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Abstract — We show that the use of a round function
whose Walsh coefficients are divisible by a high power
of 2 may lead to a higher order differential attack.

I. Higher order differential attacks

We consider an r-round iterated block cipher with block
size n: Fkr ◦ Fkr−1 ◦ . . . ◦ Fk1 where the round function Fk is
a permutation of Fn

2 for any k. Such a cipher is vulnerable
to linear cryptanalysis if there exists (α, β), α 6= 0 such that
α ·Fk(x)+β ·x takes the same value for most values of x ∈ Fn

2 .
This property is related to the Walsh spectrum of Fk.

For any α ∈ Fn
2 , ϕα denotes the linear function x 7→ α · x

where “·” is the usual dot product. The Walsh spectrum of a
function F from Fn

2 into Fn
2 is the multiset

{F(ϕα◦F+ϕβ) =
∑
x∈Fn

2

(−1)α·F (x)+β·x, α ∈ Fn
2 \{0}, β ∈ Fn

2 } .

The nonlinearity of F is the Hamming distance between all
ϕα ◦ F and the set of affine functions. It is equal to

2n−1 − 1

2
L(F ) where L(F ) = max

α∈Fn
2

max
β∈Fn

2

|F(ϕα ◦F +ϕβ)| .

The minimum value for L(F ) is 2
n+1
2 and the functions achiev-

ing this value are called almost bent functions. They provide
a high resistance to both linear and differential attacks [2].

The derivative of a function F over Fn
2 with respect to a

linear subspace V is defined by DV F (x) =
∑

v∈V
F (x + v)

where the sum is an addition modulo 2. Suppose that for
any round keys, the reduced cipher, i.e., the function G =
Fkr−1 ◦. . .◦Fk1 , has degree d (the degree of G is the maximum
degree of its Boolean components). Then, for any (d + 1)-
dimensional subspace V , we have

∑
v∈V

G(x + v) = 0 for all
x ∈ Fn

2 . It leads to a differential attack of order (d+ 1) [4]:

1. Select a random plaintext x0 ∈ Fn
2 and get the cipher-

texts cv corresponding to all plaintexts x0 + v, v ∈ V .

2. For each candidate for kr, compute
∑

x∈V
F−1
kr

(cv).

The key kr for which this sum vanishes is the correct last-
round key with a high probability. But, the bound deg(G) ≤
(deg(F ))r−1 only enables to apply the attack to the ciphers
with low degree round functions.

II. Divisibility of the Walsh spectrum and
degree of a composed function

The trivial bound deg(F ◦ F ) ≤ deg(F )2 can be improved
when the values occurring in the Walsh spectrum of F are
divisible by a high power of 2. By using a relation between
the Walsh coefficients of the sum of some Boolean functions
and the Walsh coefficients of their product, we can prove

Theorem 1 Let F be a function from Fn
2 into Fn

2 such that
all values occurring in its Walsh spectrum are divisible by 2`.
Then, for any function F ′ from Fn

2 into Fn
2 , we have

deg(F ′ ◦ F ) ≤ n− `+ deg(F ′) .

This result is of great interest when F is almost bent since the
Walsh coefficients of any almost bent function over Fn

2 are di-

visible by 2
n+1
2 [2]. It leads to a new attack on any 5-round

Feistel cipher using a highly nonlinear substitution function.
In a Feistel cipher with block size 2n, the round function is
defined by (L,R) 7→ (R,L + Sk(R)) where L and R are the
left and right halves of the input and Sk is a function over Fn

2

called the substitution function. The right part of the output
of the third round, R3, can be derived from the ciphertext
(L5, R5) and from k5: R3 = R5 + Sk5(L5). Moreover, when
we consider any plaintext (x, c0) whose right part is a constant,
we have R3(x) = x + c1 + SK3(c0 + SK2(x + c1)). When the
confusion function S is almost bent, Theorem 1 implies that
deg(R3) ≤ n−1

2
+ deg(S). Thus, we have exhibited a new dif-

ferential attack of order δ = min((deg(S)2 +1, n+1
2

+ deg(S)).
Since the degree of an almost bent function cannot exceed
(n+ 1)/2, this attack is feasible except for almost bent func-
tions of maximal degree. But, it can be improved and per-
formed for any almost bent functions when the round key is
inserted by addition. It also applies when Sk is a permutation
of an even number of variables which has the highest known
nonlinearity. Except the inverse function, all known permuta-
tions S achieving L(S) = 2n/2+1 are such that all their Walsh
coefficients are divisible by either 2n/2 or 2n/2+1 [3].

Theorem 1 also provides an explanation and a generaliza-
tion of a 7-order differential attack on a reduced version of
MISTY1 [6, 1]. This weakness originates from the use of al-
most bent substitution boxes in the cipher.
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