
HAL Id: hal-00676295
https://hal.inria.fr/hal-00676295

Submitted on 20 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous and Energy-Aware Management of
Large-Scale Cloud Infrastructures

Eugen Feller, Christine Morin

To cite this version:
Eugen Feller, Christine Morin. Autonomous and Energy-Aware Management of Large-Scale Cloud
Infrastructures. PhD Forum of the 26th IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS PhD Forum), May 2012, Shanghai, China. �hal-00676295�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49914709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00676295
https://hal.archives-ouvertes.fr


Autonomous and Energy-Aware Management of

Large-Scale Cloud Infrastructures

Eugen Feller Advisor: Christine Morin

INRIA Centre Rennes - Bretagne Atlantique

Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

{Eugen.Feller, Christine.Morin}@inria.fr

Abstract—With the advent of cloud computing and the need
for increasing amount of computing power, cloud infrastructure
providers are now facilitating the deployment of large-scale
data centers. In order to efficiently manage such environments
three important properties have to be fulfilled by their resource
management frameworks: (1) scalability; (2) autonomy (i.e.
self-organization and healing); (3) energy-awareness. However,
existing open-source cloud management stacks (e.g. Eucalyptus,
Nimbus, OpenNebula, OpenStack) have a high degree of central-
ization and limited power management support.

In this context, this PhD thesis focuses on more scalable,
autonomic, and energy-aware resource management frameworks
for large-scale cloud infrastructures. Particularly, a novel virtual
machine (VM) management system based on a self-organizing
hierarchical architecture called Snooze is proposed. In order to
conserve energy, Snooze automatically transitions idle servers
into a low-power mode (e.g. suspend). To favor idle times the
system integrates a nature-inspired VM consolidation algorithm
based on the Ant Colony Optimization (ACO).

Keywords-Cloud Computing, Scalability, Self-Organization,
Self-Healing, Consolidation, Ant Colony Optimization (ACO)

I. INTRODUCTION

Cloud computing has recently evolved as a new computing

paradigm which promises virtually unlimited resources. Cus-

tomers rent resources based on the pay-as-you-go model and

thus are charged only for what they use. However, customers

growing demands for computing power are now facilitating the

cloud service providers (e.g. Rackspace) to deploy increasing

amounts of large-scale data centers. Such environments do

not only impose scalability and autonomy challenges on their

management frameworks but also raise questions regarding

their energy-efficiency [1]. For instance, as of today Rackspace

is hosting approximately 78,717 servers [2].

Several open-source cloud projects have been started to pro-

vide alternative solutions to public Infrastructure-as-a-Service

(IaaS) cloud providers. Examples of such cloud management

frameworks include Eucalyptus [3], Nimbus [4], OpenNeb-

ula [5], and OpenStack [6]. However, two main drawbacks

exist which prevent these frameworks to efficiently manage

current and future large-scale infrastructures: (1) high degree

of centralization, and (2) limited support for advanced VM

scheduling algorithms. While the former one leads to limited

scalability and Single Point Of Failure (SPOF), the latter

results in high energy costs due to resource underutilization.

In order to bridge this gap this PhD thesis proposes

Snooze [7], a novel scalable, autonomic, and energy-aware

VM management framework for private clouds. Contrary to ex-

isting works Snooze is based on a self-organizing hierarchical

architecture and performs distributed VM management. Par-

ticularly, VM management is achieved by multiple managers,

with each manager being in charge of a subset of nodes. In ad-

dition, fault tolerance is provided at all levels of the hierarchy.

Finally, VM monitoring and live migration is integrated into

the framework thus facilitating the development of advanced

VM scheduling algorithms. Last but not least once idle, servers

are automatically transitioned into the system administrator

specified power-state (e.g. suspend) to save energy and are

woken up when necessary upon new VM submission.

To favor idle times, VM consolidation can be used in order

to concentrate VMs on as fewer nodes as possible. However,

many of the existing consolidation approaches (e.g. [8]) adopt

simple greedy algorithms such as variants of the First-Fit

Decreasing (FFD) heuristic, which tend to waste a lot of

resources [9] by presorting the VMs according to a single

dimension (e.g. CPU). Moreover, they are known to be hard

to distribute and thus have limited scalability. In this context

this PhD thesis investigates distributed nature-inspired VM

consolidation approaches to enhance scalability and proposes

a novel VM consolidation algorithm [10] based on the Ant

Colony Optimization (ACO) [11].

The remainder of this article is organized as follows.

Section II introduces the Snooze framework. Section III

presents the ACO-based consolidation algorithm. Related work

is discussed in Section IV. Section V closes this article with

conclusions and future work.

II. SNOOZE: A SCALABLE AND AUTONOMIC VIRTUAL

MACHINE MANAGEMENT FRAMEWORK

A. System Architecture

Snooze is a VM management framework for large-scale

clusters. Its architecture is shown in Figure 1. It is partitioned

into three layers: physical, hierarchical, and client. At physical

layer, machines are organized in a cluster, in which each node

is controlled by a so-called Local Controller (LC).

A hierarchical layer allows to scale the system, and is com-

posed of fault-tolerant components: Group Managers (GMs)

and a Group Leader (GL). Each GM manages a subset of LCs

and is in charge of the following tasks: (1) VM monitoring

data reception from LCs, (2) Resource (i.e. CPU, memory and

network utilization) demand estimation and VM scheduling,



(3) energy management, and (4) sending resource management

commands (e.g. start VM, suspend host) to the LCs.

LCs enforce VM and host management commands coming

from the GM. Moreover, they detect local overload/underload

anomaly situations and report them to the assigned GM.

There exists one GL which oversees the GMs, keeps aggre-

gated GM resource summary information, assigns LCs to GMs

and dispatches VM submission requests to the GMs. Note, that

despite the lightweight VM dispatching decisions, scalability

of the GL can be further improved with replication and a load

balancing layer.

To support failure detection and self-organization, multicast-

based heartbeat protocols are implemented at all levels of the

hierarchy. Moreover, for performance and scalability reasons

all system components have dedicated roles (e.g. GL and GMs

do not host VMs).

A client layer provides the user interface which is imple-

mented by a predefined number of replicated Entry Points

(EPs) and queried by the clients to discover the current GL.

In order to provide simple yet flexible interfaces, system

components are implemented as Java RESTful web services.

Currently, a command line interface (CLI) is implemented on

top of those services. It supports the VM management as well

as live visualizing and exporting of the hierarchy organization.

Fig. 1. System Architecture

B. Resource Monitoring and Demand Estimation

Monitoring is mandatory to take proper scheduling deci-

sions and is performed at all layers of the system. At physical

layer VMs are monitored and resource utilization information

is periodically transferred to the GM by each LC. It is used

by the GM in the process of VM resource demand estimation

and scheduling.

At the hierarchical layer, each GM periodically sends ag-

gregated resource monitoring information to the GL. This

information includes the used and total capacity of the GM

with the former being computed based on the estimated VM

monitoring information of the LCs.

C. VM Scheduling

Scheduling decisions are taken at two-levels: GL and GM.

At the GL level, VM to GM dispatching decisions are taken

based on the GM resource summary information. For example,

VMs could be dispatched to round robin fashion or load

balanced across the GMs. Note that summary information is

not sufficient to take exact dispatching decisions. For instance,

when a client submits a VM requesting 2GB of memory and a

GM reports 4GB available it does not necessary mean that the

VM can be finally placed on this GM as its available memory

could be distributed among multiple LCs (e.g. 4 LCs with

each 1GB of RAM). Consequently, a list of candidate GMs

is provided by the dispatching policies. Based on this list, a

linear search is performed by issuing VM placement requests

to the GMs.

At the GM level, the actual VM scheduling decisions are

taken. Therefore, four types of scheduling policies exist: place-

ment, overload relocation, underload relocation, and finally

reconfiguration. Policies of the former type (e.g. round robin

or first-fit) are triggered event-based to place incoming VMs

on LCs. Similarly, relocation policies are called when overload

(resp. underload) events arrive from LCs and aims at moving

VMs away from heavily (resp. lightly loaded) nodes. For

example, in case of overload situation VMs must be relocated

to a more lightly loaded node in order to mitigate performance

degradation. Contrary, in case of underload, for energy saving

reasons it is beneficial to move away VMs to moderately

loaded LCs in order to create enough idle-time to transition

the underutilized LCs into a lower power state (e.g. suspend).

Complementary to the event-based placement and relocation

policies, reconfiguration policies can be specified which will

be called periodically according to the system administrator

specified interval to further optimize the VM placement of

moderately loaded nodes. For example, a VM consolidation

policy can be enabled to weekly optimize the VM placement

by packing VMs on as few nodes as possible.

Note that depending on the implemented scheduling policy,

scheduling decisions can be either based on resources within

the scope of a single GM (i.e. centralized) or cover multiple

GMs (i.e. distributed). It order to take full benefits of the

system distributed policies are preferred (see Section III).

D. Self-Organization of the Hierarchy

The Snooze hierarchy self-organization works as follows.

When a GM first attempts to join the system, a leader

election algorithm is triggered in order to detect the current

GL. Currently, our leader election scheme is built on top

of the Apache ZooKeeper [12] highly available and reliable

coordination system. If a leader exists, the GM joins it and

starts sending GM heartbeats. Otherwise, it becomes the new

GL and starts sending GL heartbeats.

On the other hand, when a LC starts it has to join the

hierarchy. Therefore, information about the current GL as

well as the GM to be joined is required. In order to get GL

information it listens for GL heartbeats. When a heartbeat

arrives, it contacts the GL to get a GM assigned. Therefore,



different LC to GM assignment policies can be enabled at the

GL. For example, LCs could be assigned to GMs in round

robin fashion or based on the current GM load situation (e.g.

to least loaded GMs). Finally, the LC joins the assigned GM,

and starts listening to GM heartbeats as well as sending own

ones to its assigned GM.

E. Fault Tolerance

When a GL fails, its heartbeats are lost and the leader

election procedure is restarted by one of the GMs. When

an existing GM becomes the new leader it switches to GL

mode and starts sending GL heartbeats. Other GMs receive the

heartbeats and rejoin the new GL. LCs which were previously

assigned to the failed GM fail to receive its GM heartbeats

and rejoin the system.

When a GM fails, its heartbeats are lost and the managed

LCs rejoin the hierarchy. Moreover, GM failures are detected

by the GL based on missing heartbeats, and its contact

information is gracefully removed in order to prevent new

VMs from being scheduled on it.

When a LC fails, its heartbeats are lost and the GM in charge

invalidates its contact information. Note, that in the event of

a LC failure, VMs are also terminated. Hypervisors snapshot

features can be used by LCs in order to periodically save VM

states on stable storage on behalf of the GM. This will allow

the GM to reschedule the failed VMs on its active LCs. Note,

that coordinating groups of communicating VMs belonging to

the same application is out of the scope of this work.

F. Evaluation

Snooze was evaluated on a 144 nodes cluster of the

Grid’5000 experimentation testbed in France. Up to 500 VMs

were submitted. The results [7] have shows that the fault

tolerance features of the framework do not impact application

performance. Moreover, negligible cost is involved in per-

forming distributed VM management and the system remains

highly scalable with increasing amounts of VMs and hosts.

III. ENERGY-AWARE VM MANAGEMENT

One important goal of Snooze is to provide energy-savings

in IaaS clouds. Therefore, each GM integrates mechanisms to

detect idle LCs and automatically transition them in a low-

power state (e.g. suspend) after a system administrator pre-

defined idle-time threshold has been reached. Moreover, LCs

are woken up by the GM in case either not enough capacity

is available to handle incoming VM placement decisions or

overload situations on the LCs occur.

To favor idle times, underload situations are detected by

each LC and reported to the GM which then triggers the

underload relocation algorithm. In addition, consolidation is

performed periodically on the GMs in order to further optimize

the placement of VMs on moderately loaded LCs.

A. ACO-based VM Consolidation

This PhD thesis proposes a novel nature-inspired VM con-

solidation algorithm [10]. The proposed algorithm is based

on the ACO principles in which multiple agents (i.e. artificial

ants) compute solutions probabilistically and simultaneously

within multiple cycles. Thereby, they communicate indirectly

by depositing a chemical substance called pheromone on each

VM-LC pair within a pheromone matrix.

In each cycle the ants receive VMs, and start constructing

local solutions (i.e. VM to LC assignments) by the use of

a probabilistic decision rule which describes the desirability

for an ant to choose a particular VM as the next one to

pack in its current LC. This rule is based on the current

pheromone concentration information on the VM-LC pair

in the pheromone matrix and a heuristic information which

guides the ants towards choosing VMs leading to better overall

LC utilization. Hence, the higher the amount of pheromone

and heuristic information is associated with an VM-LC pair,

the higher the probability that it will be chosen.

At the end of each cycle, local solutions are compared and

the one requiring the least number of LCs is saved as the new

globally optimal solution. Afterwards, the pheromone matrix

is updated to simulate pheromone evaporation and reinforce

VM-LC pairs which belonged to the so-far best solution.

The stochastic nature of the algorithm allows it to explore a

large number of potential solutions. Moreover, the algorithm

is well suited for parallelization.

B. Evaluation

A centralized version of the algorithm was evaluated by

simulation and compared with the well known FFD heuristic.

Moreover, the CPLEX solver was used to compute the optimal

solution.

Our results [10] have shown that compared to FFD, the

ACO-based approach utilizes lower amounts of hosts and

thus yields to superior average host utilization and energy

gains. Thereby, on average 4.7% of hosts and 4.1% of energy

were conserved (including energy spent into the computation).

Moreover, the proposed algorithm achieves nearly optimal

solutions (i.e. 1.1% deviation).

IV. RELATED WORK

Several VM management systems such as Nimbus [4],

OpenNebula [5], OpenStack [6], and Eucalyptus [3] have been

developed during the last years with the former three being

centralized and non fault-tolerant. Moreover, to the best of

our knowledge none of the mentioned systems offers dynamic

VM relocation and reconfiguration support.

Eucalyptus is the open-source system closest to ours in

terms of architecture. However, it does not include any self-

healing features and strictly distinguishes between cloud and

cluster controllers (i.e. static hierarchy) while Snooze follows

a more self-organizing approach in which each group manager

(GM) is promoted to a group leader (GL) dynamically during

the leader election procedure upon GL failure detection. In

addition, cluster controllers in Eucalyptus are limited to simple

static VM placement policies (i.e. greedy, round robin) and

do not support VM live migration while Snooze supports

advanced scheduling algorithms (i.e. relocation and reconfig-

uration) and ships with integrated live migration support.



Recently in [13] a more distributed peer-to-peer (P2P) based

VM scheduling approach is introduced. However, this work is

still in very early stages as it is limited to load balancing

and no evaluation regarding its scalability and fault tolerance

aspects is presented. Another VM management framework

based on a P2P network of nodes is presented in [14]. The

nodes are organized in a ring and scheduling is performed

iteratively upon underload and overload events triggered by

the nodes. However, neither the overhead of maintaining the

ring structure nor the scalability and fault tolerance aspects are

discussed. In both works only preliminary simulation-based

results targeting the scheduling time are presented.

In contrast, nodes in Snooze are dynamically organized in

a self-healing hierarchical architecture. This allows it to scale

with an increasing number of nodes as well as to provide the

required fault tolerance properties without the need to rely on

P2P technology. In fact, our experimental results [7] show that

our architecture is sufficient in order to provide scalability and

fault tolerance properties for thousands of nodes.

Besides the existing VM management frameworks, more

generic frameworks targeting scalability and fault tolerance

issues in distributed systems have been proposed in the past.

Particularly, the hierarchical layer of Snooze is inspired from

the idea introduced in the Hasthi [15] framework which takes

a hierarchical self-stabilizing approach for managing large-

scale distributed systems. Contrary to Hasthi whose design is

presented to be system agnostic and utilizes a distributed hash

table (DHT) based P2P network, Snooze follows a simpler

design and does not require the use of P2P technology. More-

over, it targets virtualized platforms and thus its design and

implementation is driven by the platform specific objectives

and issues. Finally, Snooze has a working implementation

which was evaluated in a real environment.

V. CONCLUSIONS AND FUTURE WORK

This PhD research has introduced a novel scalable, auto-

nomic, and energy-aware VM management framework called

Snooze. Unlike the existing cloud management frameworks,

Snooze utilizes a self-organizing hierarchical architecture and

distributes the VM management tasks across multiple group

managers (GMs), with each manager having only a subset of

nodes (i.e. local controllers (LCs)). Moreover, fault tolerance

is provided at all levels of the hierarchy. Consequently, the

system is able to self-heal and continue its operation despite

system component failures. Finally, VM monitoring and live

migration are integrated into the framework thus allowing

Snooze to detect and react to overload and underload situations

as well as facilitating the development of VM reconfiguration

algorithms (e.g. dynamic consolidation). Last but not least,

when energy savings are enabled, idle servers are automati-

cally transitioned into a lower power state (e.g. suspend) and

woken up on demand.

In the future, we plan to make the system even more

autonomic by removing the distinction between GMs and LCs.

Consequently, the decisions when a node should play the role

of GM or LC in the hierarchy will be taken by the framework

instead of the system administrator upon configuration.

Another important contribution of this PhD thesis is a novel

nature-inspired VM consolidation algorithm based on the Ant

Colony Optimization (ACO). The proposed algorithm was

implemented and experimentally validated in a centralized

simulation environment. The first results have demonstrated

that the ACO-based approach provides superior energy gains

than traditional algorithms based on the evaluated First-Fit De-

creasing (FFD) heuristic and achieves nearly optimal results.

In the future we plan to integrate the proposed algorithm in

Snooze. Moreover, a distributed version of the algorithm will

be developed and evaluated along with the energy-saving fea-

tures of Snooze under realistic workloads. Ultimately, Snooze

will be open-sourced under the GPL v2 license in Spring 2012.

VI. ACKNOWLEDGMENT

This research is funded by the French Agence Nationale

de la Recherche (ANR) project EcoGrappe under the contract

number ANR-08-SEGI-000.

REFERENCES

[1] G. International, “Make it green: Cloud computing and its contribu-
tion to climate change,” 2010, http://www.greenpeace.org/usa/en/media-
center/reports/make-it-green-cloud-computing/.

[2] Rackspace, “Hosting reports third quarter,” 2011. [On-
line]. Available: http://ir.rackspace.com/phoenix.zhtml?c=221673&p=
irol-newsArticle&ID=1627224&highlight=

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The Eucalyptus open-source cloud-computing
system,” in Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, 2009, pp. 124–131.
[4] K. Keahey, “Science Clouds: Early Experiences in Cloud Computing for

Scientific Applications,” in Cloud Computing and Its Applications 2008

(CCA-08), Chicago, IL, Oct. 2008.
[5] D. Milojicic, I. M. Llorente, and R. S. Montero, “OpenNebula: A cloud

management tool,” IEEE Internet Computing, vol. 15, March 2011.
[6] “OpenStack: Open source cloud computing software,” 2011. [Online].

Available: http://www.openstack.org
[7] E. Feller, L. Rilling, and C. Morin, “Snooze: A Scalable and Autonomic

Virtual Machine Management Framework for Private Clouds,” in Pro-

ceedings of 12th IEEE/ACM International Symposium on Cluster, Cloud,

and Grid Computing, May 2012.
[8] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for

energy-efficient consolidation of virtual machines in cloud data centers,”
in Proceedings of the 8th International Workshop on Middleware for

Grids, Clouds and e-Science, ser. MGC ’10, 2010.
[9] T. Setzer and A. Stage, “Decision support for virtual machine re-

assignments in enterprise data centers,” in Network Operations and

Management Symposium Workshops (NOMS Wksps), 2010.
[10] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based

workload placement in clouds,” in Proceedings of the 12th IEEE/ACM

International Conference on Grid Computing, Lyon, France, Sep. 2011.
[11] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for

discrete optimization,” Artif. Life, vol. 5, April 1999.
[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-free

coordination for internet-scale systems,” in USENIX Annual Technical

Conference, 2010.
[13] J. Rouzaud Cornabas, “A distributed and collaborative dynamic load

balancer for virtual machine,” in Proceedings of the 5th Workshop

on Virtualization in High-Performance Cloud Computing (VHPC ’10)

Euro-Par 2010, Ischia, Naples Italy, 2010.
[14] F. Quesnel and A. Lèbre, “Cooperative dynamic scheduling of virtual

machines in distributed systems,” in Proceedings of the 6th Workshop

on Virtualization in High-Performance Cloud Computing (VHPC ’11)

Euro-Par 2011, Bordeaux, France, Aug. 2011.
[15] S. Perera and D. Gannon, “Enforcing user-defined management logic in

large scale systems,” in Proceedings of the 2009 Congress on Services

- I, 2009.


