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A reduced basis method is introduced to deal with a stochastic problem in a numerical dosimetry application in which the field 

solutions are computed using an iterative solver. More precisely, the computations already performed are used to build an initial guess 

for the iterative solver. It is shown that this approach significantly reduces the computational cost. 

 
Index Terms—Finite-element methods, numerical analysis, dosimetry.  

 

I. INTRODUCTION 

he lack of knowledge on the electric parameters of tissues 

raises an issue in computational electromagnetic 

applications such as numerical dosimetry [1]. The Stochastic 

Collocation Method (SCM) is an “attractive” technique to deal 

with this kind of problem because existing deterministic 

solvers can be readily applied like in the Monte Carlo 

sampling [2]. We use the SCM coupled with a Smolyak 

Adaptive Algorithm (SAA) [3] which enables to build the 

solution gradually by an adaptive choice for the realizations of 

the input random parameters (these realizations will be called 

the “collocation points”). Every step of the SAA involves 

several collocation points, and each of them requires a 

deterministic computation that can be numerically expensive 

in realistic applications. When the deterministic computations 

are performed sequentially using an iterative solver, the 

computations already performed could be used to reduce the 

computational cost. The authors of [4] proposed to choose as 

the initial guess for the iterative solver the previous computed 

solution for which the collocation point is “close” to the next 

considered point. Here, we propose to compute an initial guess 

with the Reduced Basis Method (RBM); this practical aspect 

is not studied in the RBM papers [5,6]. “Similar” ideas have 

already been used in a transient implicit time integration 

process [7] but their approach was not dedicated to systems 

with varying parameters. Moreover, we couple the RBM with 

an A Posteriori Error Indicator (APEI) to choose the next 

collocation point. 

First we review some aspects of the RBM; for 

complementary details see also [5]. Then, numerical 

experiments on a wave equation problem show that the 

computational cost of the solver can be significantly reduced. 

Finally, we point out some limitations due to the nature of the 

SAA. 

II. REDUCED BASIS METHOD  

A. Finite element approximation 

We are interested in solving the time-harmonic Maxwell 

equations in a 3D domain      
 
   , where the    are non-

overlapping subdomains. Each subdomain    is characterized 

by a constant electric parameter         
       , where    

denotes the vacuum permittivity,   the angular frequency,   
  

the relative permittivity and    the conductivity of the 

subdomain   . 

In the stochastic context, the parameters   
  and    are 

considered as independent random variables. For a given 

realization of these random variables, the weak formulation to 

compute the electric field      on a conforming Finite Element 

(FE) space    can be written: 
 

                                                         , (1) 
 
 

with                                           
               

 
   ,  

                
 
                    ,  

                
  

             for        , 

and                 
         

   . 
 

   denotes the curl operator,    the vacuum permeability,     
the electric current source, and BT the boundary term. 

The solution of (1) leads to a large sparse linear system: 
 

              
 
            , (2) 

 

where    and   denote the matrix representation of the 

sesquilinear forms    and semilinear form   in the standard 

basis of   , denoted here by        
           . 

Since they do not depend on   , we can pre-assemble in an 

offline procedure the corresponding values: 
 

     
         

       
     for       to    and     to  , 

          
     for     to  . 

 

Thus the matrices           and F do not require any 

calculation when we change the values of   . 

T 
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In part III, a 3D dosimetry problem with a human head that 

involves several million unknowns is studied. Consequently 

the solution of the linear system (2) is computed using an 

iterative solver. In order to make a smart choice of its initial 

guess, we propose to build a Reduced Basis from the 

computed solutions obtained with the previous values of   . 

B. Reduced basis approximation 

Suppose that the problem (1) has been solved for M different 

values of the parameters   . In the reduced basis formulation, 

the local FE space    in problem (1) is substituted by a space 

of functions       spanned by the M known solutions. The 

reduced basis formulation is then: 
 

                                               . (3) 
 

For the purpose of well-conditioned systems, a modified 

Gram-Schmidt process depending on the tolerance   for the 

residual norm in the iterative solver is used to obtain an 

orthonormal basis                of    with    . Usually, 

the space    has a much smaller dimension than the 

dimension of          . 
Then, the solution of (3) leads to a linear system  
 

              
 
              , (4) 

 

where    and    denote the matrix representation of the 

sesquilinear forms    and semilinear form   in the basis          

              . This “small” system is solved by Gaussian 

elimination. 

In order to reduce the number of iterations for solving 

problem (1), we choose as the initial guess the solution to   

problem (3). Its expression in    is given by the vector 

        where        is the solution to the linear system (4) 

and   is the matrix       whose column    contains the 

components of        in the FE basis        
           . 

It is advantageous in terms of computational cost to 

calculate the matrices    and the vector    by using the 

relations          ,         ,        , where     is 

the conjugate transpose of  . Each addition of an element in 

the reduced basis only requires the calculation of one new line 

and one new column for    and one new scalar for   . Note 

that once the matrices   ,          and the vector    are 

computed, the cost to build the matrix              
 
    

and to solve the linear system (4) becomes independent of n (it 

only depends on   and  ).  

C. A posteriori error indicator APEI 

Every step of the SAA involves a set of collocation points   

that have to be calculated. An APEI is introduced to order the 

set   as usually done in the RBM [6]. Problem (4) is first 

solved for the different values of    corresponding to the 

collocation points belonging to  . An error indicator is then 

defined by using the residual norm of the linear system (2): 
 

                                , (5) 
 

with                    
 
   , and     is the euclidian 

norm. In a similar way to the construction of (4), we pre-

compute in an offline procedure the quantities related to this 

residual: 
 

    
 
 
 

    
                                      

    
 
 
 

                              . 
 

Then, we choose                       as the next 

collocation point for which system (2) has to be solved. This 

approach is described in Algorithm I for l steps of the SAA. 

 
ALGORITHM I 

CONSTRUCTION OF THE REDUCED BASIS AND USE OF THE APEI  

   Note that the first step of the SAA generates a single collocation point    

     the first step of the SAA.  

solve           with the iterative solver initialized by 0. 

   
 

   
  

for           

              

end 

         
    

for          
   the ith step of SAA 

    while     

        for       

                                 
 
         

                                     
        end 

                            
                  
        solve           with the iterative solver initialized by       

  . 
           the modified Gram-Schmidt process    

        if          

                 

            for              

                                       

            end 

               
  

    
 

            for           

                compute one new line and one new column in   . 

            end 

            compute one new scalar in   . 

                  
        end 

    end 

end 

D. RBM cost 

The computational cost is evaluated by the number of 

Arithmetic Operations (AO). Considering a Reduced Basis of 

dimension  , the computational cost to obtain the initial guess 

        concerns the building of the linear system (4) that 

depends in one hand on the previous solutions expressed in the 

FE basis of dimension n and in the other hand on the solving 

of this system of dimension    . Without using the APEI, 

the cost      can be estimated as follows: 
 

                          , (6) 
 

where   is the maximum non-zero elements in any line of the 

matrices          . 

Using the APEI, the computational cost to determine     

grows with the evaluation of the residual (5) for all collocation 

points belonging to  . Considering a set   of   points, the cost 

      can be estimated as follows: 
 

                                     
                                                                  
                                        . 

 

(7) 
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Furthermore, the cost in solving (2) with the iterative solver 

initialized by 0 depends on the number of iterations made by 

the iterative solver. One have to keep in mind that one 

iteration to solve a problem of dimension n costs     [8,9], 

where   is constant that depends mostly on the 

preconditioning. In the application proposed in part III, we 

focus our attention in the number of iterations saved by the  

RBM with and without the APEI. 

III.   APPLICATION TO A DOSIMETRY PROBLEM  

The dosimetry problem studied in this paper concerns the 

exposition of the Visible Human head to the electromagnetic 

radiation of a mobile phone as described in [10]. The mobile 

phone is formed by a monopole antenna and a chassis 

embedded in plastic, with the excitation point at the base of 

the antenna. The model of the Visible Human head is 

constituted of four biological tissues: the brain, the cerebro 

spinal fluid, the skull and the skin. 

As introduced in Section II-A, the problem is solved using 

the FE method applied to the time-harmonic Maxwell 

equation. The mesh for the problem considered here is 

illustrated in Fig. 1. Using the lowest order edge elements in 

the discretization, the numerical problem involves 1.9 million 

unknowns. For this problem, the solution of (2) is computed 

using the Conjugate Orthogonal Conjugate Gradient (COCG) 

[8] with a potential projection preconditioning technique [9]. 

The COCG is stopped when the residual norm converges to 

the desired tolerance       . We do not focus our attention 

to evaluate the total numerical error (the error owing the 

numerical model and the iterative solver). 

 
Fig. 1. Mesh of the Visible Human head with the mobile phone. 

 

The quantity of interest in electromagnetic dosimetry is the 

    that measures the quantity of electromagnetic power 

absorbed by 1 kg of tissue: 

    
 

 

     

 
        

 

(8) 

 

where     is the amplitude of the electric field and   the 

volumic mass in the considered tissue. 

We consider that the relative permittivity and conductivity 

of the 4 tissues are random variables with uniform laws:  
 

  
      

 
   

   
 
   

               
      

         . 
 

More precisely, uniform laws have been chosen with a mean 

value equal to the value referred in the well-known Gabriel 

database [11] and with a range of variation of      around 

the mean value. 

To test the efficiency of the RBM, 4 strategies to choose the 

initial guess in the COCG are tested: 

  (i)   the zero vector, 

  (ii) the nearest previous solution following a distance 

which is defined in function of the input parameters as 

in [4]: 

             
   

 
 
   

 
 
  

   
 
   

   
 
   

  

 

   

  
   

    
   

     
      

   

 

   

       

where    ,     are two realizations of   ,     and      

respectively denote the minimum and maximum values of 

the variable  . 

  (iii)  the reduced basis approximation without using APEI, 

  (iv)  the reduced basis approximation by using APEI. 

Strategy (ii) is based on the search of the minimum distance 

for the input parameters of the previous solution in order to 

choose the previous solution that will be considered as the 

initial guess for the current computation. In strategy (iv), a 

residual is computed and it gives an indicator of the error (it 

can be seen as a distance) between the initial guess built with 

the RBM and the exact solution. This last strategy is on the 

contrary based on the search of the maximum of this distance 

in order to improve the efficiency of the RBM. 

 
Fig. 2. Iteration number of the solver vs. the number of computed solutions     

 

The efficiency of each approach is evaluated by a 

convergence study of the COCG in computing the 17 

collocation points generated by the two first steps of the SAA 

(two step of SAA are enough to reach an error of      on the 

variance of the    ). Results are reported in Fig. 2: the 

strategies using the RBM approximation need less iterations 

than (i) and (ii). The total number of the iterations to solve the 

17 linear systems (2) is: (i) 19333, (ii) 14912, (iii) 10304, and 

(iv) 9665 iterations.  

Strategies (iii) and (iv) seem to be the most attractive 

strategies since they save the more iterations. However one 

has to take into account the computational cost to build the 

RBM and the APEI. Based on the evaluated costs given in part 

II-D, Table I synthesizes the real cost of each strategy. It 

appears that strategies (iii) and (iv) remain more attractive 

than strategy (ii). Strategy (iv) save more computational cost 

compared to strategy (iii).  
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TABLE I 
COMPARISON BETWEEN THE COST SAVED IN THE DIFFERENT STRATEGIES 

Strategies (ii) (iii) (iv) 
    

Cost using formulas (6) and (7) with 

    ,    ,    .9e+6 and 

     (AO) 

small 7.8e+9 8.9e+9 

    

Number of iterations using the 

solver 
14912 10304 9665 

    

Number of iterations saved 
compared to strategy (i) 

4421 9029 9668 

    

Cost for the iterations saved with 

    (AO) 
1.7e+10 3.4e+10 3.7e+10 

    

Cost saved = line 4 – line 1(AO) 1.7e+10 2.6e+10 2.8e+10 

 

In agreement with the construction of the APEI, Fig. 3 

shows that the value of the maximum of the APEI decreases 

monotically, and that its trend is nearly the same for the 

number of iterations in strategy (iv). 

 
Fig. 3. Evolution study of                 

 

The interest of strategy (iv) appears much more if one goes 

further in the SAA. Fig. 4 gives the results for ten steps of the 

SAA (it gives an error of      on the variance of the    ). 

The total number of the iterations to solve the 161 linear 

systems (2) is: (iii) 24637, and (iv) 22916 iterations. But in 

this case, Fig. 5 shows that the APEI does not decrease 

monotically: at each step of SAA it appears an increase of the 

residual indicator. Actually, the APEI is in conflict with the 

variance indicator of the SAA [3]. 

In a last numerical experience called strategy (v), we apply 

Algorithm I where l is equal to 2 and   contains the 160 

collocation points obtained from strategy (iii) after ten steps of 

the SAA. It is fictional but will highlight the interest of the 

APEI. The total number of iterations to solve the 161 linear 

systems (2) is: 22205 iterations. The value of the maximum of 

the APEI decreases monotically on the 160 points (see Fig. 4 

and 5). 

 
Fig. 4. Iteration number of the solver vs. the number of computed solutions 

 
Fig. 5. Evolution study of                  

IV. CONCLUSION 

A stochastic collocation method combined with a reduced 

basis method has been proposed to study the variability in a 

3D dosimetry problem. In the usual stochastic approach, the 

deterministic calculations are performed separately at the 

different collocation points without using previous 

computations. In order to save time in solving the different 

deterministic problems, it has been proposed to use a RBM 

without losing the accuracy. This method is efficient because 

it reduces the number of iterations of the iterative solver; 

however the adaptivity of the SAA seems in conflict with the 

APEI. Therefore, it is intended to replace the SAA by a 

statistical method like the Latin hypercube sampling. 
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