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Round-Optimal Privacy-Preserving Protocols
with Smooth Projective Hash Functions

Olivier Blazy, David Pointcheval, and Damien Vergnaud

ENS, Paris, France ?

Abstract. In 2008, Groth and Sahai proposed a powerful suite of techniques for constructing non-interactive
zero-knowledge proofs in bilinear groups. Their proof systems have found numerous applications, including group
signature schemes, anonymous voting, and anonymous credentials. In this paper, we demonstrate that the notion
of smooth projective hash functions can be useful to design round-optimal privacy-preserving interactive protocols.
We show that this approach is suitable for designing schemes that rely on standard security assumptions in the
standard model with a common-reference string and are more efficient than those obtained using the Groth-Sahai
methodology. As an illustration of our design principle, we construct an efficient oblivious signature-based envelope
scheme and a blind signature scheme, both round-optimal. Keywords. oblivious signature-based envelopes – blind

signatures – smooth projective hash functions – bilinear groups – standard model with common-reference string

1 Introduction

In 2008, Groth and Sahai [24] proposed a way to produce efficient and practical non-interactive zero-knowledge
and non-interactive witness-indistinguishable proofs for (algebraic) statements related to groups equipped
with a bilinear map. They have been significantly studied in cryptography and used in a wide variety of
applications in recent years (e.g. group signature schemes [8, 9, 22] or blind signatures [2, 6]). While avoiding
expensive NP-reductions, these proof systems still lack in practicality and it is desirable to provide more
efficient tools.

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [13] for constructing
encryption schemes. A projective hashing family is a family of hash functions that can be evaluated in two
ways: using the (secret) hashing key, one can compute the function on every point in its domain, whereas using
the (public) projected key one can only compute the function on a special subset of its domain. Such a family
is deemed smooth if the value of the hash function on any point outside the special subset is independent
of the projected key. If it is hard to distinguish elements of the special subset from non-elements, then this
primitive can be seen as special type of zero-knowledge proof system for membership in the special subset.
The notion of SPHF has found applications in various contexts in cryptography (e.g. [1, 18,29]). We present
some other applications with privacy-preserving primitives that were already inherently interactive.

Applications: Our two applications are Oblivious Signature-Based Envelope [30] and Blind Signatures [12].

Oblivious Signature-Based Envelope (OSBE) were introduced in [30]. It can be viewed as a nice way to
ease the asymmetrical aspect of several authentication protocols. Alice is a member of an organization and
possesses a certificate produced by an authority attesting she is in this organization. Bob wants to send a
private message P to members of this organization. However due to the sensitive nature of the organization,
Alice does not want to give Bob neither her certificate nor a proof she belongs to the organization. OSBE
lets Bob sends an obfuscated version of this message P to Alice, in such a way that Alice will be able to
find P if and only if Alice is in the required organization. In the process, Bob cannot decide whether Alice
does really belong to the organization. They are part of a growing field of protocols, around automated trust
negotiation, which also include Secret Handshakes [3], Password-based Authenticated Key-Exchange [19], and
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Hidden Credentials [10]. Those schemes are all closely related, so due to space constraints, we are going to
focus on OSBE (as if you tweak two of them, you can produce any of the other protocols [11]).

Blind signatures were introduced by Chaum [12] for electronic cash in order to prevent the bank from
linking a coin to its spender: they allow a user to obtain a signature on a message such that the signer cannot
relate the resulting message/signature pair to the execution of the signing protocol. In [15], Fischlin gave
a generic construction of round-optimal blind signatures in the common-reference string (CRS) model: the
signing protocol consists of one message from the user to the signer and one response by the signer. The first
practical instantiation of round-optimal blind signatures in the standard model was proposed in [2] but it relies
on non-standard computational assumptions. We proposed, recently only [6], the most efficient realizations of
round-optimal blind signatures in the common-reference string model under classical assumptions. But these
schemes still use the Groth-Sahai proof systems.

Contributions: Our first contribution is to clarify and increase the security requirements of an OSBE
scheme. The main improvement residing in some protection for both the sender and the receiver against the
Certification Authority. The OSBE notion echoes directly to the idea of SPHF if we consider the language L
defined by encryption of valid signatures, which is hard to distinguish under the security of the encryption
schemes. We show how to build, from a SPHF on this language, an OSBE scheme in the standard model
with a CRS. And we prove the security of our construction in regards of the security of the commitment (the
ciphertext), the signature and the SPHF scheme. We then show how to build a simple and efficient OSBE
scheme relying on a classical assumption, DLin. An asymmetrical version is also sketched in the Appendix C.2:
the communication cost is divided by two. To build those schemes, we use SPHF in a new way, avoiding the
need of costly Groth-Sahai proofs when an interaction is inherently needed in the primitive. Our method does
not add any other interaction, and so supplement smoothly those proofs.

To show the efficiency of the method, and the ease of application, we then adapt two Blind Signature
schemes proposed in [6]. Our approach fits perfectly and decreases significantly the communicational com-
plexity of the schemes (it is divided by more than three in one construction). Moreover one scheme relies
on a weakened security assumptions: the XDH assumption instead of the SXDH assumption and permits to
use more bilinear group settings (namely, Type-II and Type-III bilinear groups [16] instead of only Type-III
bilinear groups for the construction presented in [6]).

Organization. The paper is divided into three main parts after a brief recall of standard definitions and
security notions. In a first part, we present a high-level version of our OSBE protocol, and prove its security.
We then instantiate this protocol with Linear encryption, Waters signature and study its efficiency when
compared with existing versions. In a last part, we continue to use SPHF as an effective replacement to proofs
of knowledge to instantiate a blind signature. In the appendices, we provide details on our instantiation of
SPHF, the detailed security proofs, and a sketch of the asymmetric instantiations of our OSBE scheme and
the blind signature.

2 Definitions

In this section, we briefly recall the notations and the security notions of the basic primitives we will use
in the rest of the paper, and namely public key encryption, signature and smooth projective hash functions
(SPHF), using the Gennaro-Lindell [18] extension. More formal definitions are provided in the Appendix A.1,
together with concrete instantiations (linear encryption, Waters signature, SPHF on linear tuples) and the
computational assumptions in the Appendix A.3. In a second part, we recall and enhance the security model
of oblivious signature-based envelope protocols [30].
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2.1 Notations

Encryption Scheme. An encryption scheme E is defined by four algorithms: ESetup(1k) that generates the
global parameters param, EKeyGen(param) that generates the pair of encryption/decryption keys (ek, dk),
Encrypt(ek,m; r) that produces a ciphertext c, and Decrypt(dk, c) that decrypts it back. The security of an
encryption scheme is defined through the semantic security (indistinguishability of ciphertexts against chosen-
plaintext attacks) [5, 20]: after having chosen two messages M0,M1 and received the encryption c of one of
them, the adversary should be unable to guess which message has been encrypted. More precisely, we will
use commitment schemes (as in [1]), which should be hiding (indistinguishability) and binding (one opening
only), with the additional extractability property. The latter property thus needs an extracting algorithm
that corresponds to the decryption algorithm. Hence the notation with encryption schemes.

Signature Scheme. A signature scheme S is also defined by four algorithms: SSetup(1k) that generates
the global parameters param, SKeyGen(param) that generates a pair of verification/signing keys (vk, sk),
Sign(sk,m; s) that produces a signature σ, and Verif(vk,m, σ) that checks its validity. The security of a sig-
nature scheme is defined by the unforgeability property (existential unforgeability against adaptive chosen-
message attacks) [21]. An adversary against the unforgeability tries to generate a valid signature on a message
M of its choice, after a polynomial number of signing queries to the signer: the message M must be distinct
from all the queries to the signing oracle.

Smooth Projective Hash Function. An SPHF system [13] on a language L is defined by five algorithms:
SPHFSetup(1k) that generates the global parameters, HashKG(L, param) that generates a hashing key hk,
ProjKG(hk, (L, param),W ) that derives the projection key hp, possibly depending on the word W [1, 18].
Then, Hash(hk, (L, param),W ) and ProjHash(hp, (L, param),W,w) outputs the hash value, either from the
hashing key, or from the projection key and the witness. The correctness of the scheme assures that if W is
indeed in L with w as a witness, then the two ways to compute the hash value give the same result. The
security of a SPHF is defined through two different notions, the smoothness and the pseudo-randomness
properties: The smoothness property guarantees that if W 6∈ L, then the hash value is statistically random
(statistically indistinguishable from a random element). The pseudo-randomness guarantees that even for a
word W ∈ L, but without the knowledge of a witness w, then the hash value is random (computationally
indistinguishable from a random element). Abdalla et al. [1] explained how to combine SPHF to deal with
conjunctions and disjunctions of the languages. This is recalled in the Appendix A.2.

2.2 Oblivious Signature-Based Envelope

We now define an OSBE protocol, where a sender S wants to send a private message P ∈ {0, 1}` to a recipient
R in possession of a certificate/signature on a message M .

Definition 1 (Oblivious Signature-Based Envelope). An OSBE scheme is defined by four algorithms
(OSBESetup,OSBEKeyGen,OSBESign,OSBEVerif), and one interactive protocol OSBEProtocol〈S,R〉:

– OSBESetup(1k), where k is the security parameter, generates the global parameters param;

– OSBEKeyGen(param) generates the keys (vk, sk) of the certification authority;

– OSBESign(sk,m) produces a signature σ on the input message m, under the signing key sk;

– OSBEVerif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs 1 if
the signature is valid, and 0 otherwise.

– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 between the sender S with the private message P , and the recip-
ient R with a certificate σ. If σ is a valid signature under vk on the common message M , then R receives
P , otherwise it receives nothing. In any case, S does not learn anything.
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Expesc−b
OSBE,A(k) [Escrow Free property]

1. param← OSBESetup(1k)
2. vk← A(INIT : param)
3. (M,σ)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. OSBEProtocol〈A, Rec∗(vk,M, σ, b)〉
5. b′ ← A(GUESS : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem
∗−b

OSBE,A(k) [Semantic security w.r.t. the authority]

1. param← OSBESetup(1k)
2. vk← A(INIT : param)
3. (M,σ, P0, P1)← A(FIND : Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
4. transcript← OSBEProtocol〈Send(vk,M, Pb), Rec

∗(vk,M, σ, 0〉
5. b′ ← A(GUESS : transcript, Send(vk, ·, ·), Rec∗(vk, ·, ·, 0), Exec∗(vk, ·, ·, ·))
6. RETURN b′

Expsem−b
OSBE,A(k) [Semantic Security]

1. param← OSBESetup(1k)
2. (vk, sk)← OSBEKeyGen(param)
3. (M,P0, P1)← A(FIND : vk, Sign∗(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
4. OSBEProtocol〈Send(vk,M, Pb),A〉
5. b′ ← A(GUESS : Sign(vk, ·), Send(vk, ·, ·), Rec(vk, ·, 0), Exec(vk, ·, ·))
6. IF M ∈ SM RETURN 0 ELSE RETURN b′

Fig. 1. Security Games for OSBE

Such an OSBE scheme should be (the three last properties are additional —or stronger— security properties
from the original definitions [30]):

– correct : the protocol actually allows R to learn P , whenever σ is a valid signature on M under vk;

– oblivious: the sender should not be able to distinguish whether R uses a valid signature σ on M under
vk as input. More precisely, if R0 knows and uses a valid signature σ and R1 does not use such a valid
signature, the sender cannot distinguish an interaction with R0 from an interaction with R1;

– (weakly) semantically secure: the recipient learns nothing about S input P if it does not use a valid
signature σ on M under vk as input. More precisely, if S0 owns P0 and S1 owns P1, the recipient that
does not use a valid signature cannot distinguish an interaction with S0 from an interaction with S1;

– semantically secure (denoted sem): the above indistinguishability should hold even if the receiver has seen
several interactions 〈S(vk,M, P ),R(vk,M, σ)〉 with valid signatures, and the same sender’s input P ;

– escrow free (denoted esc): the authority (owner of the signing key sk), playing as the sender or just
eavesdropping, is unable to distinguish whether R used a valid signature σ on M under vk as input.
This notion supersedes the above oblivious property, since this is basically oblivious w.r.t. the authority,
without any restriction.

– semantically secure w.r.t. the authority (denoted sem∗): after the interaction, the authority (owner of the
signing key sk) learns nothing about P .

We insist that the escrow-free property (esc) is stronger than the oblivious property, hence we will consider
the former only. However, the semantic security w.r.t. the authority (sem∗) is independent from the basic
semantic security (sem) since in the latter the adversary interacts with the sender whereas in the former the
adversary (who generated the signing keys) has only passive access to a challenge transcript.

These security notions can be formalized by the security games presented on Figure 1, where the adversary
keeps some internal state between the various calls INIT, FIND and GUESS. They make use of the oracles
described below, and the advantages of the adversary are, for all the security notions,

Adv∗OSBE,A(k) = Pr[Exp∗−1OSBE,A(k) = 1]− Pr[Exp∗−0OSBE,A(k) = 1]
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Adv∗OSBE(k, t) = max
A≤t

Adv∗OSBE,A(k).

– Sign(vk,m): This oracle outputs a valid signature on m under the signing key sk associated to vk (where
the pair (vk, sk) has been outputted by the OSBEKeyGen algorithm);

– Sign∗(vk,m): This oracle first queries Sign(vk,m). It additionally stores the query m to the list SM;

– Send(vk,m, P ): This oracle emulates the sender with private input P , and thus may consist of multiple
interactions;

– Rec(vk,m, b): This oracle emulates the recipient either with a valid signature σ on m under the verification
key vk (obtained from the signing oracle Sign) if b = 0 (as the above R0), or with a random string if b = 1
(as the above R1). This oracle is available when the signing key has been generated by OSBEKeyGen only;

– Rec∗(vk,m, σ, b): This oracle does as above, with a valid signature σ provided by the adversary. If b = 0,
it emulates the recipient playing with σ; if b = 1, it emulates the recipient playing with a random string;

– Exec(vk,m, P ): This oracle outputs the transcript of an honest execution between a sender with private
input P and the recipient with a valid signature σ on m under the verification key vk (obtained from the
signing oracle Sign). It basically activates the Send(vk,m, P ) and Rec(vk,m, 0) oracles.

– Exec∗(vk,m, σ, P ): This oracle outputs the transcript of an honest execution between a sender with private
input P and the recipient with a valid signature σ (provided by the adversary). It basically activates the
Send(vk,m, P ) and Rec∗(vk,m, σ, 0) oracles.

Remark 2. The OSBE schemes proposed in [30] do not satisfy the semantic security w.r.t. the authority. This
is obvious for the generic construction based on identity-based encryption which consists in only one flow of
communication (since a scheme that achieves the strong security notions requires at least two flows). This is
also true (to a lesser extent) for the RSA-based construction: for any third party, the semantic security relies
(in the random oracle model) on the CDH assumption in a 2048-bit RSA group; but for the authority, it can
be broken by solving two 1024-bit discrete logarithm problems. This task is much simpler in particular if the
authority generates the RSA modulus N = pq dishonestly (e.g. with p − 1 and q − 1 smooth). In order to
make the scheme secure in our strong model, one needs (at least) to double the size of the RSA modulus and
to make sure that the authority has selected and correctly employed a truly random seed in the generation
of the RSA key pair [28].

3 An Efficient OSBE scheme

In this section, we present a high-level instantiation of OSBE with the previous primitives as black boxes.
Thereafter, we provide a specific instantiation with linear ciphertexts. The overall security then relies on the
DLin assumption, a quite standard assumption in the standard model. Its efficiency is of the same order of
magnitude than the construction based on identity-based encryption [30] (that only achieves weaker security
notions) and better than the RSA-based scheme which provides similar security guarantees (in the random
oracle model).

3.1 High-Level Instantiation

We assume we have an encryption scheme E , a signature scheme S and a SPHF system onto a set G. We
additionally use a key derivation function KDF to derive a pseudo-random bit-string K ∈ {0, 1}` from a
pseudo-random element v in G. One can use the Leftover-Hash Lemma [25], with a random seed defined in
param during the global setup, to extract the entropy from v, then followed by a pseudo-random generator to
get a long enough bit-string. Many uses of the same seed in the Leftover-Hash-Lemma just leads to a security
loss linear in the number of extractions. We describe an oblivious signature-based envelope system OSBE , to
send a private message P ∈ {0, 1}`:
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– OSBESetup(1k), where k is the security parameter:
• it first generates the global parameters for the signature scheme (using SSetup), the encryption scheme

(using ESetup), and the SPHF system (using SPHFSetup);
• it then generates the public key ek of the encryption scheme (using EKeyGen, while the decryption

key will not be used);
The output param consists of all the individual param and the encryption key ek;

– OSBEKeyGen(param) runs SKeyGen(param) to generate a pair (vk, sk) of verification-signing keys;
– The OSBESign and OSBEVerif algorithms are exactly Sign and Verif from the signature scheme;
– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉: In the following, L = L(vk,M) will describe the language of the

ciphertexts under the above encryption key ek of a valid signature of the input message M under the
input verification key vk (hence vk and M as inputs, while param contains ek).
• R generates and sends c = Encrypt(ek, σ; r);
• S computes hk = HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and
Q = P ⊕ KDF(v); S sends hp, Q to R;
• R computes v′ = ProjHash(hp, (L, param), c, r) and P ′ = Q⊕ KDF(v′).

3.2 Security Properties

Theorem 3 (Correct). OSBE is sound.

Proof. Under the correctness of the SPHF system, v′ = v, and thus P ′ = (P ⊕ KDF(v))⊕ KDF(v′) = P .

Theorem 4 (Escrow-Free). OSBE is escrow-free if the encryption scheme E is semantically secure:
AdvescOSBE(k, t) ≤ AdvindE (k, t′) with t′ ≈ t.

Proof. Let us assume A is an adversary against the escrow-free property of our scheme: The malicious
adversary A is able to tell the difference between an interaction with R0 (who knows and uses a valid
signature) and R1 (who does not use a valid signature), with advantage ε.

We now build an adversary B against the semantic security of the encryption scheme E :

– B is first given the parameters for E and an encryption key ek;
– B emulates OSBESetup: it runs SSetup and SPHFSetup by itself. For the encryption scheme E , the pa-

rameters and the key have already been provided by the challenger of the encryption security game;
– A provides the verification key vk;
– B has to simulate all the oracles:
• Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes hk =

HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v).
One sends back (hp, Q);
• Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs c = Encrypt(ek, σ; r);
• Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c, that is provided to Send(vk,M, P ), to

generate (hp, Q).
– At some point, A outputs a message M and a valid signature σ, and B has to simulate Rec∗(vk,M, σ, b):
B sets σ0 ← σ and sets σ1 as a random string. It sends (σ0, σ1) to the challenger of the semantic security
of the encryption scheme and gets back c, an encryption of σβ, for a random unknown bit β. It outputs c;

– B provides again access to the above oracles, and A outputs a bit b′, that B forwards as its guess β′ for
the β involved in the semantic security game for E .

Note that the above simulation perfectly emulates Expesc−βOSBE,A(k) (since basically b is β, and b′ is β′):

ε = AdvescOSBE,A(k) = AdvindE,B(k) ≤ AdvindE (k, t).
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Theorem 5 (Semantically Secure). OSBE is semantically secure if the signature is unforgeable, the
SPHF is smooth and the encryption scheme is semantically secure (and under the pseudo-randomness of the
KDF):

AdvsemOSBE(k, t)≤qU AdvindE (k, t′) + 2 SucceufS (k, qS , t
′′) + 2Advsmooth

SPHF (k)with t′, t′′≈ t.
In the above formula, qU denotes the number of interactions the adversary has with the sender, and qS the
number of signing queries the adversary asked.

Proof. Let us assume A is an adversary against the semantic security of our scheme: The malicious adversary
A is able to tell the difference between an interaction with S0 (who owns P0) and S1 (who owns P1), with
advantage ε. We start from this initial security game, and make slight modifications to bound ε.

Game G0. Let us emulate this security game:

– B emulates the initialization of the system: it runs OSBESetup by itself, and then OSBEKeyGen to generate
(vk, sk);

– B has to simulate all the oracles:
• Sign(vk,M) and Sign∗(vk,M): it runs the corresponding algorithm by itself;
• Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes hk =

HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v).
One sends back (hp, Q);
• Rec(vk,M, 0), for a message M : B asks for a valid signature σ on M , computes and outputs c =

Encrypt(ek, σ; r);
• Exec(vk,M, P ): one simply first runs Rec(vk,M, 0) to generate c, that is provided to Send(vk,M, P ),

to generate (hp, Q).
– At some point, A outputs a message M and two inputs (P0, P1) to distinguish the sender, and B call back

the above Send(vk,M, Pb) simulation to interact with A;
– B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game Gβ1 . This game involves the semantic security of the encryption scheme: B is already provided the
parameters and the encryption key ek by the challenger of the semantic security of the encryption scheme,
hence the initialization is slightly modified. In addition, B sets the bit b = β, and modifies the Rec oracle
simulation:

– Rec(vk,M, 0), for a message M : B asks for a valid signature σ0 on M , and sets σ1 as a random string,
computes and outputs c = Encrypt(ek, σb; r).

Since B knows b, it finally outputs β′ = (b′ = b).
Note that G01 is exactly G0, and the distance between G01 and G11 relies on the Left-or-Right security of the

encryption scheme, which can be shown equivalent to the semantic security, with a lost linear in the number
of encryption queries, which is actually the number qU of interactions with a user (the sender in this case),
due to the hybrid argument [4]:

qU × AdvindE (k) ≥ Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]

= Pr[b′ = b|β = 0]− Pr[b′ = b|β = 1]

= (2× Pr
G01

[b′ = b]− 1)− (2× Pr
G11

[b′ = b]− 1)

As a consequence: ε ≤ qU × AdvindE (k) + (2× PrG11 [b′ = b]− 1).
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Game G2. This game involves the unforgeability of the signature scheme: B is already provided the parameters
and the verification vk for the signature scheme, together with access to the signing oracle (note that all the
signing queries Sign∗ asked by the adversary in the FIND stage, i.e., before the challenge interaction with
Send(vk,M, Pb), are stored in SM). The simulator B generates itself all the other parameters and keys, an
namely the encryption key ek, together with the associated decryption key dk. For the Rec oracle simulation,
B keeps the random version (as in G11). In the challenge interaction with Send(vk,M, Pb), one stops the
simulation and makes the adversary win if it uses a valid signature on a message M 6∈ SM:

– Send(vk,M, Pb), during the challenge interaction: upon receiving c, if M 6∈ SM, it first decrypts c to get
the input signature σ. If σ is a valid signature, one stops the game, sets b′ = b and outputs b′. If the
signature is in not valid, the simulation remains unchanged;

– Rec(vk,M, 0), for a message M : B sets σ as a random string, computes and outputs c = Encrypt(ek, σ; r).

Because of the abort in the case of a valid signature on a new message, we know that the adversary cannot
use such a valid signature in the challenge. So, since M should not be in SM, the signature will be invalid.
Actually, the unique difference from the previous game G11 is the abort in case of valid signature on a new
message in the challenge phase, which probability is bounded by SucceufS (k, qS). Using Shoup’s Lemma [32]:

Pr
G11

[b′ = b]− Pr
G2

[b′ = b] ≤ SucceufS (k, qS).

As a consequence: ε ≤ qU × AdvindE (k) + 2× SucceufS (k, qS) + (2× PrG2 [b′ = b]− 1).

Game G3. The last game involves the smoothness of the SPHF: The unique difference is in the computation
of v in Send simulation, in the challenge phase only: B chooses a random v ∈ G. Due to the statistical
randomness of v in the previous game, in case the signature is not valid (a word that is not in the language),
this game is statistically indistinguishable from the previous one:

Pr
G2

[b′ = b]− Pr
G3

[b′ = b] ≤ Advsmooth
SPHF (k).

Since Pb is now masked by a truly random value, no information leaks on b: PrG3 [b′ = b] = 1/2.

Theorem 6. OSBE is semantically secure w.r.t. the authority if the SPHF is pseudo-random (and
under the pseudo-randomness of the KDF):

Advsem
∗

OSBE(k, t) ≤ 2× AdvprSPHF (k, t).

Proof. Let us assume A is an adversary against the semantic security w.r.t. the authority: The malicious
adversary A is able to tell the difference between an eavesdropped interaction with S0 (who owns P0) and S1
(who owns P1), with advantage ε. We start from this initial security game, and make slight modifications to
bound ε.

Game G0. Let us emulate this security game:

– B emulates the initialization of the system: it runs OSBESetup by itself;
– A provides the verification key vk;
– B has to simulate all the oracles:
• Send(vk,M, P ), for a message M and a private input P : upon receiving c, one computes hk =

HashKG(L, param), hp = ProjKG(hk, (L, param), c), v = Hash(hk, (L, param), c), and Q = P ⊕ KDF(v).
One sends back (hp, Q);
• Rec∗(vk,M, σ, 0), for a message M and a valid signature σ: B outputs c = Encrypt(ek, σ; r);
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• Exec∗(vk,M, σ, P ): one first runs Rec(vk,M, σ, 0) to generate c, that is provided to Send(vk,M, P ), to
generate (hp, Q).

– At some point, A outputs a message M with a valid signature σ, and two inputs (P0, P1) to distinguish the
sender, and B call back the above Send(vk,M, Pb) and Rec∗(vk,M, σ, 0) simulations to interact together
and output the transcript (c; hp, Q);

– B provides again access to the above oracles, and A outputs a bit b′.

In this game, A has an advantage ε in guessing b:

ε = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1. This game involves the pseudo-randomness of the SPHF: The unique difference is in the compu-
tation of v in Send simulation of the eavesdropped interaction, and so for the transcript: B chooses a random
v ∈ G and computes Q = Pb ⊕ KDF(v). Due to the pseudo-randomness of v in the previous game, since A
does not know the random coins r used to encrypt σ, this game is computationally indistinguishable from
the previous one.

Pr
G1

[b′ = b]− Pr
G0

[b′ = b] ≤ AdvprSPHF (k, t).

Since Pb is now masked by a truly random value v, no information leaks on b: PrG1 [b′ = b] = 1/2.

3.3 Our Efficient OSBE Instantiation

Our first construction combines the linear encryption scheme [7], the Waters signature scheme [33] and a
SPHF on linear ciphertexts [13, 31]. It thus relies on classical assumptions: CDH for the unforgeability of
signatures and DLin for the semantic security of the encryption scheme. The formal definitions are recalled
in the Appendix A.3.

Basic Primitives. Given an encrypted Waters signature from the recipient, the sender is able to compute a
projection key, and a hash corresponding to the expected signature, and send to the recipient the projection
key and the product between the expected hash and the message P . If the recipient was honest (a correct
ciphertext), it is able to compute the hash thanks to the projection key, and so to find P , in the other case
it does not learn anything.

We briefly sketch the basic building blocks: linear encryption, Waters signature and the SPHF for linear
tuples. They are more formally described in the appendix A.3.

All these primitives work in a pairing-friendly environment (p,G, g,GT , e), where e : G × G → GT is
an admissible bilinear map, for two groups G and GT , of prime order p, generated by g and gt = e(g, g)
respectively.

Waters Signatures. The public parameters are a generator h
$← G and a vector u = (u0, . . . , uk)

$← Gk+1,
which defines the Waters hash of a message M = (M1, . . . ,Mk) ∈ {0, 1}k as F(M) = u0

∏k
i=1 u

Mi
i . The

public verification key is vk = gz, which corresponding secret signing key is sk = hz, for a random z
$← Zp.

The signature on a message M ∈ {0, 1}k is σ =
(
σ1 = sk · F(M)s, σ2 = gs

)
, for some random s

$← Zp. It can
be verified by checking e(g, σ1) = e(vk, h) · e(F(M), σ2). This signature scheme is unforgeable under the CDH
assumption.

Linear Encryption. The secret key dk is a pair of random scalars (y1, y2) and the public key is ek = (Y1 =
gy1 , Y2 = gy2). One encrypts a message M ∈ G as c =

(
c1 = Y r1

1 , c2 = Y r2
2 , c3 = gr1+r2 ·M

)
, for random

scalars r1, r2
$← Zp. To decrypt, one computes M = c3/(c

1/y1
1 c

1/y2
2 ). This encryption scheme is semantically

secure under the DLin assumption.
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DLin-compatible Smooth-Projective Hash Function. This is actually a weaker variant of [31]. The language
L consists of the linear tuples w.r.t. a basis (u, v, g). For a linear encryption key ek = (Y1, Y2), a ciphertext
C = (c1, c2, c3) is an encryption of the message M if (c1, c2, c3/M) is a linear tuple w.r.t. the basis (Y1, Y2, g).
The language Lin(ek,M) consists of these ciphertexts. An SPHF for this language can be:

HashKG(Lin(ek,M)) = hk = (x1, x2, x3)
$← Z3

p

Hash(hk; Lin(ek,M), C) = cx11 c
x2
2 (c3/M)x3

ProjKG(hk; Lin(ek,M), C) = hp = (Y x1
1 gx3 , Y x2

2 gx3)

ProjHash(hp; Lin(ek,M), C; r) = hpr11 hpr22

This function is defined for linear tuples in G, but it could work in any group, since it does not make use of
pairings. And namely, we use it below in GT .

Smooth-Projective Hash Function for Linear Encryption of Valid Waters Signatures. We will consider a
slightly more complex language: the ciphertexts under ek of a valid signature ofM under vk. A given ciphertext
C = (c1, c2, c3, σ2) contains a valid signature of M if and only if (c1, c2, c3) actually encrypts σ1 such that
(σ1, σ2) is a valid Waters signature on M . The latter means

(C1 = e(c1, g), C2 = e(c2, g), C3 = e(c3, g)/(e(h, vk) · e(F(M), σ2))

is a linear tuple in basis (U = e(Y1, g), V = e(Y2, g), gt = e(g, g)) in GT . Since the basis consists of 3 elements
of the form e(·, g), the projected key can be compacted in G. We thus consider the language WLin(ek, vk,M)
that contains these quadruples (c1, c2, c3, σ2), and its SPHF:

HashKG(WLin(ek, vk,M)) = hk = (x1, x2, x3)
$← Z3

p

Hash(hk;WLin(ek, vk,M), C) =

e(c1, g)x1e(c2, g)x2(e(c3, g)/(e(h, vk)e(F(M), σ2)))
x3

ProjKG(hk;WLin(ek, vk,M), C) = hp = (ekx11 g
x3 , ekx22 g

x3)

ProjHash(hp;WLin(ek, vk,M), C; r) = e(hpr11 hpr22 , g)

Instantiation. We now define our OSBE protocol, where a sender S wants to send a private message
P ∈ {0, 1}` to a recipient R in possession of a Waters signature on a message M .

– OSBESetup(1k), where k is the security parameter, defines a pairing-friendly environment (p,G, g,GT , e),

the public parameters h
$← G, an encryption key ek = (Y1 = gy1 , Y2 = gy2), where (y1, y2)

$← Z2
p, and

u = (u0, . . . , uk)
$← Gk+1 for the Waters signature. All these elements constitute the string param;

– OSBEKeyGen(param), the authority generates a pair of keys (vk = gz, sk = hz) for a random scalar z
$← Zp;

– OSBESign(sk,M) produces a signature σ = (hzF(M)s, gs);
– OSBEVerif(vk,M, σ) checks if e(σ1, g) = e(σ2,F(M)) · e(h, vk).
– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 runs as follows:
• R chooses random r1, r2

$← Zp and sends a linear encryption of σ:
C = (c1 = ekr11 , c2 = ekr22 , c3 = gr1+r2 · σ1, σ2)
• S chooses random x1, x2, x3

$← Z3
p and computes:

∗ HashKG(WLin(ek, vk,M)) = hk = (x1, x2, x3);
∗ Hash(hk;WLin(ek, vk,M), C) = v =
e(c1, g)x1e(c2, g)x2(e(c3, g)/(e(h, vk)e(F(M), σ2)))

x3 ;
∗ ProjKG(hk;WLin(ek, vk,M), C) = hp = (ekx11 g

x3 , ekx22 g
x3).

• S then sends (hp, Q = P ⊕ KDF(v)) to R;
• R computes v′ = e(hpr11 hpr22 , g) and P ′ = Q⊕ KDF(v′).

An asymmetric instantiation can be found in the Appendix C.2.
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3.4 Security and Efficiency

We now provide a security analysis of this scheme. This instantiation differs, from the high-level instantiation
presented before, in the ciphertext C of the signature σ = (σ1, σ2). The second half of the signature indeed
remains in clear. It thus does not guarantee the semantic security on the signature used in the ciphertext.
However, granted Waters signature randomizability, one can re-randomize the signature each time, and thus
provide a totally new σ2: it does not leak any information about the original signature. The first part
of the ciphertext (c1, c2, c3) does not leak any additional information under the DLin assumption. As a
consequence, the global ciphertext guarantees the semantic security of the original signature if a new re-
randomized signature is encrypted each time. We can now apply the high-level construction security, and all
the assumptions hold under the DLin one:

Theorem 7. Our OSBE scheme is secure (i.e., escrow-free, semantically secure, and semantically secure
w.r.t. the authority) under the DLin assumption (and the pseudo-random generator in the KDF).

Our proposed scheme needs one communication for R and one for S, so it is round-optimal. Communi-
cation also consists of few elements, R sends 4 group elements, and S answers with 2 group elements only
and an `-bit string for the masked P ∈ {0, 1}`. As explained in Remark 2, this has to be compared with
the RSA-based scheme from [30] which requires 2 elements in RSA groups (with double-length modulus).
For a 128-bit security level, using standard Type-I bilinear groups implementation [16], we obtain a 62.5%
improvement1 in communication complexity over the RSA-based scheme proposed in the original paper [30].

While reducing the communication cost of the scheme, we have improved its security and it now fits the
proposed applications. In [30], such schemes were proposed for applications where someone wants to transmit
a confidential information to an agent belonging to a specific agency. However the agent does not want to
give away his signature. As they do not consider eavesdropping and replay in their semantic security nothing
prevents an adversary to replay a part of a previous interaction to impersonate a CIA agent (to recall their
example). In practice, an additional secure communication channel, such as with SSL, was required in their
security model, hence increasing the communication cost: our protocol is secure by itself.

4 An efficient Blind Signature

4.1 Definitions

A more formal definition of blind signatures is provided in the Appendix B, but we briefly recall it in this
section: A blind signature scheme BS is defined by a setup algorithm BSSetup(1k) that generates the global
parameters param, and key generation algorithm BSKeyGen(param) that outputs a pair (vk, sk), and interactive
protocol BSProtocol〈S(sk),U(vk,m)〉 which provides U with a signature on m, and a verification algorithm
BSVerif(vk,m, σ) that checks its validity. The security of a blind signature scheme is defined through the
unforgeability and blindness properties: An adversary against the unforgeability tries to generate qs + 1 valid
message-signature pairs after at most qs complete interactions with the honest signer; The blindness condition
states that a malicious signer should be unable to decide which of two messages m0,m1 has been signed first
in two executions with an honest user.

4.2 Our Instantiation

We now present a new way to obtain a blind signature scheme in the standard model under classical assump-
tions with a common-reference string. This is an improvement over [6]. We are going to use the same building

1 The improvement is even more important for the scheme described in Appendix C.2 since, using standard Type-II or Type-III
bilinear groups, the communication complexity is only 3/16-th of the one of the RSA-based scheme.
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blocks as before, so linear encryption, Waters signatures and a SPHF on linear ciphertexts. More elaborated
languages will be required, but just conjunctions and disjunctions of classical languages, as done in [1] (see
Appendix A.2 and A.4), hence the efficient construction. Our blind signature scheme is defined by:

– BSSetup(1k), where k is the security parameter, generates a pairing-friendly system (p,G, g,GT , e) and
an encryption key ek = (u, v, g) ∈ G3. It also chooses at random h ∈ G and generators u = (ui)i∈[[1,`]] ∈ G`

for the Waters function. It outputs the global parameters param = (p,G, g,GT , e, ek, h,u);
– BSKeyGen(param) picks at random a secret key sk = x and computes the verification key vk = gx;
– BSProtocol〈S(sk),U(vk,m)〉 runs as follows, where U wants to get a signature on M
• U computes the bit-per-bit encryption ofM by encrypting each uMi

i in bi, ∀i ∈ [[1, `]], bi = Encrypt(ek, uMi
i ; (ri,1, ri,2)) =

(uri,1 , vri,2 , gri,1+ri,2uMi
i ). Then writing r1 =

∑
ri,1 and r2 =

∑
ri,2, he computes the encryption c of

vkr1+r2 with Encrypt(ek, vkr1+r2 ; (s1, s2)) = (us1 , vs2 , gs1+s2vkr1+r2). U then sends (c, (bi));
• On input of these ciphertexts, the algorithm S computes the corresponding SPHF, considering the

language L of valid ciphertexts. This is the conjunction of several languages (see Appendix A.4 for
details:)
1. One checking that each bi encrypts a bit in basis ui: in BLin(ek, ui);
2. One considering (d1, d2, c1, c2, c3), that checks if (c1, c2, c3) encrypts an element d3 such that

(d1, d2, d3) is a linear tuple in basis (u, v, vk): in ELin(ek, vk), where d1 =
∏
i bi,1 and d2 =

∏
i bi,2.

• S computes the corresponding Hash-value v, extracts K = KDF(v) ∈ Zp, generates the blinded
signature (σ′′1 = hxδs, σ′2 = gs), where δ = u0

∏
i bi,3 = F(M)gr1+r2 , and sends (hp, Q = σ′′1 × gK , σ′2);

• Upon receiving (hp, Q, σ′2), using its witnesses and hp, U computes the ProjHash-value v′, extracts
K ′ = KDF(v′) and unmasks σ′′1 = Q × g−K′ . Thanks to the knowledge of r1 and r2, it can compute
σ′1 = σ′′1 × (σ′2)

−r1−r2 . Note that if v′ = v, then σ′1 = hxF(M)s, which together with σ′2 = gs is a valid
Waters signature on M . It can thereafter re-randomize the final signature σ = (σ′1 · F(M)s

′
, σ′2 · gs

′
).

– BSVerif(vk,M, σ), checks whether e(σ1, g) = e(h, vk) · e(F(M), σ2).

The idea is to remove any kind of proof of knowledge in the protocol, which was the main concern in [6],
and use instead a SPHF. This way, we obtain a protocol where the user first sends 3`+ 6 group elements for
the ciphertext, and receives back 5`+ 4 elements for the projection key and 2 group elements for the blinded
signature. So 8` + 12 group elements are used in total. This has to be compared to 9` + 24 in [6]. We both
reduce the linear and the constant parts in the number of group elements involved while relying on the same
hypotheses. And the final result is still a standard Waters signature.

Remark 8. In [17], Garg el al. proposed the first round-optimal blind signature scheme in the standard model,
without CRS. In order to remove the CRS, their scheme makes use of ZAPs [14] and is quite inefficient.
Moreover, its security relies on a stronger assumption (namely, sub-exponential hardness of one-to-one one-
way functions). A natural idea is to replace the CRS in our scheme with Groth-Ostrovsky-Sahai ZAP [23]
based on the DLin assumption. This change would only double the communication complexity, but we do not
know how to prove the security of the resulting scheme2. It remains a tantalizing open problem to design an
efficient round-optimal blind signature in the standard model without CRS.

4.3 Security

In blind signatures, one expects two kinds of security properties:

– blindness, preventing the signer to be able to recognize which message was signed during a specific inter-
action. Due to Waters re-randomizability and linear encryption, this property is guaranteed in our scheme
under the DLin assumption;

2 Indeed, opening the commitment scheme in the ZAP and forging a signature relies on the same computational assumption,
which makes it impossible to apply the complexity leveraging argument from [17].
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– unforgeability, guaranteeing the user will not be able to output more signed messages than the number of
actual interactions. In this scheme, granted the extractability of the encryption (the simulator can know
the decryption key) one can show that the user cannot provide a signature on a message different from
the ones it asked to be blindly signed. Hence, the unforgeability relies on the Waters unforgeability, that
is the CDH assumption.

Theorem 9. Our blind signature scheme is blind3 under the DLin assumption (and the pseudo-randomness
of the KDF) and unforgeable under the CDH assumption.

A full proof can be found in appendix B.
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A Formal Definitions

A.1 Formal Definitions of the Primitives

Encryption scheme. An encryption scheme is defined by four algorithms (ESetup,EKeyGen,Encrypt,Decrypt):

– ESetup(1k), where k is the security parameter, generates the global parameters param of the scheme;

– EKeyGen(param) generates a pair of keys, the public (encryption) key ek and the private (decryption) key
dk;
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– Encrypt(ek,m; r) produces a ciphertext c on the input message m ∈M under the encryption key ek, using
the random coins r;

– Decrypt(dk, c) outputs the plaintext m encrypted in c.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (ek, dk) and all messages m we have Decrypt(dk,Encrypt(ek,m)) = m.

– Indistinguishability under chosen-plaintext attacks: this security
notion can be formalized by the following security game, where
the adversary A keeps some internal state between the various
calls FIND and GUESS. The advantages are

AdvindE,A(k) = Pr[Expind−1E,A (k) = 1]− Pr[Expind−0E,A (k) = 1]

AdvindE (k, t) = max
A≤t

AdvindE,A(k).

Expind−bE,A (k)

1. param← ESetup(1k)
2. (ek, dk)← EKeyGen(param)
3. (m0,m1)← A(FIND : ek)
4. c∗ ← Encrypt(ek,mb)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Signature scheme. A signature scheme is defined by four algorithms (SSetup, SKeyGen,Sign,Verif):

– SSetup(1k), where k is the security parameter, generates the global parameters param of the scheme;

– SKeyGen(param) generates a pair of keys, the public (verification) key vk and the private (signing) key sk;

– Sign(sk,m; s) produces a signature σ on the input message m, under the signing key sk, and using the
random coins s;

– Verif(vk,m, σ) checks whether σ is a valid signature on m, w.r.t. the public key vk; it outputs 1 if the
signature is valid, and 0 otherwise.

A signature scheme S should satisfy the following properties

– Correctness: for all key pair (vk, sk) and all messages m we have Verif(vk,m,Sign(sk,m)) = 1.

– Existential unforgeability under (adaptive) chosen-message at-
tacks: this security notion can be formalized by the following se-
curity game, where it makes use of the oracle Sign:

• Sign(sk,m): This oracle outputs a valid signature on m under
the signing key sk. The input queries m are added to the list
SM.

The success probabilities are

SucceufS,A(k) = Pr[ExpeufS,A(k) = 1] SucceufS (k, t) = max
A≤t

SucceufS,A(k).

ExpeufS,A(k)

1. param← SSetup(1k)
2. (vk, sk)← SKeyGen(param)
3. (m∗, σ∗)← A(vk, Sign(sk, ·))
4. b← Verif(vk,m∗, σ∗)
5. IF M ∈ SM RETURN 0
6. ELSE RETURN b

Smooth Projective Hash Function. An SPHF over a language L ⊂ X, onto a set G, is defined by five algorithms
(SPHFSetup,HashKG,ProjKG,Hash,ProjHash):

– SPHFSetup(1k), where k is the security parameter, generates the global parameters param of the scheme,
and the description of an NP language L;

– HashKG(L, param) generates a hashing key hk;

– ProjKG(hk, (L, param),W ) generates the projection key hp, possibly depending on the word W [1,18] from
the hashing key;

– Hash(hk, (L, param),W ) outputs the hash value v ∈ G, on W from the hashing key;

– ProjHash(hp, (L, param),W,w) outputs the hash value v′ ∈ G, on W from the projection key and the
witness.
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A Smooth Projective Hash Function SPHF should satisfy the following properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hash keys hk and projected
hash keys hp we have Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W, c).

– Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

∆0 =

{
(L, param,W, hp, v)

param = SPHFSetup(1k), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ), v = Hash(hk, (L, param),W )

}
∆1 =

{
(L, param,W, hp, v)

param = SPHFSetup(1k), hk = HashKG(L, param),

hp = ProjKG(hk, (L, param),W ), v
$← G

}
.

This is formalized by

Advsmooth
SPHF (k) =

∑
V ∈G

∣∣∣∣Pr
∆1

[v = V ]− Pr
∆0

[v = V ]

∣∣∣∣ is negligible.

– Pseudo-Randomness: If c ∈ L, then without a witness of membership the two previous distributions
should remain computationally indistinguishable: for any adversary A within reasonable time

AdvprSPHF ,A(k) = Pr
∆1

[A(L, param,W, hp, v) = 1]− Pr
∆0

[A(L, param,W, hp, v) = 1] is negligible.

A.2 Operations on Smooth Projective Hash Functions

We recall the constructions of SPHF on disjunctions and conjunctions of languages [1]. Let us assume we
have two Smooth Projective Hash Functions, defined by SPHF1 and SPHF2, on two languages, L1 and L2
respectively, both subsets of X, with hash values in the same group (G,⊕). We note W an element of X, wi
a witness that W ∈ Li, hki = HashKGi(Li, param) and hpi = ProjKGi(hki, (Li, parami),W ).

We can then define the SPHF on L = L1 ∩ L2, where w = (w1, w2) as:

– SPHFSetup(1k), param = (param1, param2), and L = L1 ∩ L2;
– HashKG(L, param): hk = (hk1, hk2)

– ProjKG(hk, (L, param),W ): hp = (hp1, hp2)

– Hash(hk, (L, param),W ): Hash1(hk1, (L1, param1),W )⊕ Hash2(hk2, (L2, param2),W )

– ProjHash(hp, (L, param),W,w = (w1, w2)):

ProjHash1(hp1, (L1, param1),W,w1)⊕ ProjHash2(hp2, (L2, param2),W,w2)

We can also define the SPHF on L = L1 ∪ L2, where w = w1 or w = w2 as:

– SPHFSetup(1k), param = (param1, param2), and L = L1 ∪ L2;
– HashKG(L, param): hk = (hk1, hk2)

– ProjKG(hk, (L, param),W ): hp = (hp1, hp2, hp∆) where

hp∆ = Hash1(hk1, (L1, param1),W )⊕ Hash2(hk2, (L2, param2),W )

– Hash(hk, (L, param),W ): Hash1(hk1, (L1, param1),W )

– ProjHash(hp, (L, param),W,w): If W ∈ L1, ProjHash1(hp1, (L1, param1),W,w1),
else (if W ∈ L2), hp∆ 	 ProjHash2(hp2, (L2, param2),W,w2)
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A.3 Our Concrete Primitives

In the following, we consider two different pairing-friendly settings;

– Symmetric bilinear structure: (p,G, g,GT , e) that gives the description of two groups G and GT of prime
order p with generators g and e(g, g) respectively where e is an efficiently computable non-degenerate
bilinear map.

– Asymmetric bilinear structure: (p,G1, g1,G2, g2,GT , e) that gives the description of three groups G1,
G2 and GT of prime order p with generators g1, g2 and e(g1, g2) respectively where e is an efficiently
computable non-degenerate bilinear map.

Linear encryption (in a symmetric structure). The Linear encryption scheme was introduced by Boneh,
Boyen and Shacham in [7]:

– ESetup(1k): the global parameters param consist of the description of a symmetric bilinear structure
(p,G, g,GT , e);

– EKeyGen(param) picks a pair of random scalars (y1, y2)
$← Zp, which defines the public key as ek = (Y1 =

gy1 , Y2 = gy2), and the secret key as dk = (y1, y2);
– Encrypt(ek,M) on input a message M ∈ G, it picks at random r1, r2 ∈ Zp and computes c1 = Y r1

1 ,
c2 = Y r2

2 , c3 = gr1+r2 ·M . It outputs the ciphertext c = (c1, c2, c3);

– Decrypt(dk, c) on input a ciphertext c = (c1, c2, c3), it outputs M = c3/(c
1/y1
1 c

1/y2
2 ).

This scheme is semantically secure against chosen-plaintext attacks under the DLin assumption:

Definition 10 (Decision Linear assumption (DLin)). Let G be a cyclic group of prime order p. The
DLin assumption states that given (g, gx, gy, gxa, gyb, gc) for random scalars a, b, x, y, c ∈ Zp, it is hard to
decide whether c = a+ b.

When (g, u = gx, v = gy) is fixed, a tuple (ua, vb, ga+b) is called a linear tuple w.r.t. (u, v, g), whereas a
tuple (ua, vb, gc) for a random and independent c is called a random tuple.

ElGamal encryption (in an asymmetric structure). In asymmetric structures, the DDH assumption can hold,
one can thus use the ElGamal encryption:

– ESetup(1k): the global parameters param consist of the description of an asymmetric bilinear structure
(p,G1, g1,G2, g2,GT , e);

– EKeyGen(param) picks a random scalar y
$← Zp, which defines the public key as ek = gy, and the secret

key as dk = y;
– Encrypt(ek,M) on input a message m ∈ G1, it picks at random r ∈ Zp and computes c1 = gr and
c2 = ekr ·m. It outputs the ciphertext c = (c1, c2);

– Decrypt(dk, c) on input a ciphertext c = (c1, c2), it outputs m = c2/c
y
1.

This scheme is semantically secure against chosen-plaintext attacks under the DDH assumption in G1:

Definition 11 (Decisional Diffie-Hellman Assumption (DDH)). In a pairing-friendly environment
(p,G1, g1,G2, g2,GT , e). The DDH assumption in Gi states that given (gi, g

a
i , g

b
i , g

c
i ) ∈ Gi, it is hard to deter-

mine whether c = ab for random scalars a, b, c ∈ Zp.

Waters signature (in a symmetric structure). The original Waters Signature has been proposed in [33]:

– Setup(1k): in a symmetric bilinear structure (p,G, g,GT , e), one chooses a vector u = (u0, . . . , uk)
$← Gk+1,

and for convenience, we denote F(M) = u0
∏k
i=1 u

Mi
i . We also need an extra generator h

$← G. The global
parameters param consist of all these elements (p,G, g,GT , e, h,u).
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– SKeyGen(param) chooses a random scalar x
$← Zp, which defines the public key as vk = gx, and the secret

key as sk = hx.
– Sign(sk,M ; s) outputs, for some random s

$← Zp, σ =
(
σ1 = sk · F(M)s, σ2 = gs).

– Verif(vk,M, σ) checks whether e(σ1, g) = e(h, vk) · e(F(M), σ2).

This scheme is unforgeable against (adaptive) chosen-message attacks under the CDH assumption in G:

Definition 12 (Computational Diffie-Hellman assumption (CDH)). Let G be a cyclic group of prime
order p. The CDH assumption in G states that for a generator g of G and random a, b ∈ Zp, given (g, ga, gb)
it is hard to compute gab.

Waters signature (in an asymmetric structure). An asymmetric variant of Waters signatures has been pro-
posed in [6]:

– Setup(1k): in a pairing-friendly environment (p,G1, g1,G2, g2,GT , e), one chooses a random vector u =

(u0, . . . , uk)
$← Gk+1

1 , and for convenience, we denote F(M) = u0
∏k
i=1 u

Mi
i . We also need an extra

generator h1
$← G1. The global parameters param consist of all these elements (p,G1, g1,G2, g2,GT , e,u).

– SKeyGen(param) chooses a random scalar x
$← Zp, which defines the public key as vk = gx2 , and the secret

key as sk = hx1 .

– Sign(sk,M ; s) outputs, for some random s
$← Zp, σ =

(
σ1 = sk · F(M)s, σ2 = gs1, σ3 = gs2).

– Verif(vk,M, σ) checks whether e(σ1, g2) = e(h1, vk) · e(F(M), σ3), and e(σ2, g2) = e(g1, σ3).

This scheme is unforgeable against (adaptive) chosen-message attacks under the following variant of the
CDH assumption, which states that CDH is hard in G1 when one of the random scalars is also given as an
exponentiation in G2:

Definition 13 (The Advanced Computational Diffie-Hellman problem (CDH+)). In a pairing-
friendly environment (p,G1, g1,G2, g2,GT , e). The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1), for

random a, b ∈ Zp, it is hard to compute gab1 .

A.4 Our Smooth Projective Hash Functions

In this subsection, we present the languages we use in our first instantiations of OSBE and Blind Signatures.

Linear Language. In the following, we will denote Lin(ek,M) the language of the linear encryptions C of the
message M under the encryption key ek = (Y1, Y2). Clearly, for M = 1G, the language contains the linear
tuples in basis (Y1, Y2, g). The SPHF system is defined by, for ek = (Y1, Y2) and C = (c1 = Y r1

1 , c2 = Y r2
2 , c3 =

gr1+r2 ×M)

HashKG(Lin(ek,M)) = hk = (x1, x2, x3)
$← Z3

p Hash(hk, Lin(ek,M), C) = cx11 c
x2
2 (c3/M)x3

ProjKG(hk, Lin(ek,M), C) = hp = (Y x1
1 gx3 , Y x2

2 gx3) ProjHash(hp, Lin(ek,M), C, r) = hpr11 hpr22

Theorem 14. This Smooth Projective Hash Function is correct.

Proof. With the above notations:

– Hash(hk, Lin(ek,M), C) = cx11 c
x2
2 (c3/M)x3 = Y r1x1

1 Y r2x2
2 g(r1+r2)x3

– ProjHash(hp, Lin(ek,M), C, r) = hpr11 hpr22 = (Y x1
1 gx3)r1(Y x2

2 gx3)r2 = Y r1x1
1 Y r2x2

2 g(r1+r2)x3

ut

Theorem 15. This Smooth Projective Hash Function is smooth.
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Proof. Let us show that from an information theoretic point of view, v = Hash(hk,L(ek,M), C) is unpre-
dictable, even knowing hp, when C is not a correct ciphertext: C = (c1 = Y r1

1 , c2 = Y r2
2 , c3 = gr3 ×M),

for r3 6= r1 + r2. We recall that Hash(hk, Lin(ek,M), C) = Y r1x1
1 Y r2x2

2 gr3x3 and hp = (Y x1
1 gx3 , Y x2

2 gx3): If we
denote Y1 = gy1 and Y2 = gy2 , we have: log hp1

log hp2
log v

 =

 y1 0 1
0 y2 1

y1r1 y2r2 r3

 ·
x1x2
x3


The determinant of this matrix is y1y2(r3 − r1 − r2), which is non-zero if C does not belong to the language
(r3 6= r1 + r2). So v is independent from hp and C. ut

Theorem 16. This Smooth Projective Hash Function is pseudo-random under the DLin assumption (the
semantic security of the Linear encryption).

Proof. As shown above, when c encrypts M ′ 6= M , then the distributions

D1 = {Lin(ek,M), c = Eek(M ′), hp, v $← G} D2 = {Lin(ek,M), c = Eek(M ′), hp, v = Hash(hk, Lin(ek,M), c)}

are perfectly indistinguishable. Under the semantic security of the Linear encryption, Eek(M) and Eek(M ′)
are computationally indistinguishable, and so are the distributions

D0 = {Lin(ek,M), c = Eek(M), hp, v
$← G}

D1 = {Lin(ek,M), c = Eek(M ′), hp, v $← G}

and the distributions

D2 = {Lin(ek,M), c = Eek(M ′), hp, v = Hash(hk, Lin(ek,M), c)}
D3 = {Lin(ek,M), c = Eek(M), hp, v = Hash(hk, Lin(ek,M), c)}

As a consequence, D0 and D3 are computationally indistinguishable, which proves the result.

Bit Encryption Language. In our blind signature protocol, we need to “prove” that a ciphertext encrypts
a bit in exponent of a basis ui. That is the language BLin(ek, ui) = Lin(ek, 1G) ∪ Lin(ek, ui). This is thus a
simple disjunction of two SPHF :

– HashKG(BLin(ek, ui)): hk = ((x1, x2, x3), (y1, y2, y3))
$← Z6

p

– ProjKG(hk,BLin(ek, ui),W ): hp = ((Y x1
1 gx3 , Y x2

2 gx3), (Y y1
1 gy3 , Y y2

2 gy3), hp∆) where

hp∆ = cx11 c
x2
2 (c3)

x3 · cy11 c
y2
2 (c3/ui)

y3

– Hash(hk,BLin(ek, ui),W ): v = cx11 c
x2
2 c

x3
3

– ProjHash(hp,BLin(ek, ui),W,w): If W ∈ L1, v′ = hpr11,1 · hp
r2
1,2,

else (if W ∈ L2), v′ = hp∆/hp
r1
2,1 · hp

r2
2,2

The correctness, smoothness and pseudo-randomness properties of such function directly follow from those
of the SPHF on Lin(pk, 1G) and Lin(pk, ui). Each projection key is composed of 5 group elements.
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Encrypted Linear Language. We also need to consider a language ELin(ek, vk) of tuples (d1, d2, c1, c2, c3),
where (c1, c2, c3) encrypts d3 under the public key ek = (u, v), such that (d1, d2, d3) is a linear tuple in basis
(u, v, vk). This can also be expressed as c3 = α × d3, where d3 is the plaintext in (c1, c2, c3) under ek, which
means that (c1, c2, α) is a linear tuple in basis (u, v, g), and (d1, d2, d3) should be a linear tuple in basis
(u, v, vk).

More concretely, we consider words W = (d1 = ur1 , d2 = vr2 , c1 = us1 , c2 = vs2 , c3 = gs1+s2 · vkr1+r2),
with witness w = (r1, r2, s1, s2). We have α = gs1+s2 and d3 = vkr1+r2 , but they should remain secret, which
requires a specific function, and not a simple conjunction of languages:

– HashKG(ELin(ek, vk)): hk = (x1, x2, x3, x4, x5)
– ProjKG(hk,ELin(ek, vk),W ): hp = (ux1gx5 , vx2gx5 , ux3gx5 , vx4gx5)
– Hash(hk,ELin(ek, vk),W ): v = e(d1, vk)x1 · e(d2, vk)x2 · e(c1, g)x3 · e(c2, g)x4 · e(c3, g)x5

– ProjHash(hp,ELin(ek, vk),W,w): v′ = e(hp1, vk)r1 · e(hp2, vk)r2 · e(hp3, g)s1 · e(hp4, g)s2

We now study the security of this SPHF:

Theorem 17. This Smooth Projective Hash Function is correct.

Proof. With the above notations:

v = e(d1, vk)x1 · e(d2, vk)x2 · e(c1, g)x3 · e(c2, g)x4 · e(c3, g)x5)

= e(uskr1x1 , g) · e(vskr2x2 , g) · e(us1x3 , g) · e(vs2x4 , g) · e(g(sk(r1+r2)+(s1+s2))x5 , g)

= e(uskr1x1+s1x3 , g) · e(vskr2x2+s2x4 , g) · e(g(sk(r1+r2)+(s1+s2))x5 , g)

v′ = e(hp1, vk)r1 · e(hp2, vk)r2 · e(hp3, g)s1 · e(hp4, g)s2

= e(uskr1x1gskr1x5 , g) · e(vskr2x2gskr2x5 , g) · e(us1x3gs1x5 , g) · e(vs2x4gsks2x5 , g)

= e(uskr1x1+s1x3 , g) · e(vskr2x2+s2x4 , g)e(g(sk(r1+r2)+(s1+s2))x5 , g)

ut

Theorem 18. This Smooth Projective Hash Function is smooth.

Proof. Let us show that from an information theoretic point of view, v is unpredictable, even knowing hp,
when W is not in the language: W = (d1 = ur1 , d2 = vr2 , c1 = us1 , c2 = vs2 , c3 = gt · vkr1+r2), for t 6= s1 + s2.
We recall that

v = e(uskr1x1+s1x3 , g) · e(vskr2x2+s2x4 , g) · e(g(sk(r1+r2)+(s1+s2))x5 , g) = e(H, g)

for
H = uskr1x1+s1x3 · vskr2x2+s2x4 · g(sk(r1+r2)+(s1+s2))x5

and
hp = ((ux1gx5 , vx2gx5), (ux3gx5 , vx4gx5))

If we denote u = gy1 and v = gy2 , we have:
log hp1
log hp2
log hp3
log hp4
logH

 =


y1 0 0 0 1
0 y2 0 0 1
0 0 y1 0 1
0 0 0 y2 1

skr1y1 skr2y2 s1y1 s2y2 t+ sk(r1 + r2)

 ·

x1
x2
x3
x4
x5


The determinant of this matrix is (y1.y2)

2(t− (s1 + s2) + (sk(r1 + r2)− sk(r1 + r2))) = (y1.y2)
2(t− (s1 + s2)),

which is non-zero if W does not belong to the language (t 6= s1 +s2). So v is independent from hp and W . ut
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Theorem 19. This Smooth Projective Hash Function is pseudo-random under the DLin assumption (the
semantic security of the Linear encryption).

Proof. The fact that c3 really encrypts d3 that completes well (d1, d2) is hidden by the semantic security
of the linear encryption, and so under the DLin assumption. So the proof works as above, on the Linear
Language.

Combinations. For our blind signature, we want to consider, on input c = (c1, c2, c3) and bi = (bi,1, bi,2, bi,3)
for i = 1, . . . , `, the language of the (c, b1, . . . , b`) such that:

– for each i, bi ∈ BLin(ek, ui) = Lin(ek, 1G) ∪ Lin(ek, ui);

– if we denote d1 =
∏
b1,i and d2 =

∏
b2,i, then we want the plaintext in c to complete (d1, d2) into a linear

tuple in basis (u, v, vk): (d1, d2, c1, c2, c3) ∈ ELin(ek, vk).

This is a conjunction of disjunctions of simple languages: we can use the generic combination [1].

B Security of our Blind Signature

B.1 Definition

Definition 20 (Blind Signature Scheme).
A blind signature scheme is defined by three algorithms (BSSetup,BSKeyGen,BSVerif) and one interactive
protocol BSProtocol〈S,U〉:

– BSSetup(1k), generates the global parameters param of the system;

– BSKeyGen(param) generates a pair of keys (vk, sk);

– BSProtocol〈S(sk),U(vk,m)〉: this is an interactive protocol between the algorithms S(sk) and U(vk,m), for
a message m ∈ {0, 1}n. It generates a signature σ on m under vk related to sk for the user.

– BSVerif(vk,m, σ) outputs 1 if the signature σ is valid with respect to m and vk, 0 otherwise.

A blind signature scheme BS should satisfy the two following security notions: the blindness condition that
is a guarantee for the signer, and the unforgeability that is a guarantee for the signer. The blindness states
that a malicious signer should be unable to decide which of two messages m0,m1 has been signed first in
two valid4 executions with an honest user. An adversary against the unforgeability tries to generate q + 1
valid signatures after at most q complete interactions with the honest signer. These security notions can
be formalized by the security games presented on Figure 2, where the adversary keeps some internal state
between the various calls INIT, FIND and GUESS.

B.2 Security proofs

– BSSetup(1k) generates (p,G, g,GT , e) and ek = (u, v, g) ∈ G3. It then chooses at random h ∈ G, u =
(ui)i∈{0,...,`} ∈ G`+1 for the Waters function. It outputs param = (p,G, g,GT , e, ek, h,u);

– BSKeyGen(param) picks at sk = x and computes vk = gx. vk is public and sk is given to S;

– BSProtocol〈S(sk),U(vk,m)〉: U wants to get a signature on m

4 We insist on valid executions which end with a valid signature σ of the message used by U under the key vk. The signer could
of course send a wrong answer which would lead to an invalid signature. Then, it could easily distinguish a valid signature
from an invalid one, and thus the two executions. But this is a kind of denial of service, that is out of scope of this work. This
thus means that one valid execution is indistinguishable from other valid executions. This notion was formalized in [26] and
termed a posteriori blindness.
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Expbl−b
BS,S∗(k)

1. param← BSSetup(1k)
2. (vk,M0,M1)← A(FIND : param)
3. σb ← BSProtocol〈A,U(vk,Mb)〉
4. σ1−b ← BSProtocol〈A,U(vk,M1−b)〉
5. b∗ ← S∗(GUESS : σ0, σ1);
6. RETURN b∗ = b.

Blindness property

ExpufBS,U∗(k)

1. (param)← BSSetup(1k)
2. (vk, sk)← BSKeyGen(param)
3. For i = 1, . . . , qs, BSProtocol〈S(sk),A(INIT : vk)〉
4.

(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← A(GUESS : vk);

5. IF ∃i 6= j,mi = mj OR ∃i,Verif(pk,mi, σi) = 0 RETURN 0
6. ELSE RETURN 1

Unforgeability

Fig. 2. Security Games for BS

• U computes the bit-per-bit encryption of M by encrypting uMi
i in bi = Encrypt(ek, uMi

i ; (ri,1, ri,2)),
together with the encryption of vkr1+r2 in c = Encrypt(ek, vkr1+r2 ; (r′1, r

′
2)), where r1 =

∑
ri,1 and

r2 =
∑
ri,2. U thus sends

c = (us1 , vs2 , gs1+s2vkr1+r2) bi = (uri,1 , vri,2 , gri,1+ri,2uMi
i )

• On input of these ciphertexts, the algorithm S computes the corresponding SPHF, considering the
language L of valid ciphertexts on an encrypted message. This is the conjunction of several languages:
1. the one checking that each bi encrypts a bit;
2. the one checking whether the tuple composed of (d1, d2) and the plaintext d3 in c is a linear tuple

in basis (u, v, vk), where d1 =
∏
i bi,1, d2 =

∏
i bi,2, δ = u0

∏
i bi,3.

• S then computes the corresponding Hash-value v, extractsK = KDF(v), generates (σ′′1 = hxδs, σ′2 = gs)
and sends (hp, Q = σ′′1 ×K,σ′2);

• Upon receiving (hp, Q, σ′2), using its witnesses and hp, U computes the ProjHash-value v′, extracts
K ′ = KDF(v′) and unmasks σ′2 = Q/K ′. Thanks to the knowledge of r1 and r2, it can compute
σ′1 = σ′′1 × (σ′2)

−r1−r2 . Note that if v′ = v, then σ′1 = hxF(M)s, which together with σ′2 = gs is a valid
Waters signature on M . It can thereafter re-randomize the final signature σ = (σ′1 · F(M)s

′
, σ′2 · gs

′
).

– BSVerif(vk,M, σ), checks whether e(σ1, g) = e(h, vk) · e(F(M), σ2).

Proposition 21. This scheme is blind under the DLin assumption.

AdvblBS,A(k) ≤ 2× (`+ 1)× AdvindE (k).

Proof. Let us consider an adversary A against the blindness of our scheme. We build an adversary B against
the DLin assumption.

G0: In a first game G0, we run the standard protocol:

– BSSetup(1k), B generates (p,G, g,GT , e), h = gα, ek = (u, v, g) and generators ui for the Waters function.
This constitutes param;

– The adversary A generates a verification key vk and two messages M0,M1.
– A and B run twice the interactive issuing protocol, first on the message M b, and then on the message
M1−b:
• B generates and sends the bi = Encrypt(ek, u

Mb
i

i , (ri,1, ri,2)) and c = Encrypt(vkr1+r2);
• A then outputs (hp, Q, σ′2);
• B uses the witnesses and hp to compute v, and so σ′1 = (Q/KDF(v))× σ′2

−r1−r2 , which together with
σ′2 should be a valid Waters Signature on M b. It then randomizes the signature with s′ to get Σb.

The same is done a second time with M1−b to get Σ1−b.
– B publishes (Σ0, Σ1).
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– Eventually, A outputs b′.

We denote by ε the advantage of A in this game.

ε = AdvblBS,A(k) = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0]

= 2× Pr
G0

[b′ = b]− 1.

G1: In a second game G1, we modify the way B extracts the signatures Σb and Σ1−b. One can note that, since
we focus one valid executions with the signer, and due to the re-randomization of Waters signatures which
leads to random signatures, B can generates itself random signatures. Knowing α such that h = gα allows it
to compute sk = vkα. This game is perfectly indistinguishable from the previous one:

Pr
G1

[b′ = b] = Pr
G0

[b′ = b].

G2: In the third game, we replace all the ciphertexts sent by B by encryption of random group elements in
G. For proving indistinguishability with the previous game, we use the hybrid technique:

– first, we replace c in the first execution. We then do not need anymore the random coins used in the bi
– we can now replace one by one the bi by random encryptions in the first execution
– we then do the same in the second execution

We then use 2× (`+ 1) the indistinguishability of the encryption scheme:

ε ≤ 2× (`+ 1)× AdvindE (k) + 2× Pr
G2

[b′ = b]− 1.

In this last game, the two executions are thus perfectly indistinguishable, and thus PrG2 [b′ = b] = 0.5. ut

Proposition 22. This scheme is unforgeable under the CDH assumption.

AdvufBS,A(k) ≤ Θ

(
AdvCDH

G,g (k)

qs
√
k

)
Proof. Let us assume A is an adversary against the Unforgeability of the scheme. This malicious adversary
is able after qs signing queries to output at least qs + 1 valid signatures on different messages.

We now build an adversary B against the CDH assumption.

– B is first given a CDH challenge (g, gx, h) in a pairing friendly environment (p,G, g,GT , e)
– B emulates BSSetup: it publishes h from its challenge, u = (ui)i∈{0,...,`} ∈ G`+1 for the Waters function,

ek = (u = ga, v = gb) ∈ G2, and keeps secret the associated decryption key dk = (a, b) ∈ Z2
p.

– B then emulates BSKeyGen: it publishes vk = gx from the challenge as its verification key (one can note
that recovering the signing key hx is the goal of our adversary B);

– A can now interact qs times with the signer, playing the interactive protocol BSProtocol〈S,A〉
• A sends the bit-per-bit encryptions bi, and the extra ciphertext c hiding the verification key raised to

the randomness;
• Thanks to dk, B is able to extract M from the bit-per-bit ciphertexts (either the opening leads to ui

and so mi = 1, or mi = 0), and Y = vkr1+r2 from the additional ciphertext c. One can also compute
d1 =

∏
i bi,1 = ur1 = gar1 and d2 =

∏
i bi,2 = vr2 = gbr2 .

• If one of the extracted terms is not of the right form (either not a bit in the bi, or (g, vk, d
1/a
1 d

1/b
2 , Y ) is

not a Diffie-Hellman tuple, which can be checked with a pairing computation), then A has submitted
a “word” not in the appropriate language for the SPHF . Therefore through the smoothness property
of the SPHF, it is impossible from a theoretic point of view that the adversary extracts anything from
B’s answer, therefore B simply sends random elements.
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• Otherwise, one knows that d
1/a
1 d

1/b
2 = gr1+r2 and Y = vkr1+r2 .

B computes H = −2jqs + y0 +
∑
yiMi and J = z0 +

∑
ziMi, F(M) = hHgJ . If H ≡ 0 mod p, it

aborts, else σ = (vk−J/HY −1/H(F(M)d
1/a
1 d

1/b
2 )s, vk−1/Hgs). Defining t = s − x/H, we can see this is

indeed a valid signature, as we have:

σ1 = vk−J/HY −1/H(F(M)d
1/a
1 d

1/b
2 )s = vk−J/Hg−x(r1+r2)/H(hHgJgr1+r2)s

= g−xJ/Hg−x(r1+r2)/H(hHgJgr1+r2)t(hHgJgr1+r2)x/H = hx(hHgJgr1+r2)t

= sk · δt

σ2 = vk−1/Hgs = g−x/Hgs = gt

where δ = F(M)× gr1+r2 .
• B then acts honestly to send the signature through the SPHF.

After a polynomial number of queries A outputs a valid signature σ∗ on a new message M∗ with non
negligible probability.

– As before B computes H∗ = −2jqs + y0 +
∑
yiM

∗
i and J∗ = z0 +

∑
ziM

∗
i , F(M) = hH

∗
gJ
∗

– If H∗ 6≡ 0 mod p, B aborts. Otherwise σ∗ = (sk · F(M∗)s, gs) = (sk · gsJ∗ , gs) and so σ∗1/σ
∗
2
J∗ = sk. And

so B solves the CDH challenge.

The probability that all the H 6≡ 0 mod p for all the simulations, but H∗ ≡ 0 mod p in the forgery is
the (1, qs)-programmability of the Waters function. A full proof showing that it happens with probability in
Θ(AdvCDH

G,g (k)/qs
√
k) can be found in [27]. ut

C Asymmetric Instantiations

C.1 Smooth Projective Hash Function

In this subsection, we present the languages we use in our asymmetric instantiations of OSBE and blind
signatures.

Diffie Hellman Language. In the following, we will denote EG(ek,M) the language of ElGamal encryptions
C of the message M under the encryption key ek = u. Clearly, for M = 1G, the language contains the Diffie
Hellman pairs in basis (u, g1). The SPHF system is defined by, for ek = u and C = (c1 = ur, c2 = gr1 ×M)

HashKG(EG(ek,M)) = hk = (x1, x2)
$← Z2

p Hash(hk,EG(ek,M), C) = cx11 (c2/M)x2

ProjKG(hk,EG(ek,M), C) = hp = (ux1gx21 ) ProjHash(hp,EG(ek,M), C, r) = hpr

Theorem 23. This Smooth Projective Hash Function is correct.

Proof. With the above notations:

– Hash(hk,EG(ek,M), C) = cx11 (c2/M)x2 = urx1grx21
– ProjHash(hp,EG(ek,M), C, r) = hpr = (ux1gx21 )r = urx1grx21

ut

Theorem 24. This Smooth Projective Hash Function is smooth.

Proof. Let us show that from an information theoretic point of view, v = Hash(hk,L(ek,M), C) is unpre-
dictable, even knowing hp, when C is not a correct ciphertext: C = (c1 = ur, c2 = gs1 ×M), for s 6= r. We
recall that Hash(hk,EG(ek,M), C) = urx1gsx2 and hp = ux1gx21 : If we denote u = gy1 , we have:(

log hp
log v

)
=

(
y 1
yr s

)
·
(
x1
x2

)
The determinant of this matrix is y(r − s), which is non-zero if C does not belong to the language (s 6= r).
So v is independent from hp and C. ut
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Theorem 25. This Smooth Projective Hash Function is pseudo-random under the DDH assumption in G1

(the semantic security of the ElGamal encryption).

Proof. As shown above, when c encrypts M ′ 6= M , then the distributions

D1 = {EG(ek,M), c = Eek(M ′), hp, v $← G} D2 = {EG(ek,M), c = Eek(M ′), hp, v = Hash(hk, Lin(ek,M), c)}

are perfectly indistinguishable. Under the semantic security of the ElGamal encryption, Eek(M) and Eek(M ′)
are computationally indistinguishable, and so are the distributions

D0 = {EG(ek,M), c = Eek(M), hp, v
$← G}

D1 = {EG(ek,M), c = Eek(M ′), hp, v $← G}

and the distributions

D2 = {EG(ek,M), c = Eek(M ′), hp, v = Hash(hk,EG(ek,M), c)}
D3 = {EG(ek,M), c = Eek(M), hp, v = Hash(hk,EG(ek,M), c)}

As a consequence, D0 and D3 are computationally indistinguishable, which proves the result.

Bit Encryption Language. In our blind signature protocol, we need to “prove” that a ciphertext encrypts
a bit in exponent of a basis ui. That is the language BDH(ek, ui) = EG(ek, 1G) ∪ EG(ek, ui). This is thus a
simple disjunction of two SPHF :

– HashKG(BDH(ek, ui)): hk = ((x1, x2), (y1, y2))
$← Z4

p

– ProjKG(hk,BDH(ek, ui),W ): hp = (ux1gx2 , uy1gy2 , hp∆) where

hp∆ = cx11 c
x2
2 · c

y1
1 (c2/ui)

y2

– Hash(hk,BDH(ek, ui),W ): v = cx11 c
x2
2

– ProjHash(hp,BLin(ek, ui),W,w): If W ∈ L1, v′ = hpr1,
else (if W ∈ L2), v′ = hp∆/hp

r
2

The correctness, smoothness and pseudo-randomness properties of such function directly follow from those
of the SPHF on EG(pk, 1G) and EG(pk, ui). Each projection key is composed of 3 group elements.

Encrypted Diffie-Hellman Language. We also need to consider a language EDH(ek = u, vk = (vk1 = gx1 , vk2 =
gx2 )) of tuples (d1, c1, c2), where (c1, c2) encrypts d2 under the public key ek = u, such that (d1, d2) is a Diffie
Hellman pair in basis (u, vk1). This can also be expressed as c2 = α× d2, where d2 is the plaintext in (c1, c2)
under ek, which means that (c1, α) is a Diffie Hellman pair in basis (u, vk1), and (d1, d2) should be a Diffie
Hellman pair in basis (u, vk1).

More concretely, we consider words W = (d1 = ur, c1 = us, c2 = gs1 · vkr1), with witness w = (r, s). We
have α = gs1 and d2 = vkr1, but they should remain secret, which requires a specific function, and not a simple
conjunction of languages:

– HashKG(EDH(ek, vk)): hk = (x1, x2, x3)
– ProjKG(hk,EDH(ek, vk),W ): hp = (ux1gx31 , u

x2gx31 )
– Hash(hk,EDH(ek, vk),W ): v = e(d1, vk2)

x1 · e(c1, g2)x2 · e(c2, g2)x3
– ProjHash(hp,EDH(ek, vk),W,w): v′ = e(hp1, vk2)

r · e(hp2, g2)s

We now study the security of our SPHF:
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Theorem 26. This Smooth Projective Hash Function is correct.

Proof. With the above notations:

v = e(d1, vk2)
x1 · e(c1, g2)x2 · e(c2, g2)x3 = e(uxrx1 , g2) · e(usx2 , g2) · e(g(xr+s)x31 , g2)

= e(uxrx1+sx2 , g2) · e(g(xr+s)x31 , g2)

v′ = e(hp1, vk2)
r · e(hp2, g2)s = e(uxrx1gxrx31 , g2) · e(usx2gsx31 , g2)

= e(uxrx1+sx2 , g2) · e(g(xr+s)x31 , g2)

ut

Theorem 27. This Smooth Projective Hash Function is smooth.

Proof. Let us show that from an information theoretic point of view, v is unpredictable, even knowing hp,
when W is not in the language: W = (d1 = ur, c1 = us, c2 = gt1 · vkr1), for t 6= s. We recall that

v = e(uxrx1+sx2 , g2) · e(g(xr+s)x31 , g2) = e(H, g)

for

H = uxrx1+sx2 · g(xr+s)x31

and

hp = (ux1gx31 , u
x2gx31 )

If we denote u = gy1 , we have:  log hp1
log hp2
logH

 =

 y 0 1
0 y 1
xry sy t+ xr

 ·
x1x2
x3


The determinant of this matrix is y2(t− s+ (xr − xr)) = y2(t− s), which is non-zero if W does not belong
to the language (t 6= s). So v is independent from hp and W . ut

Theorem 28. This Smooth Projective Hash Function is pseudo-random under the DDH assumption (the
semantic security of the ElGamal encryption).

Proof. The fact that c2 really encrypts d2 that completes well d1 is hidden by the semantic security of the
ElGamal encryption, and so under the DDH assumption. So the proof works as above, on the ElGamal
Language.

Combinations. For our blind signature, we want to consider, on input c = (c1, c2) and bi = (bi,1, bi,2) for
i = 1, . . . , `, the language of the (c, b1, . . . , b`) such that:

– for each i, bi ∈ BDH(ek, ui) = EG(ek, 1G) ∪ EG(ek, ui);

– if we denote d1 =
∏
b1,i, then we want the plaintext in c to complete d1 into a linear tuple in basis (u, vk1):

(d1, c1, c2) ∈ EDH(ek, vk).

This is a conjunction of disjunctions of simple languages: we can use the generic combination [1].
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C.2 OSBE Scheme

Instantiation We now define our OSBE protocol, where a sender S wants to send a private message
P ∈ {0, 1}` to a recipient R in possession of a Waters signature on a message M .

– OSBESetup(1k), where k is the security parameter: it first defines an asymmetric pairing-friendly envi-

ronment (p,G1, g1,G2, g2,GT , e), the public parameters h1
$← G1 and u = (u0, . . . , uk)

$← Gk+1
1 for the

Waters signature and an encryption key ek = gy1 , for a random scalar y. All these elements constitute the
string param;

– OSBEKeyGen(param), the authority generates a pair of keys (sk = hz1, vk = gz2) for a random scalar z;
– OSBESign(sk,M) produces a signature σ = (hz1F(M)s, gs1, g

s
2);

– OSBEVerif(vk,M, σ) checks if e(σ1, g2) = e(F(M), σ3) · e(h1, vk) and if e(σ2, g2) = e(g1, σ3).
– OSBEProtocol〈S(vk,M, P ),R(vk,M, σ)〉 runs as follows:

• R chooses random r
$← Zp and sends an ElGamal encryption of σ

C = (c1 = gr1, c2 = ekr · σ1, σ2, σ3)

• S chooses random x1, x2
$← Z3

p and computes:

∗ HashKG(EG(ek, vk,M)) = hk = (x1, x2);
∗ Hash(hk;EG(ek, vk,M), C) = v = e(c1, g2)

x1 · (e(c2, g2)/(e(h1, vk) · e(F(M), σ3)))
x2 ;

∗ ProjKG(hk;EG(ek, vk,M), C) = hp = gx11 ekx2 ;
∗ Q = P ⊕ KDF(v).

• S then sends (hp, Q) to R;
• R computes v′ = e(hpr1 , g2) and P ′ = Q⊕ KDF(v′).

We only use 3 group elements in G1 and 1 in G2 for the encrypted signature, and we then send back hp, Q.
So basically we have 4 elements in G1, 1 in G2 and an `-bit string. If we consider standard representation on
asymmetric curves, this means the communication costs is approximately of the size of 3 elements on a DLin
friendly curve.

Security To summarize the security of this scheme. This instantiation nearly fits in the high-level instan-
tiation presented before. The difference reside in the part where σ2, σ3 are not committed but sent directly.
However, due to Waters randomizability, this does not leak any information.

Now, as shown for the high level instantiation, assuming the pseudorandomness of the KDF, the escrow-
free property comes from the semantic security of the ElGamal encryption (DDH in G1), the semantic security
comes from both the smoothness of the SPHF (nothing), the unforgeability of Waters signature (CDH+) and
the indistinguishability of the commitment (DDH in G1), and the semantic security w.r.t. authority comes
from the pseudo-randomness of the SPHF (DDH in G1).

C.3 Blind Signature

Let us now present our blind signature, using the above SPHF:

– BSSetup(1k), where k is the security parameter, generates a pairing-friendly system (p,G1, g1,G2, g2,GT , e)
and an ElGamal encryption key ek = u ∈ G1. It also chooses at random h1 ∈ G1 and generators u =
(ui)i∈{0,...,`} ∈ G`

1 for the Waters function. It outputs the global param = (p,G1, g1,G2, g2,GT , e, ek, h1,u);
– BSKeyGen(param) picks at random x ∈ Zp, sets sk = hx1 and computes the verification key vk = (gx1 , g

x
2 )

(note that the two elements, in G1 and G2 will be needed);
– BSProtocol〈S(sk),U(vk,m)〉 runs as follows, where U wants to get a signature on M
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• U computes the bit-per-bit encryption of M by encrypting uMi
i in bi = Encrypt(ek, uMi

i ; ri), together
with the encryption of vkr1 in c = Encrypt(ek, vkr1; s) where r =

∑
ri. U thus sends c = (us1 , gs1vk

r) and
the bi = (uri , gri1 u

Mi
i );

• On input of these ciphertexts, the algorithm S computes the corresponding SPHF , considering the
language L of valid ciphertexts. This is the conjunction of the several languages presented just before:
1. the one checking that each bi encrypts a bit: in BDH(ek, ui);
2. the second one considers (d1, c1, c2) and check if (c1, c2) encrypts d2 such that (d1, d2) is a Diffie

Hellman pair in basis (u, vk1): in EDH(ek, vk) where d1 =
∏
i bi,1, δ = u0

∏
i bi,2.

Following previous techniques this induces a projection key composed of 3`+ 2 elements in G1.
• S then computes the corresponding Hash-value v, extracts K = KDF(v) ∈ Zp, generates the blinded

signature (σ′′1 = hx1δ
s, σ′2 = (gs1, g

s
2)) and sends (hp, Q = σ′′1 × gK1 , σ′2);

• Upon receiving (hp, Q, σ′2), using its witnesses and hp, U computes the ProjHash-value v′, extracts
K ′ = KDF(v′) and unmasks σ′′1 = Q × g−K′ . Thanks to the knowledge of r, it can compute σ′1 =
σ′′1 × (σ′2,1)

−r. Note that if v′ = v, then σ′1 = hx1F(M)s, which together with σ′2 = (gs1, g
s
2) is a valid

Waters signature on M . It can thereafter re-randomize the final signature.
– BSVerif(vk,M, σ), checks whether e(σ1, g2) = e(h1, vk2) · e(F(M), σ2,2) ∧ e(σ2,1, g2) = e(g1, σ2,2).

The whole process requires only 5`+ 6 elements in G1 (2`+ 2 for the ciphertexts, 3`+ 2 for the projection
key, Q and σ′2,1) and 1 in G2 (σ′2,2), which is way more efficient than the instantiation from [6] where they
required a little more than 6`+7 group elements in G1 and 6`+5 in G2. Depending on the chosen instantiation
for the elliptic curve, elements in G2 are at least twice bigger than those in G1 (and even more for higher
embedding degree), so our improvement is quite substantial.

The security of this scheme can be proven like the symmetric one, once we have proven the security of
the SPHF. One important thing to note, is that it relies on the XDH assumption (DDH is hard in G1), but
not on the SXDH (DDH is hard in both G1 and G2) as we are used to with Groth-Sahai proofs.
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