
HAL Id: hal-00674379
https://hal.inria.fr/hal-00674379

Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Feature Models to Configure Virtual
Appliances

Clément Quinton, Romain Rouvoy, Laurence Duchien

To cite this version:
Clément Quinton, Romain Rouvoy, Laurence Duchien. Leveraging Feature Models to Configure Vir-
tual Appliances. CloudCP - 2nd International Workshop on Cloud Computing Platforms - 2012, Apr
2012, Bern, Switzerland. pp.1-6. �hal-00674379�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49916445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00674379
https://hal.archives-ouvertes.fr

Leveraging Feature Models to Configure Virtual
Appliances

Clément Quinton
Inria Lille - Nord Europe
LIFL UMR CNRS 8022

University Lille 1, France
clement.quinton@inria.fr

Romain Rouvoy
University Lille 1, France
LIFL UMR CNRS 8022
Inria Lille - Nord Europe
romain.rouvoy@lifl.fr

Laurence Duchien
Inria Lille - Nord Europe
LIFL UMR CNRS 8022

University Lille 1, France
laurence.duchien@inria.fr

ABSTRACT

Cloud computing is a major trend in distributed comput-
ing environments. Software virtualization technologies allow
cloud Infrastructure-as-a-Service (IaaS) providers to instan-
tiate and run a large number of virtual appliances. However,
one of the major challenges is to reduce the disk space foot-
print of such virtual appliances to improve their storage and
transfer across cloud servers. In this paper, we propose to
use a Software Product Line (SPL) approach and describe
the virtual appliance as a set of common and variable ele-
ments modeled by means of Feature Model (FM). We de-
scribe a solution to reverse engineer a FM from a virtual
appliance and we show how we take advantage of the SPL

configuration mechanisms to significantly reduce the size of
a virtual appliance.

1. INTRODUCTION
Cloud computing has emerged as a major trend in dis-

tributed computing for ”enabling convenient, on–demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction”
[11]. One key technology to enable such on-demand flexi-
bility consists in applying software virtualization [4]. Com-
monly adopted by cloud Infrastructure-as-a-Service (IaaS)
providers, virtualization technologies provide many bene-
fits such as resource isolation, security and flexibility. IaaS
providers can dynamically instantiate and host virtual appli-
ances on physical machines depending on the users require-
ments. A virtual appliance is a software image containing
a software stack usually composed of an Operating System
(OS), libraries, applications servers, and applications. This
software image is designed to run on virtual machine plat-
forms such as Xen hypervisors (e.g., Amazon EC21).

Nevertheless, the success of virtualization has lead to the

1http://aws.amazon.com/ec2/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudCP’12 April 10 2012, Bern, Switzerland.
Copyright 2012 ACM 978-1-4503-1161-8 ...$10.00.

deployment of a huge number of pre-configured virtual ap-
pliances (e.g., Amazon EC2 has 6521 public virtual appli-
ances [8], which makes the choice difficult and leads cus-
tomer to configure their own appliance, thus increasing the
number of custom appliances). IaaS providers today face
many problems such as virtual appliances storage, low-la-
tency retrieval of virtual appliances and slow transfer of vir-
tual appliances data across cloud servers. Current researches
show that reducing the amount of virtual appliances data to
store and transfer (e.g., using virtual appliance deduplica-
tion) is one key factor to improve the performance of cloud
management systems. In addition to deduplication [8, 13],
our contribution provides tools to cope with all the above
issues when configuring the virtual appliance.

One way to handle these issues is to use a Software Product
Line (SPL) approach. SPL engineering consists in the de-
scription, management and implementation of the common-
alities and variabilities existing among the members of the
same family of software products [5, 14]. A well-known ap-
proach to variability modeling is by means of Feature Models
(FM) introduced as part of Feature Oriented Domain Anal-
ysis (FODA) [9] back in 1990. We introduce in this paper a
tool–supported approach for reverse engineering a FM from
a package based OS distribution (e.g., Debian, Ubuntu), as-
suming that the package dependency language can be con-
sidered as a variability language [7]. The key challenge in
this task is the construction of a FM representing the OS

in order to configure it to fit exactly the user requirements
and reduce its disk space footprint. For example, packages
such as eclipse-platform or junit are useless for an applica-
tion server deployed in production, and not selecting them
in the configuration process reduces the disk space footprint
of the virtual appliance. Such an approach can be extended
to the whole software stack and provides a way to configure
a PaaS à la carte (e.g., libraries and application servers).

The paper is structured as follows. In Sec. 2 we describe
the Debian packages format and the associated metadata
and we give an overview of FD and SPL techniques. We
then describe in Sec. 3 how such techniques can be applied
to reverse engineer a FM and configure a virtual appliance
in order to reduce its disk space footprint. Sec. 4 evaluates
the benefits using our approach compared to a manually
configured virtual appliance. Related work are studied in
Sec. 5 while Sec. 6 concludes the paper.

2. BACKGROUND
This section gives a brief overview of the package meta-

data that can be retrieved from package repositories and

introduces the main concepts of state-of-the-art SPL ap-
proaches.

2.1 Packages Metadata Overview
Our solution focuses on Free and Open Source Software

(FOSS) distributions (e.g., Debian, Suse, Red Hat). In
FOSS distributions, a package is composed of a component
(that contains executable scripts, documentation, etc.), a
set of files used to configure the package and metadata,
which describe its attributes (e.g., package size) and the
inter-package dependencies. For the sake of simplicity, we
focus here on the DEB2 format as used in the Debian dis-
tribution but this solution can also be applied on RPM3

packages. Fig. 1 depicts an excerpt of the tomcat6 package
metadata:

Package: tomcat6
Priority: optional
Section: web
Installed-Size: 308
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Java Maintainers
Architecture: all
Version: 6.0.32-5ubuntu1
Depends: tomcat6-common (>= 6.0.32-5ubuntu1), ucf,
adduser, debconf (>= 0.5) | debconf-2.0
Recommends: authbind
Suggests: tomcat6-docs (>= 6.0.32-5ubuntu1), tomcat6-
admin (>= 6.0.32-5ubuntu1)...
Size: 30412

Figure 1: Excerpt of the tomcat6 package metadata

Such information can be retrieved using commands like
apt-cache show "<package_name>" where <package_name>
refers to the package name (e.g., tomcat6). This gives us
information like the name, the priority, the size and the
version of the package. The latter is very important when
specifying relationship between packages. Indeed, the above
example shows that the tomcat6 package can be installed
only if the tomcat6-common package in a version at least equal
to 6.0.32-5ubuntu1 is installed too (see Depends relationship).
These relationships are divided into:

• Depends. For a package P1 to work properly, a package
P2 requires to be installed. In this case we say that
P1 depends on P2. P1 Pre-Depends P2 means that the
installation of P2 has to be completed before starting
P1 one.

• Suggests. The suggested packages of a package P1 are
related to P1 and usually enhance its usefulness. The
installation of these packages is optional. Recommends

has a similar meaning than Suggests. It is strongly rec-
ommended but still optional to install packages listed
under Recommends dependency.

• Conflicts. A package P1 cannot be installed if a pack-
age P2 is already installed. P2 has to be uninstalled

2http://www.debian.org/doc/debian-policy/
ch-binary.html
3http://rpm.org/

in order to resolve the conflict and allow P1 to be in-
stalled. If a package P1 Breaks a package P2, it will
be impossible to unpack P1 unless P2 is unconfigured
first. Both relationships are not necessarily reciprocal.

• Replaces. This relationship means that a package P1
should overwrite files in package P2, or completely re-
place package P2.

Notice that for a given package, there are as many de-
scriptions as there are versions (e.g., for the tomcat6 package,
you can find such descriptions for versions 6.0.32-5ubuntu1

or 6.0.32-5ubuntu1.1).

2.2 SPL and Feature Modeling
SPL engineering aims at generating specific products from

the requirements expressed by customers by composing a
set of complementary features. Therefore, each product of
the SPL shares commonalities with other products from the
same SPL and owns a variable part that makes it specific.
FMs are used to specify the features of a SPL (thus describ-
ing commonalities and variabilities of a product family) and
their valid combinations.

Processor RAID Card HD Bay 1

Mac Pro
Server

2.4 GHz 2.8 GHz

HD Bay 2 ...

 RAID Card ⟹ HD Bay 2

optional

mandatory

alternative
(xor)

or

Legend

... 1 TB 2 TB ...

Figure 2: Excerpt of the computer feature model

A Feature Diagram (FD) (see Fig. 2 that depicts an ex-
cerpt FM of a Mac Pro Server consists of a hierarchy of
features (typically a tree), which may be mandatory (com-
monality) or optional (variability) and may form Xor or
Or -groups. Constraints (e.g., implies or excludes) can also
be specified using propositional logic to express inter-feature
dependencies. In the above example, the processor (as well
as the memory), which can be either 2.4 GHz or 2.8 GHz, is a
mandatory feature as the computer cannot operate without
it. Configuring the Mac Pro Server to have a RAID card im-
plies such a computer to own a second hard drive (HD Bay

2). Such a relation is described as a constraint between fea-
tures and is associated to the FD. We consider that a FM

consists of a FD and the associated set of constraints.
Every feature can be realized by one or more assets (e.g.,

aspect, component, model, piece of code, documentation).
Assets of different features are combined to obtain a soft-
ware product. In this context, features can be seen as a way
of configuring a software product. In the remainder of this
paper, we consider that assets are distribution packages and
the product derived from the SPL is a configuration (i.e.,
a combination of all selected packages). By means of con-
straints, we assume that the resulting configuration is fully
functional.

tomcat6 ucf

Ubuntu 11.10

tomcat6

6.0.32-5

ubuntu1

debconf debconf-2.0

(tomcat6 6.0.32-5ubuntu1 ⟹ (debconf 1.5.20 ⋀ ¬(debconf-2.0))

⋁ (debconf-2.0 ⋀ ¬(debconf 1.5.20)))

⋀ (tomcat6 6.0.32-5ubuntu1 ⟹ (ucf))

⋀ (tomcat6 6.0.32-5ubuntu1 ⟹ (adduser)) ...

⋀ (useAuthbind ⟹ (authbind))

⋀ (useTomcat6-admin ⟹ (tomcat6-admin6 6.0.32-1))...

tomcat6

6.0.32-5

ubuntu1.1

debconf

1.5.40ubuntu1

debconf

1.5.20
...

...

useTomcat6-

docs
useAuthbind

useTomcat6-

admin
...

tomcat6-docs
tomcat6-

admin
authbind

tomcat6-

admin

6.0.35-1

tomcat6-

admin

6.0.28-9
...

Figure 3: Excerpt of the extracted tomcat6 FM

3. VIRTUAL APPLIANCE A LA CARTE
In this section, we propose a mapping from package de-

pendencies language to FM and we explain how we used it
as an input to reverse engineer a FM from a package descrip-
tion. We then show how such a procedure can be combined
with existing FM algorithms to build the FM of a Linux
distribution.

3.1 Reflecting Software Packages as Features
To enable the FM reverse engineering for a package-based

distribution, we loop into the package repository and extract
the description for each package from its metadata, as de-
scribed in Sec. 2.1. We propose several rules to reason on
these metadata: (i) the name given by the Package attribute
is the name of the package we want to reverse engineer in the
FM and is mapped into a feature, (ii) the kind of relation-
ship between a parent feature and its child features is spec-
ified by their priority level (e.g., optional and mandatory for
authbind and ucf, respectively) and (iii), each package whose
name is listed behind Depends, Pre-Depends, Suggests, Recom-
mends, Replaces, Conflicts or Breaks attribute is mapped into
a feature. For a given package, merging version FM together
yield the complete FM of the package. Furthermore, con-
sidering two packages P1 et P2, we propose the following
mapping (cf. Table 1) from package dependencies language
relationships to propositional formula:

Dependencies Language Propositional Formula
P1 Depends P2

P1 ⇒ P2
P1 Pre-Depends P2
P1 Conflicts P2

P1 ⇒ (¬P2)
P1 Breaks P2

Table 1: Mapping package dependencies to feature

constraints

We consider Depends and Pre-Depends equivalent in terms
of propositional formula (the same applies to Conflicts and
Breaks), even if there is a semantic difference between them,
according that FM does not support feature ordering. These
formula are then used as the set of constraints associated
to the FD. Suggests and Recommends relationships are not
mapped into propositional formula but are used to extract
information that describes the variability of the package.
For example, the tomcat6 package recommends and suggests

authbind, tomcat6-docs (>= 6.0.32-5ubuntu1.1) or tomcat6-

admin (>= 6.0.32-5ubuntu1.1) to be installed. Such packages
are considered as optional features since it is not mandatory
to install them for tomcat6 to work properly.

After extracting information from package metadata, our
tool provides mechanisms to generate FM representations
for several FM languages (e.g., Familiar [2], S.P.L.O.T.[12])
to manipulate and reason about FMs. Fig. 3 depicts an
excerpt of the extracted FM of tomcat6 based on metadata
described in Fig. 1. tomcat6-docs (>= 6.0.32-5ubuntu1), au-
thbind and tomcat6-admin (>= 6.0.32-5ubuntu1) are recom-
mended or suggested packages (i.e., features according to
our proposed mapping) while ucf and adduser are required
packages as specified by the FM constraints.

3.2 Reflecting Configurations as Feature Mod-
els

Once every FM is extracted from package metadata, we
need to merge them together in order to yield an exhaus-
tive FM of the distribution. We rely on Familiar (FeA-
ture Model scrIpt Language for manIpulation and Automatic
Reasoning) for merging extracted FMs. Familiar is a Do-
main Specific Language (DSL) dedicated to the management
of FMs that supports manipulating and reasoning about
FMs. The main reason we used Familiar is that it pro-
vides dedicated operations to manipulate FMs and a merge
operator [1] in particular. Package FM are given as input to
the Familiar merge operator to produce the merged FM.

Standard

Important

tomcat6
tomcat6-
common

ucf

adduser

authbind

openssl

Required

Optional

Extra

...

direct dependency

indirect dependency

core configuration

Legend

merged feature

Figure 4: Excerpt of the tomcat6 packages merged

with the minimal configuration

In order to get the minimal disk space footprint for the
virtual appliance we need to merge as little packages as pos-
sible. In the case of FOSS distribution, such as the De-
bian one, package metadata provide information about the
priority given to a package by the distribution maintainers
(Required, Important, Standard, Optional, Extra). Consid-
ering that Required packages are necessary for the proper
operation of the system and Important packages should be
found on any Unix-like system4, we set the associated fea-
tures as mandatory. In consequence, we consider them to
be part of the common part of the SPL and we define the
set of Required and Important packages (i.e., the merge of
corresponding features) as the core valid configuration, as
depicted in Fig. 4. Other kind of packages (i.e., Standard,
Optional and Extra) introduce variability in the SPL and al-
low the distribution to be configured à la carte. When such
a package (e.g., tomcat6) is added on top of the core con-
figuration, features (i.e., packages) that are in the Depends

and Pre-Depends relationships of this package and that are
Required or Important (e.g., ucf or adduser) are merged with
the ones already installed in the core configuration.

4. PRELIMINARY VALIDATION

4.1 Implementation
We developed a prototype implementation script that loops

into the Ubuntu package repository5 and parses more than
33, 000 package metadata. Parsed information can be used
to sort packages by priority level, estimate the disk space
footprint of the core configuration and foresee the footprint

4http://www.debian.org/doc/manuals/debian-faq/
ch-pkg_basics.html
5http://packages.ubuntu.com/oneiric/allpackages

of a package that is going to be installed. Once package
metadata retrieved, our tool uses a mapping procedure de-
veloped in Java to generate the package FM into several
target languages such as Familiar or S.P.L.O.T..

4.2 Estimation
By exploiting the extracted information, we can estimate

the disk space footprint of a core configuration (as described
in Sec. 3.2). Table 2 reports on the number of packages
available (in a Ubuntu distribution) for each priority level
and the estimated disk space footprint.

Priority Level Footprint (MB) Number of Packages
Extra 33, 614 8, 140

Optional 63, 658 24, 947
Standard 86 106
Important 45 53
Required 88 81

Table 2: Size & number of packages in the Ubuntu

repository

We used the Installed-Size metadata attribute to com-
pute the estimated disk space footprint. This size, mea-
sured in KB, gives only an estimate of the total amount of
disk space required to install the named package. Then, we
compared the disk space footprint of two virtual appliances
based on Ubuntu 11.10 oneiric Desktop and Server edition re-
spectively, with a Debian minimal install and the Ubuntu core

configuration automatically generated from the FM built by
our tool (Fig. 5).

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Ubuntu Desktop Ubuntu Server Debian minimal Ubuntu core

F
o
o
tp
ri
n
t
(G
B
)

Required Important Standard OpAonal Extra

Figure 5: Estimated footprint of different configura-

tions

All three Ubuntu configurations share a common part
(i.e., the core configuration) that has a disk space footprint
of about 132MB, that represents the footprint of Required

packages (88MB) added to the footprint of Important pack-
ages (44MB). We define this set of packages as the base
configuration for our virtual appliance. We thus avoid the
configuration of a lot of Standard, Optional and Extra pack-
ages that can be found in the Desktop and Server edition, as

reported in Table 3. Such a configuration is about 89% and
73% lighter than Desktop and Server editions, respectively.

Footprint & (Nb packages)
Priority Level Desktop Edition Server Edition

Extra 22.6 MB (60) 1.7 (5)
Optional 1, 058.7 MB (744) 290.1 (75)
Standard 76.4 MB (105) 76.3 (104)
Important 44 MB (53) 44 (53)
Required 87.7 MB (81) 87.7 (81)

Table 3: Size & number of packages for the Ubuntu

Desktop and Server editions

On top of the Ubuntu core virtual appliance, we then added
the tomcat6 package to the core configuration in order to
provide a web application server (cf. Fig. 6, Ubuntu Tomcat).
Installing a package that is not in the core configuration
(e.g., tomcat6 whose level is optional) requires the instal-
lation of packages that are in the Depends and Pre-Depends

relationships of this package and that are not Required or
Important (in this case they are part of the core configu-
ration and are already installed), e.g., tomcat6 depends on
openssl et tomcat6-common that are standard and optional,
respectively.

0

0,05

0,1

0,15

0,2

0,25

0,3

Ubuntu Tomcat

F
o
o
tp
ri
n
t
(G
B
)

Extra (Tomcat6)

Op:onal (Tomcat6)

Standard (Tomcat6)

Important

Required

Figure 6: Disk space footprint of a configured virtual

appliance providing the Tomcat 6 application server

The whole tomcat6 package has a disk space footprint of
about 160MB that is divided into 103MB, 6Mb and 51MB
for optional, standard and {important + required} packages
respectively, and the global Ubuntu Tomcat footprint is esti-
mated to 235MB. The tomcat6 package appears to be quite
heavy but looking in depth, tomcat6 depends on the openjdk-

6-jre-headless package (minimal OpenJDK Java runtime)
that is about 100MB and that is shared with all Java-based
application (e.g., Eclipse, whose total footprint – without
required and important packages – is estimated at about
424MB). Besides, a recent work [17] showed that crosscut-
ting features can significantly influence the footprint of many
other features (i.e., several packages can share dependencies
to the same package that only has to be installed once to

resolve all dependencies, thus reducing the total footprint).
Such a configuration can be seen as a way to configure a
PaaS à la carte and can easily be extended to other func-
tionalities (e.g., adding a database server such as MySQL to
provide database support).

5. RELATED WORK
Reverse Engineering FM. The tool described in this

paper aims at reverse engineering a FM from the Debian
package repository. She et al. [16] also propose to reverse
engineering a FM, but for the Linux kernel. Using heuris-
tics with feature names, feature description and feature de-
pendencies as input data, they identify parent feature candi-
dates of each feature to retrieve the whole feature diagram.
Their procedure do not detect Or-groups. Our approach
uses one source of information (package metadata) to build
the FM of a given package. In [10], Mancinelli et al. pro-
pose a tool, Ceve, to extract package metadata information.
They do some analysis on these data to detect errors and
inconsistencies to help the distribution editors, on the server
side, to maintain the package base. We also use a tool to ex-
tract package metadata information, but while we just need
to loop into the repository and use package names as argu-
ments, Ceve needs the concrete .deb or .rpm file to work
properly.

SPL & packages. Previous work has been done to as-
sociate package dependencies and SPL. In [7], they suggest
that Debian dependency language can be considered as a
variability language and propose a mapping from this lan-
guage to propositional formulas. While we use the reverse
engineered FM to configure a virtual appliance, they show
how this mapping can be used do some analysis operations
(e.g., detection of inconsistencies). However, the automatic
extraction of FM from a Debian repository is not imple-
mented. Di Cosmo et al. [6] propose using Debian dependen-
cies management tools to analyse FM. While our approach
aims at describing packages dependencies as FM, they go
the opposite way and describe feature models using Debian
packages dependencies.

SPL & Linux Kernel. Several interesting works have
dealt with issues related to SPL and the Linux OS, but fo-
cused on the Linux kernel. In [18], the authors explain that
the Linux kernel achieves some of the goals that the SPL

guidelines also aims at and thus show that it can be consid-
ered as a SPL. She et al. [15] extract a variability model from
the Linux kernel code base (Kconfig) and propose a mapping
from Kconfig concepts to FM ones. A similar work has been
done in [3] where they also propose a mapping from Kconfig
concepts and Component Description Language (CDL) con-
cepts to FM ones. Sincero et al. [19] go the way around by
proposing a mapping from feature relations to Linux kernel
configurator language.

6. CONCLUSION AND PERSPECTIVES
In this paper, we have presented a tool-supported ap-

proach for reverse engineering a Feature Model (FM) from a
package based OS distribution (e.g., Ubuntu), considered as
the base of a virtual appliance. For every package in the dis-
tribution repository, we extract the corresponding package
FM, taking package metadata information as input sources.
In this purpose, we propose a mapping from package depen-
dencies to propositional formula. Once each package FM

extracted, we are able to yield the complete FM (i.e., the
distribution FM) by reusing dedicated tools developed by
the SPL community.

Our approach, based on SPL engineering, faces the grow-
ing challenge of reducing the disk space footprint of virtual
appliances. Indeed, IaaS providers have to manage a huge
amount of VMs and deal with many problems such as VM
images storage or low-latency transfer of these VM images.
By configuring the OS of the virtual appliance using SPL

approach, we provide support for configuring a VM as light
as possible. The preliminary result of our experimentation
shows that our approach reduces at least 73% the size of the
virtual appliance by only configuring the embedded OS to
fit the user requirements.

For future work, we think that our approach can be ex-
tended to face the challenge of package version conflicts reso-
lution and package installation ordering. Indeed, our config-
uration tool provides a configuration that is valid regarding
SPL engineering but that needs more accurate information
to work properly. For a given package and its set of con-
straints, we need to know the correct version of a package
to be used and the installation order, what is not supported
with SPL mechanisms. Although we focus on the OS level
in this paper, we advocate that to maximize the benefits
and obtain the lighter footprint for the VM such a config-
uration has to be applied on the whole software stack (i.e.,
OS, database, application servers and applications).

Acknowledgments

A special thanks to Aurélien Bourdon and his development
skills. This work is supported by Ministry of Higher Edu-
cation and Research, Nord–Pas de Calais Regional Council
and FEDER through the Contrat de Projets Etat Region
Campus Intelligence Ambiante (CPER CIA) 2007-2013.

7. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France.

Composing Feature Models. In 2nd International
Conference on Software Language Engineering
(SLE’09), LNCS, page 20. Springer, Oct. 2009.

[2] M. Acher, P. Collet, P. Lahire, and R. France. A
Domain-Specific Language for Managing Feature
Models. In Symposium on Applied Computing (SAC).
Programming Languages Track, March 2011.

[3] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability Modeling in the Real: A
Perspective from the Operating Systems Domain. In
ASE, pages 73–82. ACM, 2010.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering
Computing as the 5th Utility. Future Gener. Comput.
Syst., 25:599–616, June 2009.

[5] P. Clements and L. M. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[6] R. Di Cosmo and S. Zacchiroli. Feature Diagrams as
Package Dependencies. In Proceedings of the 14th
international conference on Software product lines:
going beyond, SPLC’10, pages 476–480, Berlin,
Heidelberg, 2010. Springer-Verlag.

[7] J. Galindo, D. Benavides, and S. Segura. Debian
Packages Repositories as Software Product Line
Models. Towards Automated Analysis. In Proceeding
of the First International Workshop on Automated
Configuration and Tailoring of Applications
(ACOTA), 2010.

[8] K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen,
and H. Lei. An Empirical Analysis of Similarity in
Virtual Machine Images. In Middleware Industry
Track. ACM, 2011.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) - Feasibility Study. Technical
report, The Software Engineering Institute, 1990.

[10] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
Complexity of Large Free and Open Source
Package-Based Software Distributions. In Proceedings
of the 21st IEEE/ACM International Conference on
Automated Software Engineering, pages 199–208,
Washington, DC, USA, 2006. IEEE Computer Society.

[11] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical report, National Institute of
Standards and Technology, 2009.

[12] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.:
Software Product Lines Online Tools. In Proceedings
of the 24th ACM SIGPLAN Conference Companion
on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 761–762, New
York, NY, USA, 2009. ACM.

[13] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and
J. C. S. Lui. Live Deduplication Storage of Virtual
Machine Images in an Open-Source Cloud. In
Middleware, volume 7049 of Lecture Notes in
Computer Science, pages 81–100. Springer, 2011.

[14] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[15] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. The Variability Model of The Linux
Kernel. In VaMoS, volume 37 of ICB-Research Report,
pages 45–51. Universität Duisburg-Essen, 2010.

[16] S. She, R. Lotufo, T. Berger, A. Wa֒sowski, and
K. Czarnecki. Reverse Engineering Feature Models. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 461–470, New
York, NY, USA, 2011. ACM.

[17] N. Siegmund, M. Rosenmüller, C. Kästner, P. G.
Giarrusso, S. Apel, and S. S. Kolesnikov. Scalable
Prediction of Non-functional Properties in Software
Product Lines. In SPLC, pages 160–169. IEEE, 2011.

[18] J. Sincero, H. Schirmeier, W. Schröder-Preikschat,
and O. Spinczyk. Is The Linux Kernel a Software
Product Line? In Proceedings of the International
Workshop on Open Source Software and Product Lines
(SPLC-OSSPL 2007), 2007.

[19] J. Sincero and W. Schröder-Preikschat. The Linux
Kernel Configurator as a Feature Modeling Tool. In
SPLC (2), pages 257–260. Lero Int. Science Centre,
University of Limerick, Ireland, 2008.

