equation for non-heavy
particles transported by the flow (simulation details can
be found in [8]). Since this simulated flow is divergence-
free by construction, we can evaluate the efficiency of
introducing this constraint in the wavelet bases. Image
size is 256 × 256 pixels and the pixel grey levels have
been normalized; examples of input images I0(x) from
PIV and scalar sequences are displayed in Figure 9, to-
gether with their associated ground truth motion vor-
ticity. Estimated velocity and vorticity fields are evalu-
ated based on the Root Mean Squared end-point Error
(RMSE) and the Mean Barron Angular Error (MBAE).
For the two image sequences, the different realized ex-
periments correspond to:

– Case (i), estimation on a truncated standard wavelet
basis [4], without any regularization.

– Case (ii), estimation on a truncated divergence-free
wavelet basis, without any regularization.

– Case (iii), estimation on a divergence-free wavelet
basis using discrete approximation of the regular-
ization term.

– Case (iv), estimation on a divergence-free wavelet
basis using continuous approximation of the regu-
larization term.

On Figure 6, we show the plot of a time-sequence of the
RMSE on the velocity field u obtained by some state-
of-the-art estimators and compare it to the velocity ob-
tained with the proposed methods. Only the method of
[26] encodes the same regularizer operators (divergence-
free and gradient of curl penalization), which are ap-
proached by high-order schemes using finite-difference
method. The other results are used to compare the ca-
pacity and effectiveness of the proposed methods over
existing state-of-the-art estimators. Let us note that
state-of-the-art PIV techniques based on correlation use
largely above these results in term of RMSE (mean
value around 0.1). For indication, also an advanced im-
plementation of the Horn and Schunck [10] techniques
is of the same order accuracy as state-of-the-art PIV
method. Figure 7 shows the plot of a time-sequence of
RMSE on the vorticity ω = curl(u) obtained by the
proposed methods, compared to the results of [7,10,
26].

The divergence-free wavelet generator ψ1 (cases (ii),
(iii), (iv)) was the Coiflet [16] with 10 vanishing mo-
ments. This same Coiflet-10 was used for the standard
estimation on truncated basis, case (i), for comparison.
For the operator discrete approximation method, case
(iii), we used the second order derivative penalization
corresponding to:

Fr(u) =

∫
Ω

∑
1≤i≤2
1≤`≤2

∣∣∂2xi
u`(x)

∣∣2 dx. (65)

The regularization parameters are γ = 2.3.10−8 for the
particle images and γ = 2.1.10−10 for the scalar images.
For the operator continuous approximation method,
case (iv), we used Laplacian regularization (45), ap-
proximated as in Section 6.2. The regularization pa-
rameters are γ = 2.10−7 for the particle images and
γ = 10−6 for the scalar images.

Figure 6, Figure 7 and Figure 8 show that the use
of a divergence-free wavelet basis yields a significant
improvement, compared to standard wavelet basis or
other state-of-the-art estimators. The addition of, ei-
ther the discrete or the continuous proposed regular-
ization, enables to further outperform state-of-the-art
results. Results on scalar imagery (Figure 6(b)) show
that the combination of a divergence-free wavelet basis
and continuous operator regularization is necessary, in
order to obtain results comparable to those of the state-
of-the-art. Let us note that the regularization approach
proposed in [7] is accurate here since it takes advan-
tage of an additional physical constraint (turbulence
power laws parameters, whose estimation increases sig-
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nificantly the computational cost of the method). This
type of regularization is perfectly suited to homoge-
neous isotropic turbulent flows as the one of this test
sequence. It is however not adapted to flow showing dif-
ferent regimes in the same domain (laminar, transition
toward turbulence, turbulent). The other estimators are
from that point of view more general.

Figure 10 and Figure 11 present vorticity fields com-
puted from estimated motion fields, as well as vorticity
end-point error maps. On particle imagery, improve-
ments brought by divergence-free bases (cases (i), (ii))
are visible on error maps (Figure 10(b) and Figure
10(d)), only smallest structures remain unestimated.
The benefit of a continuous implementation of the
Laplacian regularization instead of discrete derivative
penalization (cases (iii), (iv)) can be clearly noted look-
ing a vorticity maps (Figure 10(e) and Figure 10(g)).
This is at the more true in the scalar case where the dis-
crete approximation yields clearly some block artifacts.
This is confirmed by results on scalar imagery Figure
11.

7.2 Experimental Turbulent Image Sequences

This section presents results obtained with real images.
In order to study quasi-2D or 3D turbulent flows, the
use of 2D experimental images is very common in fluid
mechanics laboratories. However, traditional motion es-
timators usually fail or exhibit strong inaccuracy at
some places.

The first data set consists in images of dispersion of
passive tracers in a forced 2D turbulence experiment,
of size 512× 512 pixels [11]. The experiments were per-
formed with electromagnetically-forced incompressible
flows in stable thin stratified layers of fluid. Figure 12
depicts an image of the sequence. For the divergence-
free wavelet based-method, the employed regularizer is
the same as in the case of synthetic images: continuous
gradient of curl regularizer (48) (or equivalently, in this
incompressible case, the Laplacian penalization) with a
factor γ = 2.5.10−8. In order to make results compa-
rable, we used the same regularizer model and factor
for the standard wavelet-based method, followed by a
projection onto the divergence-free function space using
a spectral method. Inspection of estimates shows that
the divergence-free wavelet-based method enables to ex-
tract more accurately vortex structures and shear layers
with better temporal continuity. This is illustrated by
the plot of two consecutive vorticity maps in Figure 13.
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Fig. 6: Comparison of the RMSE on u between the proposed
methods (bold lines) and some works of the literature [7,10,26].
Top: from particle images, using truncated basis with usual (case
(i), red) or divergence-free (case (ii), orange) wavelets, divergence-
free basis with discrete (case (iii), dark blue) or continuous (case
(iv), greenish-blue) regularization operators. Bottom: from scalar
imagery, using divergence-free basis with discrete (case (iii), dark
blue) or continuous (case (iv), greenish-blue) regularization op-
erators.

The second real data set consists in a sequence of
128 images of particle transported by a planar concomi-
tant jet flow, of size 1024 × 1024 pixels. The flow is
3D and shows two high-shear regions featuring devel-
opment of Kelvin-Helmholtz instabilities. Since the flow
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Fig. 7: Comparison of the RMSE on ω = curl(u) between the
proposed methods (bold lines) and some works of the literature
[7,10,26]. Top: from particle images, using truncated basis with
usual (case (i), red) or divergence-free (case (ii), orange) wavelets,
divergence-free basis with discrete (case (iii), dark blue) or con-
tinuous (case (iv), greenish-blue) regularization operators. Bot-
tom: from scalar imagery, using divergence-free basis with dis-
crete (case (iii), dark blue) or continuous (case (iv), greenish-blue)
regularization operators.

is not divergent-free, motion components are estimated
on a standard scalar wavelet basis with the proposed
continuous implementation of wavelet-based gradient
of curl regularizer (44), using factor γ = 10−7. Re-
sults are shown in Figure 14. Estimates obtained with
discrete second order regularization (65), with param-
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Fig. 8: Comparison of the MBE on u between the proposed meth-
ods (bold lines) and some works of the literature [7,10,26]. Top:
from particle images, using truncated basis with usual (case (i),
red) or divergence-free (case (ii), orange) wavelets, divergence-
free basis with discrete (case (iii), dark blue) or continuous (case
(iv), greenish-blue) regularization operators. Bottom: from scalar
imagery, using divergence-free basis with discrete (case (iii), dark
blue) or continuous (case (iv), greenish-blue) regularization op-
erators.

eter γ = 107, are given for comparison. Figure 14 also
presents image of the sequence and streamlines of the
estimated velocity field using either discrete or contin-
uous regularization, along with two consecutive vortic-
ity maps computed from estimated motions. A qualita-
tive evaluation of the results shows a remarkably good
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(a) First particle image I0(x) (b) First scalar image I0(x)

(c) True vorticity, t = 0 (particle)(d) True vorticity, t = 20 (scalar)

Fig. 9: Top: first particle image used 9(a) (corresponding to in-
stant t = 0 in sequence of Fig 6(a)) and first scalar image used
9(b) (corresponding to instant t = 20 in sequence of Fig. 6(b)).
Bottom: first reference vorticity 9(c) (associated to particle im-
ages) and first reference vorticity 9(d) (associated to scalar im-
ages).

agreement with the physics of concomitant jets. A very
good temporal coherence is also observed, although no
prior dynamic model is considered (i.e successive pairs
of images are processed independently). Results ob-
tained using operator continuous approximation regu-
larization however enables visualizing the evolution of
finer structures living at much finer scales.

8 Conclusion

Based on a biorthogonal wavelet expansion of optical
flow and particularly divergence-free wavelet in the in-
compressible case, we have proposed an algorithm ded-
icated to the estimation of fluid motion. The wavelet-
based algorithm is of low-complexity and offers an in-
trinsic and efficient multiresolution estimation frame-
work. Taking advantage of the continuous representa-
tion of optical flow by a finite set of wavelet coefficients,
we have proposed a family of high-order regularizers de-
signed for fluid flows. They rely on the approximation or
the exact computation (without any discretization ap-
proximations in both cases) of differential operators of

(a) Case (i) vorticity (b) RMSE = 0.0362

(c) Case (ii) vorticity (d) RMSE = 0.0389

(e) Case (iii) vorticity (f) RMSE = 0.0349

(g) Case (iv) vorticity (h) RMSE = 0.0246

Fig. 10: Left column: vorticity computed from velocity fields es-
timated from particle imagery (Fig. 9(a)) with the 4 presented
cases, to be compared with the reference Fig. 9(c). Right column:
corresponding vorticity RMSE.

arbitrary order. The regularizers are approached in the
first case by simply constraining wavelet coefficients,
while in the second case it is calculated exactly by
the simple calculation of one-dimensional wavelet basis
mass and stiffness matrices. Numerical results obtained
with challenging particle and scalar image sequences of
2D and 3D turbulence show a significant performance
enhancement compared to state of the art methods.
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(a) Case (iii) vorticity (b) RMSE = 0.0644

(c) Case (iv) vorticity (d) RMSE = 0.0520

Fig. 11: Left: vorticity computed from velocity fields estimated
from scalar imagery (Fig. 9(b)), using Div-free wavelets method
and discrete (top) or continuous (bottom) regularization. Right:
corresponding vorticity RMSE.

Fig. 12: Experimental image of passive scalar dispersion in a 2D
turbulent motion, corresponding to time t = 89. This image has
been normalized so as to enhance visualization.
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