
HAL Id: hal-00664339
https://hal.inria.fr/hal-00664339

Submitted on 30 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Does dynamic and speculative parallelization enable
advanced parallelizing and optimizing code

transformations?
Philippe Clauss, Alexandra Jimborean

To cite this version:
Philippe Clauss, Alexandra Jimborean. Does dynamic and speculative parallelization enable advanced
parallelizing and optimizing code transformations?. DCE - 1st International Workshop on Dynamic
compilation from SoC to Web Browser via HPC, in conjonction with HiPEAC 2012, Henri-Pierre
Charles and Philippe Clauss and Frédéric Pétrot, Jan 2012, Paris, France. �hal-00664339�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49925562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00664339
https://hal.archives-ouvertes.fr

A

Does Dynamic and Speculative Parallelization Enable Advanced
Parallelizing and Optimizing Code Transformations?

Philippe Clauss and Alexandra Jimborean, CAMUS group, INRIA, LSIIT, University of Strasbourg

Thread-Level Speculation (TLS) is a dynamic and automatic parallelization strategy allowing to handle

codes that cannot be parallelized at compile-time, because of insufficient information that can be extracted

from the source code. However, the proposed TLS systems are strongly limited in the kind of parallelization

they can apply on the original sequential code. Consequently, they often yield poor performance. In this

paper, we give the main reasons of their limits and show that it is possible in some cases for a TLS system

to handle more advanced parallelizing transformations. In particular, it is shown that codes characterized

by phases where the memory behavior can be modeled by linear functions, can take advantage of a dynamic

use of the polytope model.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors

General Terms: Performance

Additional Key Words and Phrases: Speculative parallelization, dynamic system, polytope model, dynamic

code transformations

ACM Reference Format:

DCE 2012 V, N, Article A (January 2012), 12 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The advent of multicore processors puts a high pressure onto the software: it must
exhibit sufficient parallelism in order to allow the available hardware resources to be
converted into significant performance gains. The lack of an efficient compiler technol-
ogy becomes evident, with the urge of executing general-purpose software on multicore
platforms. Particularly, it is a challenging task to parallelize code at runtime, if the in-
formation available at compile time is not sufficient.
A well-researched direction for overcoming these difficulties and parallelizing

general-purpose applications is thread-level speculation (TLS) [Patel and Rauchw-
erger 1999; Cintra and Llanos 2003; Chen et al. 2003; Quiñones et al. 2005; Johnson
et al. 2007; Raman et al. 2008; Oancea et al. 2009; Raman et al. 2010; Tian et al.
2010b]. A TLS framework allows optimistic execution of parallel code regions before
all dependences between instructions are known. Hardware or software mechanisms
track register and memory accesses to determine if any dependence violation occurs.
In such cases, register and memory state are rolled back to a previous correct state
and sequential re-execution is initiated.
Unfortunately, most TLS proposals have yielded only modest performance gains,

or have often been based on hypothetical hardware mechanisms and simulators
[Quiñones et al. 2005; Liu et al. 2006; Johnson et al. 2007; Raman et al. 2008; Oancea
et al. 2009]. One major limitation of such work is that parallelization is attempted
on unmodified code generated by the compiler: when considering loop nests, the strat-
egy usually applied is to cut the outermost loop into contiguous chunks and run these
chunks separately in multiple threads. Unfortunately, as soon as a dependence is car-
ried by the outermost loop, this approach leads to numerous rollbacks and performance
drops. Moreover, even if infrequent dependences occur, nothing ensures that the re-
sulting instruction schedule leads to significant performance gains. Indeed, poor data
locality and a high amount of shared data between threads can yield a parallel ex-
ecution slower than the original sequential one. Moreover, it is well-known that the

Paper sponsoring

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:2

execution

time

load

store

store

sequential execution

of the iterations

store

thread 0

thread 1

thread 2

parallel execution with

conflicting accesses

Fig. 1. Illustration of the usual TLS parallelization by chunks and conflict detection

performance of parallel code is very sensitive to many parameters, and fine-tuning is
often mandatory.
On the other hand, Prabhu and Olukotun looked at manually exposing thread-level

parallelism (TLP) in Spec2000 applications [Prabhu and Olukotun 2005]. They showed
that substantial increases in TLP were possible using a variety of transformations for
traditional sequential applications.
All these facts argue that even if TLS seems to be a relevant approach to achieve

automatic parallelization of general-purpose codes, it remains inefficient as long as
optimizing code transformations cannot be handled at the same time. This paper dis-
cusses in Section 2 the reasons why current TLS systems have such limited features,
and proposes in Section 3 a way to overcome these limitations when the targeted code
exhibits a linear memory behavior. The proposed approach is evaluated on four syn-
thetic benchmarks in Section 4. Conclusions are given in Section 6.

2. TLS SYSTEMS LIMITS

2.1. Why limited parallelizing transformations in TLS systems?

Any speculative system requires to verify all along the execution of the parallelized
code that it stays semantically correct, in order to validate or invalidate its execution.
In TLS systems, a given thread can be responsible of a suspicious memory or register
access that has to be canceled by performing a rollback to a previous safe state.
When the parallelization strategy consists of cutting a loop in contiguous parallel

chunks, each chunk being run by a different thread, verification is achieved by directly
comparing the memory behaviors of the parallel and sequential versions, the latter,
obviously, being the baseline. It consists of monitoring the memory and the register
accesses of the speculative threads, in order to verify if accesses made by different
threads to the same memory locations occur in an order which is different than the
original sequential order. Since the i-th thread runs code that would be run before
the code of the (i + n)-th thread in the sequential version, any write access from the
(i + n)-th thread to a common memory location and occurring before any access from
the i-th thread generates a rollback of the (i+n)-th thread in the parallel version. This
mechanism is illustrated in figure 1.
This verification scheme is relatively obvious, since the parallel execution can be

directly mapped on the original sequential order.
Notice that significant improvements have been provided in some proposals to this

parallelizing strategy, in order to apply to a larger set of codes. For instance, value pre-
diction is used when a dependency occurs between threads, in order for each thread

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:3

to have a better chance to be validated at the end of their run [Raman et al. 2008;
Tian et al. 2010a]. However, even with such improvements, it is always the same par-
allelization strategy which is applied: contiguous chunks executed in parallel.
This is mostly due to the fact that if the original code is transformed by significantly

re-scheduling its instructions, it becomes extremely difficult to identify any conflicting
memory or register accesses, since the parallel execution order can no longer be easily
mapped on the original sequential order.

2.2. Understanding more formally the speculative parallelization issues

Program analysis theory for code parallelization provides the well-known notion of de-
pendences between instructions. In parallel programming or compile-time automatic
parallelization, any code transformation is semantically correct if all the dependences
are respected: two dependent instructions that have to be executed successively are
also executed successively in the transformed code.
In speculative parallelization, dependences are unknown before the code has been

run. However, any parallelization is considered as “valid”, since any dependence vio-
lation is recovered thanks to the rollback and the transactional memory system. But
too many dependence violations induce a huge overhead from the numerous rollbacks.
Hence it is still essential, if possible, to get dependence information as soon as possible
to generate efficient parallel code.
A previously proposed approach is to run in advance a subset of the code which per-

forms just the memory address computations, in order to get the information regarding
all dependences. This idea is used in the inspector/executor model, where sequential
programs are divided in two components. The first one, called the inspector, is in charge
of extracting the program dependences, usually between loop iterations. Then, an ex-
ecutor runs the tasks as soon as all their dependences have been satisfied. This model
has been first proposed by Zhu and Yew in [Zhu and Yew 1987], and has been later
extended in many directions [Chen et al. 1994; Rauchwerger and Padua 1995; Michael
Philippsen et al. 2011].
In general, this model is efficient if the address computation is clearly separated

from the actual computation, allowing the creation of an efficient inspector. Moreover,
to capture the dependences with no restriction, some control bits are commonly as-
sociated to every array element during the inspector phase. This often restricts those
methods to array accesses, and can lead to major memory overheads. Moreover, pointer
references can strongly disturb the automatic inspector creation, limiting the applica-
bility of this method.
Hence it is most often impossible to validate a code transformation in advance.

Following the general idea of verification in speculative systems, the transformation
should be verified while the transformed code is being run.

2.3. How to validate a speculatively parallel code while it is running

Code transformations are usually guided by sufficient knowledge of the code proper-
ties and by objectives like data locality optimization, energy saving or load balancing.
In the speculative approach, transformations should also be guided by predictions on
initially unknown code properties, and particularly dependences between instructions.
Thus, the question for speculative parallelization is: how predicting, with the best pos-
sible success rate, dependences that cannot be determined at compile time.
Any prediction process has to be based on some observations on how the code be-

haves, at least during a sample of its execution. Moreover, the observed behavior has
to be used to feed the prediction mechanism. A representation model is required for
this purpose. There is an important literature about prediction mechanisms, and many
of these proposals have been, or could be, experimented to model the memory behav-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:4

ior of a code. However, in the case of advanced speculative parallelizing and optimiz-
ing transformations, the model used has to provide enough information to guide code
transformations, and also it must provide a way to build the required verification sys-
tem, preventing dependences violations, and the associated rollback mechanism.
In this paper, we show a representation model allowing to handle advanced specu-

lative transformations of loop nests. This model represents the sequences of memory
addresses that are accessed by a loop nest as linear functions of loop indices. These
functions are built by interpolating the address values referenced by each memory
instructions during a short profiling phase.

3. THE LINEAR MODEL OF MEMORY BEHAVIOR

Speculative parallelization targets codes that cannot be analyzed precisely at compile-
time. In the case of loops, for-loops whose bounds are linear functions of the enclos-
ing loop indices, and whose memory accesses consists of accesses to array elements
through linear reference functions of the loop indices can be analyzed at compile-time,
i.e., statically. The well-known polytope model [Feautrier 1992a; 1992b; Bondhugula
et al. 2008] is dedicated to such loops. In this model, dependence analysis is precisely
performed and parallelizing transformations can be automatically generated [Bond-
hugula et al. 2008]. Loop nests that cannot be handled statically are characterized
by memory accesses through pointers or array indirections. Loops with complex con-
ditions and statically unknown iteration counts, i.e., while-loops, are also concerned.
Such characteristics prevent to automatically parallelize these loops at compile-time.
Even if more sophisticated memory dependence analysis can help, such as points-to-
analysis [Chen et al. 2003], several memory accesses remain unresolvable at compile-
time, making the parallelization fail.
Our proposal consists of applying the polytope model at runtime. First, the target

loop nest execution is profiled during a short extract of its execution time, thanks
to instrumentation instructions associated to each memory instruction, which collect
the accessed memory addresses. Then, if possible, each collected address sequence is
interpolated as a linear function of the loop nest indices. If successful, dependences
are then computed from these linear functions. As it is done in the polytope model
statically, these dependences are used to determine a “valid” parallel schedule of the
loop nest statements and iterations, thus allowing to generate a parallelized version
of the code, by applying linear transformation. Virtual loop indices are introduced in
order to handle any kind of loops that might have complex conditions. Bounds of the
inner loops are also interpolated as linear functions of the enclosing loop indices.
In the case of speculative parallelization, and since the dependences are computed

from the observation of a short execution extract only, the term “valid” has to be trans-
lated to other properties. The computed dependences are used to predict that the same
dependences will occur in the remaining iterations, and that the generated parallel
code will not induce any access conflicts, and therefore no rollback will be required.
However, since the prediction can obviously fail, verifications have to be performed

during the execution of the parallel code. With the linear model, this verification con-
sists of comparing the actual accessed memory address to the values of the associated
predicting linear function. If they differ, a rollback has to be performed.
Notice that memory accesses have to be performed in the parallel code in the same

way as in the initial sequential code, i.e., using pointers or indirections. However, since
the statements have been re-scheduled, these accesses have also to be modified in other
to reference correct addresses. This is achieved by handling also scalar variables in-
volved in the computation of the referenced addresses: their values also have to be
interpolated as linear functions. If the accessed addresses can be represented as linear

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:5

j

i x=i+j-1

y=j

thread 0 thread 1

sequential loop nest parallel loop nest

a b
a verifies b

Fig. 2. Illustration of scalar values verification in the parallel loop nest

functions, there is a high probability for these related scalar variables to be repre-
sented as linear functions as well.
However, the need to handle these variables implies a strong constraint on the way

the loop nest can be parallelized. The predicted scalar values must also be verified,
while ensuring a correct computation of the accessed memory addresses. We propose
the following restriction for the parallel schedules, that allows a relevant verification
strategy. This restriction consists of avoiding parallel schedules which modify the order
of the statements inside the bodies of the loops, or which induces loop fusion or fission.
Only the order in which iterations are computed can be modified, and the parallel loop
nest, whose outermost loop is parallelized, must keep the same global structure as the
sequential loop nest. If so, a correct and efficient strategy is to initialize the scalar
variables at the beginning of each iteration using their associated predicting linear
functions. To verify that the variables modifications occurring in the loop body follow
the prediction, their values are verified at the end of each iteration, by comparing them
to the values of the linear functions used for their initializations in the next iteration
according the sequential order. This strategy is illustrated in figure 2, where the initial
iteration domain has been skewed.
Notice that iterations verified by other iterations that are executed by a different

thread can be executed before being validated. Nevertheless, any dependence violation
is necessarily detected at a given time, either before or after it occurs. However, when
a violation is detected, the whole loop nest must be re-executed from start. This is
obviously inefficient. Moreover, it does not allow to generate and run different parallel
versions that could be more successful, due to the risk of costly rollbacks.
To overcome these problems, a solution is to consider contiguous chunks of the origi-

nal loop, i.e., slices of the outermost loop, each of them being either parallelized or not.
This chunking strategy also supports the run of small sequential instrumented chunks
to profile the memory accesses and try to interpolate them. More generally, the size of
the chunks can be dynamically adjusted depending on the stability of the program
memory behavior. If a parallel chunk completes without being interrupted by the de-
tection of a dependence violation, then a larger chunk, parallelized following the same
schedule as the previous chunk, is launched. If a dependence violation is detected,
then the chunk parallel execution has to be re-started until the point where the viola-
tion has been detected. Then an instrumented chunk, which is sequential, is launched.
This chunk executes the violation point and a new linear modeling is attempted. If
some accessed memory addresses and related scalar values cannot be represented by
a linear function, a sequential chunk, whose size can also be adjusted, is launched.
This mechanism is illustrated in figure 3.
The transactional memory system is based on memory backups circumscribed by

the launched parallel chunks. Before launching a parallel chunk, the memory space
which should be updated is predicted using the interpolating linear functions. Hence,
by computing the minimum andmaximum addresses of the updatedmemory locations,

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:6

p
ro

fi
li
n

g
parallel

schedule

1

parallel

schedule

1

execution progress

verification

+

validation

verification

+

rollback

sequential

schedule

p
ro

fi
li
n

g

sequential

schedule

p
ro

fi
li
n

g

parallel

schedule

2

parallel

schedule

2

verification

+

validation

...

dependence

analysis

dependence

analysis

dependence

analysis

Fig. 3. Illustration of the chunking mechanism

(1) initialize list with spaced chunks
******___******_******_____******____****** ...

(2) continue list with equally spaced elements
*___*___*___*___*___*___*___*___*___*___*__ ...

(3) continue with random spacing between elements
_**___*_*_*__*___**__**___***__**___****_** ...

Fig. 4. Memory allocation for the linked list

a memory copy is sufficient. In case of a dependence violation, the memory is restored
from the backup and a new chunk processing again the restored data is launched. No-
tice that non-predicted memory locations cannot be modified thanks to the verification
instructions.

4. EXPERIMENTAL RESULTS

We built a set of four benchmarks and simulated their execution as being handled by a
framework implementing the proposed approach. Each benchmark is aimed to empha-
size a particular characteristic. We generated the corresponding scenarios of sequences
of instrumented, sequential and parallel chunks, by including any profiling, rollback
and dependence analysis time penalties. Measurements were obtained by executing
the benchmarks on 24 cores of two AMD Opteron 6172 800Mhz 12 core-processors
running Linux 2.6.35.

4.1. Sparsely allocated linked list

This benchmark handles a large linked list allocated in memory in chunks and
searches for an element of a given value. The memory areas reserved for the linked
list are marked with ’*’. They follow the pattern shown in Figure 4.
The first pattern may be recognized as a consequence of eliminating some elements

from a list allocated contiguously. Parallelization can bring high benefits particularly
when the processing of elements is computational intensive. Each of the chunks may
be executed by a set of parallel threads, provided that the dependence analysis allows
it.
The memory allocation exhibited by the second part of the list may appear when

several data structures are allocated consecutively in the same loop. The elements,
although not in contiguous memory areas but equally spaced, follow a new linear func-
tion, thus the chunk can be parallelized accordingly.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:7

Fig. 5. Block-diagonal sparse matrix measurements

Finally, the third part of the list contains elements which are randomly distributed,
possibly after many eliminations. This does not allow the parallelization of the chunk,
nevertheless, it does not prohibit the parallelization of the previous chunks either.
The purpose of this example is to describe the mechanism of parallelizing by chunks,

when the loop cannot be completely parallelized. In contrast to previous TLS ap-
proaches which would apply a rollback as soon as the memory access behavior changes,
our approach is more adaptive and allows to alternate sequential and parallel chunks
of the loop.

4.2. Block-diagonal sparse matrix multiplication

Matrix multiplication exhibits parallelism on multiple levels, yielding very good per-
formance improvements. The same benefits can be obtained by parallelizing a block-
diagonal sparse matrix multiplication. However, modern compilers cannot automati-
cally detect this opportunity, due to accesses performed via indirections. As noted by
Bruening et al in Softspec [Bruening et al. 2000], the Non-Hermitian Eigenvalue Prob-
lem Collection [Eig] contains numerous examples of sparse matrices with non-zero
values organized in stripes or in blocks along the diagonal. Computations performed
on such matrices are parallelizable, as each stripe or block displays a linear memory
accessing behavior. By speculatively executing the loop in parallel, a rollback occurs
in the first iteration of each new block. Nevertheless, the benefits of executing each
block in parallel overcome this overhead. We carried out experiments with various
block sizes and related our results both to the original sequential version, and to the
parallel version obtained by inserting omp pragma in the source code. As expected,
the results show that the width of the blocks has a direct impact on performance, the
larger the blocks, the lower the number of rollbacks, hence the closer we get to the
speed-up obtained by parallelizing the code by hand. The results are shown in Fig. 5.

4.3. Indirect References

The next benchmark initializes a two dimensional matrix B encoding the element oc-
currences of a banded matrix, linearized in a one-dimensional array A. These occur-
rences can be represented as a linear function of two variables. Next, the elements of
array A are processed inside a nested loop of depth three, by using indirect references
A[B[i][j]]. The code is shown in figure 6(a).
The profiling phase identifies that the elements of A are accessed by following a

linear function, but dependence analysis shows that the loop cannot be parallelized
in its original form, since each loop carries a dependence between consecutive itera-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:8

tions. Therefore, we apply a polyhedral transformation that yields a dependence free
outermost loop. The optimized code is displayed in figure 6(b). Not only we fully ex-
ploit the parallelism exhibited by the code, but we optimize the temporal locality of
the accessed elements. In the sequential version, the element B[k][k] accesses the di-
agonal of matrix B, based on the index of the innermost loop, which yields very low
spatial and temporal locality. Similarly for the element B[k][j], which accesses matrix
B in column-major order. In the optimized version, as a consequence of the polyhedral
transformation, element B[k][k] becomes B[z][z], depending on the index of the outer-
most loop, which results in very good temporal locality. Likewise for element B[z][y],
depending on the outerloops z and y. Accesses to B[x-y][z] depend on the z index, which
shows a good spatial locality.

for(i=0; i<N; i++)
for(j=0; j<N; j++)
for(k=0; k<N; k++)
A[B[i][k]] += A[B[k][j]]

* A[B[k][k]];

for(z=0; z<=N-1; z++)
for (y=0; y<=N-1; y++)
for (x=y; x<=y+N-1; x++)
A[B[x-y][z]] += A[B[z][y]]

+ A[B[z][z]];
(a) Sequential version (b) Parallel version

Fig. 6. Indirect References to a banded matrix

We provided this example to demonstrate our strategy of applying polyhedral trans-
formations at runtime, when speculative parallelization is not recommended other-
wise.

4.4. Cherry Cake

Finally, to outline all main features of our approach in one example, we built the fourth
benchmark which initializes a linked list and a two-dimensional matrix. It parses the
linked list in a loop nest of depth two and processes the elements of matrix A differ-
ently, based on the values taken by the elements of the list. We built eight different
cases, as illustrated in figure 7.
The list is initialized such that chunks of consecutive elements of the list have the

same property and the memory accesses performed in each case follow a different lin-
ear function. Thus, the first if branch is executed for a number of consecutive iter-
ations. The code corresponding to the first case displays a set of dependences that
allow parallelization by applying a suitable polyhedral transformation. Next, the sec-
ond if branch is executed and a rollback occurs, since the memory accessing behavior
changed. We execute an instrumenting chunk to capture the new linear function. Next
we parallelize again, by applying a new polyhedral transformation and we continue
the strategy until the loop execution completes. In this example, our approach handles
eight different parallelization phases for one single loop nest execution.
Overall, this benchmark emphasizes both the necessity of parallelizing by chunks

and of applying different polyhedral transformations on each chunk.
We run it using four different chunking and rollback strategies in order to compare

their efficiency. In each scenario, the profiling, sequential and parallel chunks have the
default sizes 10, 100 and 100, respectively. Their characteristics are:

(1) When launching a chunk of the same type as the previous one, the chunk size is
doubled. In case of a rollback, a sequential chunk of the default size is launched to
re-execute all canceled iterations. Then a profiling chunk is launched.

(2) Similar to the previous strategy, the chunk size is doubled when the predicted
behavior is unchanged. However, when a rollback occurs, we launch directly a pro-
filing chunk. As a consequence, a parallel chunk of the same type as before might

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:9

curr = head;
for(i=0; i<N; i++)
for(j=0; j<M; j++){

if (hasProperty1(curr->val))
A[i+1][j] += curr->val + A[i][j];

else if (hasProperty2(curr->val))
A[i+1][j+1] += curr->val + A[i][j];

else if (hasProperty3(curr->val))
A[i+1][j] += curr->val + A[i][j+1];

else if (hasProperty4(curr->val))
A[i][j+1] += curr->val + A[i][j];

else if (hasProperty5(curr->val))
A[i][j] += curr->val + A[i][j+1];

else if (hasProperty6(curr->val))
A[i][j+1] += curr->val + A[i+1][j];

else if (hasProperty7(curr->val))
A[i][j] += curr->val + A[i+1][j];

else if (hasProperty8(curr->val))
A[i][j] += curr->val + A[i+1][j+1];

curr = curr->next;
}

Fig. 7. Pseudo-code Cherry Cake

be executed, having the default size. If the first parallel chunk is invalidated, then
a sequential chunk is launched, which will necessarily overcome the rollback point.

(3) The third strategy replaces the algorithm of doubling the chunk size, by a fixed size
increment. This technique is aimed to test whether slower increases of the chunk
size lead to lower rollback costs. As in the first strategy, in case of a rollback, a
sequential chunk of default size is launched.

(4) Finally, the fourth strategy combines the method of an incremental chunk size and
the technique of initiating a profiling as soon as a rollback occurs.

The speed-ups obtained by applying these strategies on the cherry cake example are
shown in figure 8. This shows the advantage of incrementing the chunk size with a
fixed value rather than doubling it, and ensures that the canceled chunks are smaller,
which limits the overhead.

4.5. Results

Benchmark Sequential Spec. par. Speed-Up
exec. time (s) exec. time (s)

linked list 26.65 3.78 7.04
block-diag. matrix 5.4 0.4 11.72
banded matrix 219 8.4 26.07
cherry cake 516.23 57.15 9.03

Our benchmarks show considerable improvements in performance, as illustrated in
the case of the banded matrix example. Super-ideal speed-up is obtained thanks to the
polyhedral transformation which provides better data locality. Additionally, no roll-

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:10

Fig. 8. Speed-ups with different chunking strategies

back is required, as the predicted behavior remains unchanged until the end of the
execution. In the linked list and cherry cake examples, several changes in the mem-
ory accessing behavior are detected, which impose rollbacks and the generation of new
parallel versions. This obviously has an impact on performance, however, it still out-
performs the sequential executions.

5. RELATED WORK

There has been a considerable amount of research in TLS systems which propose spec-
ulative execution of threads, sometimes requiring architectural support. Since our pro-
posal is a software-only framework, we review exclusively works of this type.
The previous TLS works can be classified into three main categories: proposals in-

cluding compiler extensions, proposals handling code at runtime without any specific
compilation phase, and proposals providing advanced code transformations. Most of
these have a common feature: they speculatively parallelize loops by cutting their in-
dex range into contiguous parallel chunks.
In the first category, POSH [Liu et al. 2006] is a compilation framework for trans-

forming the program code into a TLS compatible version, by using profile informa-
tion to improve speculation choices. A similar approach is presented in [Johnson et al.
2007]. The Mitosis compiler [Quiñones et al. 2005] generates speculative threads as
well as pre-computation slices (p-slices) dedicated to compute in advance values re-
quired for initiating the threads. The LRPD test [Rauchwerger and Padua 1995] spec-
ulatively parallelizes forall loops that access arrays and performs runtime detection
of memory dependences. Such technique is applicable only when the array bounds are
known at compile time. Tian et al. [Tian et al. 2008] focus on the efficient exploitation
of pipeline parallelism using a data speculation runtime system which creates copies of
statically, as well as dynamically allocated data, on-demand. Similar to [Raman et al.
2010], this study handles only single-level loops.
SPICE [Raman et al. 2008] is a technique using selective value prediction to convert

loops into data parallel form. A similar approach is proposed in [Tian et al. 2010a].
In [Cintra and Llanos 2003], a speculative parallelization in chunks of the outermost
loop is proposed, using a sliding window for reducing the impact of load imbalance.
However this last proposal is limited to array-only applications.
Softspec [Bruening et al. 2000] is a technique whose concepts represent prelimi-

nary ideas of our approach. Linear memory accesses and scalar values sequences are
detected, resembling our strategy, but only for innermost loops. Hence one-variable
interpolating functions are built and used for simple dependence analysis via the gcd
test. Thus, only the innermost loop can be parallelized. However, their initialization
and verification mechanisms are similar to ours.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:11

Finally, Zhong et al. present in [Zhong et al. 2008] several code transformation tech-
niques to uncover the hidden parallelism and improve TLS efficiency, as speculative
loop fission, infrequent dependence isolation or speculative prematerialization. How-
ever, these techniques do not attempt to generate several different parallel schedules.
Compared to previous works, although our approach requires phases of linear behav-

ior of the code for parallelization, it applies advanced transformations for significantly
improving the efficiency. Moreover, it does not require complex memory management
between speculative and non-speculative data. Hence, it is orthogonal to some of the
above proposals that provide efficient handling of non-linear behaviors. Merging our
strategy with these techniques would yield good results for parallelizing codes alter-
nating between linear and non-linear phases.

6. CONCLUSION

Thread-Level Speculation is a relevant technique for automatic and dynamic code par-
allelization. However, it suffers from strong limitations in the applicable paralleliza-
tion strategies, yielding generally poor performance. In this paper, after having high-
lighted the main reasons of such limitations, we have shown that it is possible to go
further in the parallelization strategies by proposing a linear modeling of the memory
behavior allowing to apply the polytope model at runtime. We have shown on some
synthetic benchmarks that this approach is effective.

REFERENCES

Non-Hermitian Eigenvalue Problem Collection .
http://math.nist.gov/MatrixMarket/data/NEP.

BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. 2008. A practi-
cal automatic polyhedral parallelizer and locality optimizer. In PLDI ’08. ACM, 101–113.
http://pluto-compiler.sourceforge.net.

BRUENING, D., DEVABHAKTUNI, S., AND AMARASINGHE, S. 2000. Softspec: Software-based speculative
parallelism. In ACM Workshop on Feedback-Directed and Dynamic Optimization. Monterey, California.

CHEN, D. K., TORRELLAS, J., AND YEW, P. C. 1994. An efficient algorithm for the run-time parallelization of
doacross loops. In Proceedings of the 1994 ACM/IEEE conference on Supercomputing. Supercomputing
’94. ACM, New York, NY, USA, 518–527.

CHEN, P.-S., HUNG, M.-Y., HWANG, Y.-S., JU, R. D.-C., AND LEE, J. K. 2003. Compiler support for spec-
ulative multithreading architecture with probabilistic points-to analysis. In Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel programming. PPoPP ’03. ACM, New
York, NY, USA, 25–36.

CINTRA, M. AND LLANOS, D. R. 2003. Toward efficient and robust software speculative parallelization on
multiprocessors. In Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice of
parallel programming. PPoPP ’03. ACM, New York, NY, USA, 13–24.

FEAUTRIER, P. 1992a. Some efficient solutions to the affine scheduling problem, part 1 : one dimensional
time. International Journal of Parallel Programming 21, 5, 313–348.

FEAUTRIER, P. 1992b. Some efficient solutions to the affine scheduling problem, part 2 : multidimensional
time. International Journal of Parallel Programming 21, 6.

JOHNSON, T. A., EIGENMANN, R., AND VIJAYKUMAR, T. N. 2007. Speculative thread decomposition through
empirical optimization. In Proceedings of the 12th ACMSIGPLAN symposium on Principles and practice
of parallel programming. PPoPP ’07. ACM, New York, NY, USA, 205–214.

LIU, W., TUCK, J., CEZE, L., AHN, W., STRAUSS, K., RENAU, J., AND TORRELLAS, J. 2006. POSH: a TLS
compiler that exploits program structure. In Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming. PPoPP ’06. ACM, New York, NY, USA, 158–167.

MICHAEL PHILIPPSEN, NIKOLAI TILLMANN, AND DANIEL BRINKERS. 2011. Double inspection for run-time
loop parallelization. In Proceedings of the 24th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2011).

OANCEA, C. E., MYCROFT, A., AND HARRIS, T. 2009. A lightweight in-place implementation for software
thread-level speculation. In Proceedings of the twenty-first annual symposium on Parallelism in algo-
rithms and architectures. SPAA ’09. ACM, New York, NY, USA, 223–232.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

A:12

PATEL, D. AND RAUCHWERGER, L. 1999. Implementation issues of loop-level speculative run-time paral-
lelization. In Compiler Construction, S. Jhnichen, Ed. Lecture Notes in Computer Science Series, vol.
1575. Springer Berlin / Heidelberg, 1–99.

PRABHU, M. K. AND OLUKOTUN, K. 2005. Exposing speculative thread parallelism in spec2000. In Pro-
ceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming.
PPoPP ’05. ACM, New York, NY, USA, 142–152.

QUIÑONES, C. G., MADRILES, C., SÁNCHEZ, J., MARCUELLO, P., GONZÁLEZ, A., AND TULLSEN, D. M.
2005. Mitosis compiler: an infrastructure for speculative threading based on pre-computation slices. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementa-
tion. PLDI ’05. ACM, New York, NY, USA, 269–279.

RAMAN, A., KIM, H., MASON, T. R., JABLIN, T. B., AND AUGUST, D. I. 2010. Speculative parallelization
using software multi-threaded transactions. In Proceedings of the fifteenth edition of ASPLOS on Archi-
tectural support for programming languages and operating systems. ASPLOS ’10. ACM, New York, NY,
USA, 65–76.

RAMAN, E., VA HHARAJANI, N., RANGAN, R., AND AUGUST, D. I. 2008. Spice: speculative parallel itera-
tion chunk execution. In Proceedings of the 6th annual IEEE/ACM international symposium on Code
generation and optimization. CGO ’08. ACM, New York, NY, USA, 175–184.

RAUCHWERGER, L. AND PADUA, D. 1995. The LRPD test: speculative run-time parallelization of loops with
privatization and reduction parallelization. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation. PLDI ’95. ACM, New York, NY, USA, 218–232.

TIAN, C., FENG, M., AND GUPTA, R. 2010a. Speculative parallelization using state separation and multiple
value prediction. In Proceedings of the 2010 international symposium on Memory management. ISMM
’10. ACM, New York, NY, USA, 63–72.

TIAN, C., FENG, M., AND GUPTA, R. 2010b. Supporting speculative parallelization in the presence of dy-
namic data structures. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation. PLDI ’10. ACM, New York, NY, USA, 62–73.

TIAN, C., FENG, M., NAGARAJAN, V., AND GUPTA, R. 2008. Copy or discard execution model for speculative
parallelization on multicores. In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 41. IEEE Computer Society, Washington, DC, USA, 330–341.

ZHONG, H., MEHRARA, M., LIEBERMAN, S. A., AND MAHLKE, S. A. 2008. Uncovering hidden loop level
parallelism in sequential applications. In HPCA. 290–301.

ZHU, C.-Q. AND YEW, P.-C. 1987. A scheme to enforce data dependence on large multiprocessor systems.
IEEE Trans. Softw. Eng. 13, 726–739.

Workshop on Dynamic Compilation Everywhere, Vol. V, No. N, Article A, Publication date: January 2012.

