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GRIGGS AND YEH’S CONJECTURE AND L(p, 1)-LABELINGS∗

FRÉDÉRIC HAVET† , BRUCE REED‡ , AND JEAN-SÉBASTIEN SERENI§

Abstract. An L(p, 1)-labeling of a graph is a function f from the vertex set to the positive
integers such that |f(x) − f(y)| � p if dist(x, y) = 1 and |f(x) − f(y)| � 1 if dist(x, y) = 2, where
dist(x, y) is the distance between the two vertices x and y in the graph. The span of an L(p, 1)-
labeling f is the difference between the largest and the smallest labels used by f . In 1992, Griggs
and Yeh conjectured that every graph with maximum degree Δ � 2 has an L(2, 1)-labeling with span
at most Δ2. We settle this conjecture for Δ sufficiently large. More generally, we show that for any
positive integer p there exists a constant Δp such that every graph with maximum degree Δ � Δp

has an L(p, 1)-labeling with span at most Δ2. This yields that for each positive integer p, there is
an integer Cp such that every graph with maximum degree Δ has an L(p, 1)-labeling with span at
most Δ2 + Cp.
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1. Introduction. In the channel assignment problem, transmitters at various
nodes within a geographic territory must be assigned channels or frequencies in such
a way as to avoid interferences. In a model for the channel assignment problem de-
veloped wherein channels or frequencies are represented with integers, “close” trans-
mitters must be assigned different integers and “very close” transmitters must be
assigned integers that differ by at least 2. This quantification led to the definition of
an L(p, q)-labeling of a graph G = (V,E) as a function f from the vertex set to the
positive integers such that |f(x) − f(y)| � p if dist(x, y) = 1 and |f(x)− f(y)| � q
if dist(x, y) = 2, where dist(x, y) is the distance between the two vertices x and y in
the graph G. The notion of L(2, 1)-labeling first appeared in 1992 [12]. Since then, a
large number of articles has been published devoted to the study of L(p, q)-labelings.
We refer the interested reader to the surveys of Calamoneri [6] and Yeh [25].

Generalizations of L(p, q)-labelings in which for each i � 1 a minimum gap of pi
is required for channels assigned to vertices at distance i have also been studied (see,
for example, the survey by Griggs and Král’ [11], and consult also [3, 15, 16, 18]).

In the context of the channel assignment problem, the main goal is to minimize the
number of channels used. Hence, we are interested in the span of an L(p, q)-labeling
f , which is the difference between the largest and the smallest labels of f . The λp,q-
number of G is λp,q(G), the minimum span over all L(p, q)-labelings of G. In general,
determining the λp,q-number of a graph is NP-hard [9]. In their seminal paper, Griggs
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146 F. HAVET, B. REED, AND J.-S. SERENI

and Yeh [12] observed that a greedy algorithm yields that λ2,1(G) � Δ2 +2Δ, where
Δ is the maximum degree of the graph G. Moreover, they conjectured that this upper
bound can be decreased to Δ2.

Conjecture 1 (see [12]). For every Δ � 2 and every graph G of maximum
degree Δ,

λ2,1(G) � Δ2.

This upper bound would be tight: there are graphs with degree Δ, diameter 2, and
Δ2 + 1 vertices, namely the 5-cycle, the Petersen graph, and the Hoffman–Singleton
graph. Thus, their square is a clique of order Δ2 + 1, and hence the span of every
L(2, 1)-labeling is at least Δ2.

However, such graphs exist only for Δ being 2, 3, 7, and possibly 57, as shown
by Hoffman and Singleton [13]. So one can ask how large may be the λ2,1-number of
a graph with large maximum degree. As it should be at least as large as the largest
clique in its square minus one, one can ask what is the largest clique number γ(Δ) of
the square of a graph with maximum degree Δ. If Δ is a prime power plus 1, then
γ(Δ) � Δ2 − Δ + 1. Indeed, in the projective plane of order Δ − 1, each point is
in Δ lines, each line contains Δ points, each pair of distinct points is in a line, and
each pair of distinct lines has a common point. Consider the incidence graph of the
projective plane: it is the bipartite graph with vertices the set of points and lines
of the projective plane, and every line is linked to all the points it contains. The
properties of the projective plane imply that the set of points and the set of lines
form two cliques in the square of this graph, and there are Δ2 − Δ + 1 vertices in
each.

Jonas [14] improved slightly on Griggs and Yeh’s upper bound by showing that
every graph of maximum degree Δ admits an L(2, 1)-labeling with span at most
Δ2+2Δ−4. Subsequently, Chang and Kuo [7] provided the upper bound Δ2+Δwhich
remained the best general upper bound for about a ecade. Král’ and Škrekovski [17]
brought this upper bound down by 1 as the corollary of a more general result. And,
using the algorithm of Chang and Kuo [7], Gonçalves [10] decreased this bound by 1
again, thereby obtaining the upper bound Δ2+Δ− 2. Note that Conjecture 1 is true
for planar graphs of maximum degree Δ �= 3. For Δ � 7 it follows from a result of
van den Heuvel and McGuinness [24], and Bella et al. [4] proved it for the remaining
cases.

We prove the following approximate version of the generalization of Conjecture 1
to L(p, 1)-labeling.

Theorem 2. For any fixed integer p, there exists a constant Cp such that for
every integer Δ and every graph of maximum degree Δ,

λp,1(G) � Δ2 + Cp.

This result is obtained by combining a greedy algorithm (or any of the previously
mentioned upper bounds, or their generalization for L(p, 1)-labelings) with the next
theorem, which settles Conjecture 1 for sufficiently large Δ.

Theorem 3. For any fixed integer p, there is a Δp such that for every graph G
of maximum degree Δ � Δp,

λp,1(G) � Δ2.

Actually, we consider a more general setup. We are given a graph G1 with vertex-
set V , along with a spanning subgraph G2. We want to find a (p, 1)-coloring of
(G1, G2) that is an assignment of integers from {1, 2, . . . , k} to the elements of V
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so that vertices adjacent in G1 receive different colors and vertices adjacent in G2

receive colors which differ by at least p. This setup is a particular case of the con-
straint matrix or weighted graph model (with unit demands), formalized in the early
nineties. Broersma et al. [5] called this particular case the backbone coloring prob-
lem and Babilon et al. [3] studied its generalization to real weights via the notion of
lambda-graphs.

Typically the maximum degree of G1 is much larger than the maximum degree
of G2. In the case of L(p, 1)-labeling, G1 is the square of G2 and a (p, 1)-coloring of
(G1, G2) using k colors is an L(p, 1)-labeling of G2 with span k − 1. We impose the
condition that for some integer Δ, the graph G1 has maximum degree at most Δ2 and
G2 has maximum degree Δ. We show that under these conditions there exists a (p, 1)-
coloring for k = Δ2 + 1 provided that Δ is large enough. The bound is best possible
since G1 may be a clique of size Δ2 + 1. Formally, we prove the following result.

Theorem 4. Let p be an integer. There is a Δp such that for every Δ � Δp, and
G2 ⊆ G1 with Δ(G1) � Δ2 and Δ(G2) � Δ, there exists a (p, 1)-coloring of (G1, G2)
with {1, 2, . . . ,Δ2 + 1}.

In the next section we give an outline of the proof. In section 3, we present some
needed probabilistic tools. We then turn to the gory details.

In what follows, we use G1-neighbor to mean a neighbor in G1 and G2-neighbor
to indicate a neighbor in G2. For every vertex v and every subgraph H of G1, we let
deg1H(v) be the number of G1-neighbors of v in H . We omit the subscript if H = G1.

Moreover, lots of inequalities are correct only when Δ is large enough. In such
inequalities, we use the symbols �∗, �∗, <∗, and >∗ instead of �, �, <, and >,
respectively. We do not explicit the value of the constant Δp and make no attempt
to minimize it.

We finish this section by pointing out that Theorem 2 can be further generalized
as follows: For every integers p � 2 and q and every real c ∈ [0 , 1], there exists an
integer Cp,q,c such that for every graph G of maximum degree Δc,

λp,q(G) � q ·Δc + Cp,q,c.

2. A sketch of the proof. The general structure of the proof is very close to
the one used by Molloy and Reed in [21]. Many parts of it follow proofs from this
paper very closely.

We consider a counterexample to Theorem 4 chosen so as to minimize V . Thus, for
every proper subset X of the vertices of G1, there is a (p, 1)-coloring c of
(G1[X ], G2[X ]) using at most Δ2+1 colors. Such a coloring is a good coloring of X . In
particular, as G2 ⊆ G1, this implies that every vertex v has more than Δ2− (2p−2)Δ
neighbors in G1, as otherwise we could complete a good coloring of V − v greedily.
Indeed, for each vertex, a colored G2-neighbor forbids 2p− 1 colors, which is 2p− 2
more than being only a G1-neighbor.

The next lemma follows by setting d = 1000pΔ and applying to G1 a decomposi-
tion result due to Reed [22, Lemma 15.2].

Lemma 5. There is a partition of V into disjoint sets D1, . . . , D�, S such that
(a) Every Di has between Δ2 − 8000pΔ and Δ2 + 4000pΔ vertices;
(b) There are at most 8000pΔ3 edges of G1 leaving any Di;
(c) A vertex has at least 3

4Δ
2 G1-neighbors in Di if and only if it is in Di; and

(d) For each vertex v of S, the neighborhood of v in G1 contains at most
(
Δ2

2

)−
1000pΔ3 edges.
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We let Hi be the subgraph of G1 induced by Di and Hi its complementary graph.
An internal neighbor of a vertex of Di is a neighbor in Hi. An external neighbor of a
vertex of Di is a neighbor that is not internal.

Lemma 6. For every i, the graph Hi has no matching of size at least 103pΔ.
Proof. Suppose on the contrary that M is a matching of size 103pΔ in Hi.
Let R be the unmatched vertices in Hi. Then, Δ

2 − 104pΔ < |R| < Δ2 + 104pΔ
by Lemma 5(a). For each pair of vertices u and v that are matched in M , the number
of internal neighbors of u plus the number of internal neighbors of v is at least 3

2Δ
2

by Lemma 5(c). Thus there are at least 1
2Δ

2 − (|Hi| −Δ2) − 2 |M | >∗ 1
3 |R| vertices

in R that are adjacent to both of u and v in G1. So on average, a vertex of R is
adjacent in G1 to both members of at least 1

3 |M | pairs. This implies that at least
1
5 |R| >∗ 1

10Δ
2 members of R are adjacent in G1 to both members of at least 1

10 |M |
pairs. Let X be 1

10Δ
2 such vertices in R.

Every vertex ofR\X that is adjacent inG1 to less than half ofX must have at least
Δ2− (2p− 2)Δ− (|Hi|− 1

2 |X |) >∗ 1
25Δ

2 G1-neighbors outside Di. Thus, Lemma 5(b)
implies that there are at least |R \X |−200000pΔ � 9

10Δ
2−104pΔ−200000pΔ �∗ 1

2Δ
2

vertices in R \X that are adjacent in G1 to at least half of X . Let Y be a set of 1
2Δ

2

such vertices.
We consider a good coloring of V \Di. We obtain a contradiction by extending

this good coloring to our desired (Δ2 + 1)-coloring of V greedily, as follows:
1. Color the vertices of M , assigning the same color to both members of each

matched pair. This is possible because each pair has at most 1
2Δ

2 + 2 |M |
previously colored G1-neighbors (by Lemma 5(c)) and 2Δ previously colored
G2-neighbors, so there are at least 1

2Δ
2 + 1− 1004pΔ �∗ 1 colors available.

2. Color the vertices of Hi−Y −X−M . This is possible since each such vertex
has at most 1

4Δ
2 G1-neighbors outside of D1 (by Lemma 5(c)) and at most

|Hi| − |X | − |Y | <∗ 1
2Δ

2 previously colored internal neighbors.
3. Color the vertices of Y . This is possible since each vertex of Y has at least

1
2 |X | = 1

20Δ
2 uncolored G1-neighbors and hence at least 1

20Δ
2 + 1 − (2p −

2)Δ �∗ 1 colors available.
4. Color the vertices of X . This is possible since each vertex of X has at least

1
10 |M | = 100pΔ colors that appear twice in its neighborhood and thus has
at least 98pΔ colors available.

For each i ∈ {1, 2, . . . , �}, we let Mi be a maximum matching of Hi and Ki be
the clique Di − V (Mi). So, |Ki| � Δ2 − 104pΔ by Lemmas 5(a) and 6. We let Bi be
the set of vertices in Ki that have more than Δ5/4 G1-neighbors outside Di, and we
set Ai := Ki \Bi. Considering Lemma 5(b) we can make the following observation.

Observation 7. For every index i ∈ {1, 2, . . . , �},

|Bi| � 8000pΔ7/4 and so |Ai| � Δ2 − 9000pΔ7/4.

We are going to color the vertices in three steps. We first color V1 := V \ ∪�
i=1Ai

and we then color the vertices of V2 := ∪�
i=1Ai.

In order to extend the coloring of V1 to V2, we need some properties. We prove
the following.

Lemma 8. There is a good coloring c of V1 such that
(i) c(x) = c(y) for each edge xy of every Mi; and
(ii) For every color j and clique Ai there are at most 4

5Δ
2 vertices of Ai that have

either a G1-neighbor outside Di colored j or a G2-neighbor outside Di with a
color in [j − p+ 1 , j + p− 1].
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We then establish that a coloring that satisfies the conditions of Lemma 8 can be
extended to Y ∪ V2.

Lemma 9. Every good coloring of V1 satisfying conditions (i)–(ii) of Lemma 8
can be completed to a good coloring of V = V1 ∪ V2.

Thus to prove our theorem, we need only prove Lemmas 8 and 9. The details
follow.

3. Probabilistic preliminaries. In this section, we present a few probabilistic
tools that are used in this paper. Each of these tools is presented in the book of
Molloy and Reed [22], and most are presented in many other places.

The Lovász local lemma (see [8]). Let A1, A2, . . . , An be a set of random
events so that for each i ∈ {1, 2, . . . , n},

(i) Pr(Ai) � p and
(ii) Ai is mutually independent of all but at most d other events.

If pd � 1
4 , then Pr(A1 ∪ . . . ∪ An) > 0.

The binomial random variable BIN(n, p) is the sum of n independent zero-one
random variables, where each is equal to 1 with probability p.

The Chernoff bound (see [1, 19]). For every t ∈ [0 , np],

Pr (|BIN(n, p)− np| > t) < 2 exp

(
− t2

3np

)
.

Only in the proof of Lemma 20 do we use the following version of the Chernoff
bound: for every t > 0,

Pr (|BIN(n, p)− np| > t) < 2 exp

(
t− ln

(
1 +

t

np

)
(np+ t)

)
.

The following is a simple corollary of Azuma’s inequality [2, 22].
The simple concentration bound. Let X be a nonnegative random variable

determined by the independent trials T1, T2, . . . , Tn. Suppose that for every set of
possible outcomes of the trials,

(i) Changing the outcome of any one trial can affect X by at most c.
Then

Pr (|X −E(X)| > t) � 2 exp

(
− t2

2c2n

)
.

Talagrand’s inequality requires another condition but often provides a stronger
bound when E(X) is much smaller than n. Rather than providing Talagrand’s original
statement [23], we present the following useful corollary [22].

Talagrand’s inequality (see [23]). Let X be a nonnegative random variable
determined by the independent trials T1, , T2, . . . , Tn. Suppose that for every set of
possible outcomes of the trials,

(i) Changing the outcome of any one trial can affect X by at most c; and
(ii) For each s > 0, if X � s, then there is a set of at most rs trials whose

outcomes certify that X � s.
Then for every t ∈ [0 ,E(X)],

Pr
(
|X −E(X)| > t+ 60c

√
rE(X)

)
� 4 exp

(
− t2

8c2rE(X)

)
.
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McDiarmid extended Talagrand’s inequality to the setting where X depends on
independent trials and permutations, a setting that arises in this paper. Again, we
present a useful corollary [22] rather than the original inequality [20].

McDiarmid’s inequality (see [20]). Let X be a nonnegative random variable
determined by the independent trials T1, . . . , Tn and m independent permutations
Π1, . . . ,Πm. Suppose that for every set of possible outcomes of the trials,

(i) Changing the outcome of any one trial can affect X by at most c;
(ii) Interchanging two elements in any one permutation can affect x by at most

c; and
(iii) For each s > 0, if X � s, then there is a set of at most rs trials whose

outcomes certify that X � s.
Then for every t ∈ [0 ,E(X)],

Pr
(
|X −E(X)| > t+ 60c

√
rE(X)

)
� 4 exp

(
− t2

8c2rE(X)

)
.

In both Talagrand’s inequality and McDiarmid’s inequality, if 60c
√
rE(X) � t �

E(X), then by substituting t/2 for t in the above bounds, we obtain the more concise

Pr (|X −E(X)| > t) � 4 exp

(
− t2

32c2rE(X)

)
.

That is the bound that we usually use.

4. The proof of Lemma 8. In this section, we want to find a good coloring of
V1, which satisfies conditions (i)–(ii) of Lemma 8. We actually construct new graphs
G∗

1 and G∗
2 and consider good colorings of these graphs. This helps us to ensure that

the conditions of Lemma 8 hold.

4.1. Forming G∗
1 and G∗

2. For j ∈ {1, 2}, we obtain G′
j from Gj by contracting

each edge of each Mi into a vertex (that is, we consider these vertex pairs one by one,
replacing the pair xy with a vertex adjacent to all of the neighbors of both x and y
in the graph). We let Ci be the set of vertices obtained by contracting the pairs in

Mi. We set V ∗ := (V1 \
⋃�

i=1 V (Mi)) ∪
⋃�

i=1 Ci. For each i ∈ {1, 2, . . . , �}, let Bigi
be the set of vertices of V ∗ not in Bi ∪Ci that have more than Δ9/5 neighbors in Ai.
We construct G∗

1 from G′
1 by removing the vertices of ∪�

i=1Ai and adding for each i
an edge between every pair of vertices in Bigi. The graph G∗

2 is obtained from G′
2 by

removing the vertices of ∪�
i=1Ai.

Note that G∗
2 ⊆ G∗

1. Our aim is to color the vertices of V ∗ except some of S
such that vertices adjacent in G∗

1 are assigned different colors, and vertices adjacent
in G∗

2 are assigned colors at distance at least p. Such a coloring is said to be nice.
To every partial nice coloring of V ∗ is associated the (p, 1)-coloring of V1 obtained as
follows: each colored vertex of V ∩V ∗ keeps its color, and for each index i, every pair
of matched vertices of Mi is assigned the color of the corresponding vertex of Ci. So
this partial good coloring verifies condition (ii) of Lemma 8.

Definition 10. For every vertex u and every subset F of V ∗,
• The number of G∗

1-neighbors of u in F is δ1F (u);
• The number of G∗

2-neighbors of u in F is δ2F (u); and
• δ∗F (u) := δ1F (u) + 4pδ2F (u).

For all these notations, we omit the subscript if F = V ∗.
The next lemma bounds these parameters.
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Lemma 11. Let v be a vertex of V ∗. The following hold:
(i) δ2(v) � 2Δ, and if v /∈ ∪�

i=1Ci, then δ2(v) � Δ;
(ii) If v ∈ Bigi for some i, then δ1(v) � Δ2 − 8pΔ; and
(iii) δ1(v) � Δ2, and if v /∈ S, then δ1(v) � 3

4Δ
2.

Proof.
(i) To obtain G∗

2, we only removed some vertices and contracted some pairwise
disjoint pairs of nonadjacent vertices. Consequently, the degree of each new
vertex is at most twice the maximum degree of G2, i.e., 2Δ, and the degree
of the other vertices is at most their degree is G2, hence at most Δ.

(ii) By Lemma 5(b), we have |Bigi| � 8000pΔ6/5 for each index i. Moreover, a
vertex v can be in Bigi for at most Δ1/5 values of i. Recall that for each
index i such that v ∈ Bigi, the vertex v has at least Δ9/5 G1-neighbors in
Ai. So, in the process of constructing G∗

1, it loses at least Δ9/5 neighbors
and gains at most 8000pΔ7/5 neighbors. Consequently, the assertion follows
because Δ9/5 �∗ 8000pΔ7/5 + 8pΔ.

(iii) By (ii), if v ∈ S, then δ1(v) � deg1(v) � Δ2. Assume now that v /∈ S,
hence v ∈ Bi ∪ Ci for some index i. By Lemma 6, each set Ci has at most
1000pΔ vertices and by Observation 7, each set Bi has at most 8000pΔ7/4

vertices. Moreover, by Lemma 5(c), each vertex of Di has at most 1
4Δ

2 G1-
neighbors outside of Di. It follows that each vertex of Bi ∪ Ci has at most
1
2Δ

2 + 1000pΔ+ 8000pΔ7/4 + 8000pΔ7/5 �∗ 3
4Δ

2 G∗
1-neighbors.

Our construction of G′
1 and G′

2 is designed to deal with condition (i) of Lemma 8.
The edges we add between vertices of Bigi are designed to help with condition (ii).
The bound of 3

4Δ
2 on the degree of the vertices of V ∗ \ S in the last lemma helps us

to ensure that all vertices of V1 \ S will be colored.
In order to color all vertices of S we would like to use the fact that sparse ver-

tices have many nonadjacent pairs of G1-neighbors. However, in constructing G∗
1, we

contracted some pairs of nonadjacent vertices and added edges between some other
pairs of nonadjacent vertices. As a result, possibly some vertices in S are no longer
sparse. We have to treat such vertices carefully.

We define Ŝ to be those vertices in S that have at least 90pΔ neighbors outside
S. Then Ŝ contains all the vertices which may no longer be sufficiently sparse, as we
note next.

Lemma 12. Each vertex of S \ Ŝ has at least 450pΔ3 pairs of G1-neighbors in S
that are not adjacent in G∗

1.
Proof. Let s ∈ S \ Ŝ. We know that s has at least Δ2 − (2p− 2)Δ G1-neighbors.

Hence it has more than
(
Δ2

2

) − 4pΔ3 pairs of G1-neighbors. Thus, by Lemma 5(d),
the vertex s has more than 996pΔ3 pairs of G1-neighbors that are not adjacent in G1.
Since s /∈ Ŝ, all but at most 90pΔ3 such pairs lie in N(s)∩S. Let Ω be the collection of
pairs of G1-neighbors of s in S that are not adjacent in G1. Then |Ω| � 906pΔ3. For
convenience, we say that a pair of Ω is suitable if its vertices are not adjacent in G∗

1.
Let s1 be a member of a pair of Ω. If s1 does not belong to ∪�

i=1 Bigi, then every
vertex of S that is not adjacent to s1 in G1 is also not adjacent to s1 in G∗

1. Thus
every pair of Ω containing s1 is suitable.

If s1 ∈ ∪�
i=1 Bigi, then for each index i such that s1 ∈ Bigi, the vertex s1 has at

least Δ9/5 G1-neighbors in Ai. Hence, there are more than Δ2−92pΔ−(Δ2−Δ9/5) =
Δ9/5 − 92pΔ pairs of Ω containing s1. Recall from the proof of Lemma 11 that the
number of edges added to s1 by the construction of G∗

1 is at most 8000pΔ7/5 <∗
1
2Δ

9/5− 46pΔ. Consequently, the number of suitable pairs of Ω containing the vertex
s1 is at least half the number of pairs of Ω containing s1.
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Therefore, we conclude that at least 1
2 |Ω| > 450pΔ3 pairs of Ω are suitable.

4.2. High-level overview. Our first step is to color some of S, including all of
Ŝ. We do this in two phases. In the first phase, we consider assigning each vertex
of S a color at random. We show by analyzing this random procedure that there is
a partial nice coloring of S such that for every uncolored vertex in S \ Ŝ, at least
6pΔ colors appear on two G1-neighbors of v. In the second phase, we finish coloring
the vertices of Ŝ. We use an iterative quasi-random procedure. In each iteration but
the last, each vertex chooses a color, from those which do not yield a conflict with
any already colored neighbor, uniformly at random. The last iteration has a similar
flavor.

We then turn to coloring the vertices in the sets Bi and Ci and the uncolored ver-
tices in S. Our degree bounds imply that we could do this greedily. However, we will
mimic the iterative approach just discussed. We use this complicated coloring process
because it allows us to ensure that condition (ii) of Lemma 8 holds for the coloring we
obtain. At any point during the coloring process, Notbigi,j is the set of vertices v ∈ Ai

such that v has either a G′
1-neighbor u /∈ Bigi ∪Di that has color j or a G′

2-neighbor
u /∈ Bigi ∪Di that has a color in [j − p+ 1 , j + p− 1]. The challenge is to construct
a coloring such that Notbigi,j remains small for every index i and every color j.

4.3. Coloring sparse vertices. As mentioned earlier, we color sparse vertices
in two phases. The first phase provides a partial nice coloring of S satisfying the
above mentioned condition for uncolored vertices of S \ Ŝ. The second phase extends
this nice coloring to all the vertices of Ŝ using an iterative quasi-random procedure.

We need a lemma to bound the size of Notbigi,j . We consider the following
setting. We have a collection of at most Δ2 subsets of vertices. Each set contains at
most Q vertices, and no vertex lies in more than Δ9/5 sets. A random experiment is
conducted, where each vertex is marked with probability at most 1

Q·Δ2/5 . We moreover

assume that for any set of s � 1 vertices, the probability that all are marked is at
most ( 1

Q·Δ2/5 )
s. Note that in particular this is the case if the vertices are marked

independently.
Applying a lemma of Molloy and Reed [21, Lemma 30] with Δ2 in place of Δ

yields the following.
Lemma 13. Under the preceding hypothesis, the probability that at least Δ37/20

sets contain a marked vertex is at most exp
(−Δ1/20

)
.

4.3.1. First step.
Lemma 14. There exists a nice coloring of a subset H of S with colors in

{1, 2, . . . ,Δ2 + 1} such that
(i) Every uncolored vertex v of S \ Ŝ has at least 6pΔ colors appearing at least

twice in NS(v) := NG1(v) ∩ S;
(ii) Every vertex of S has at most 19

20Δ
2 colored G∗

1-neighbors; and

(iii) For every index i and every color j, the size of Notbigi,j is at most Δ19/10.
Proof. For convenience, let us set C := Δ2 + 1. We use the following coloring

procedure:
1. Each vertex of S is activated with probability 9

10 .
2. Each activated vertex is assigned a color of {1, 2, . . . , C}, independently and

uniformly at random.
3. A vertex that receives a color creating a conflict—i.e., assigned to one of

its G∗
1-neighbors, or at distance less than p of a color assigned to one of its

G∗
2-neighbors—is uncolored.
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We aim at applying the Lovász local lemma to prove that with positive probability,
the resulting coloring fulfills the three conditions of the lemma. Let v be a vertex of
G. We let E1(v) be the event that v does not fulfill condition (i) and E2(v) be the
event that v does not fulfill condition (ii). For each i, j, let E3(i, j) be the event that
the size of Notbigi,j exceeds Δ19/10. It suffices to prove that each of those events
occurs with probability less than Δ−17. Indeed, each event is mutually independent
of all events involving vertices or dense sets at distance more than 4 in G∗

1 or G′
1.

Moreover, each vertex of any set Ai has at most Δ5/4 external neighbors in G, and
|Ai| � Δ2+1. Thus, each event is mutually independent of all but at most Δ16 other
events. Consequently, the Lovász local lemma applies since Δ−17 × Δ16 <∗ 1

4 and
yields the sought result.

Hence, it only remains to prove that the probability of each event is at most Δ−17.
We use the results cited in section 3. Let us start with E2(v). We define W to be
the number of activated neighbors of v. Thus, Pr(E2(v)) � Pr

(
W > 19

20Δ
2
)
. We set

m := |N(v) ∩ S|, and we may assume that m > 19
20Δ

2. The random variable W is a
binomial on m variables with probability 9

10 . In particular, its expected value E(W )
is 9m

10 . Applying the Chernoff bound to W with t = m
20 , we obtain

Pr
(
W > 19

20Δ
2
)
� Pr

(|W −E(W )| > m
20

)
� 2 exp

(
− m2·10

400·27m
)
�∗ Δ−17,

since 19
20Δ

2 < m � Δ2.

Let v ∈ S \ Ŝ. We now bound Pr(E1(v)). By Lemma 12, let Ω be a collection of
450pΔ3 pairs of G1-neighbors of v in S that are not adjacent in G∗

1. We consider the
random variable X defined as the number of pairs of Ω whose members (i) are both
assigned the same color j, (ii) both retain that color, and (iii) are the only two vertices
in N(v) that are assigned j. Thus, X is at most the number of colors appearing at
least twice in NS(v). The probability that some nonadjacent pair of vertices u,w
in N(v) satisfies (i) is 9

10 · 9
10 · 1

C . In total, the number of G∗
1-neighbors of v, u, w

in H is at most 3Δ2, and the number of G∗
2-neighbors of u and w is at most 4Δ.

Therefore, given that they satisfy (i), the vertices u and w also satisfy (ii) and (iii)

with probability at least
(
1− 1

C

)3Δ2

· (1− 6p
C

)4Δ
. Consequently,

E(X) � 450pΔ3 · 81

100C
· exp

(
−3Δ2

C

)
exp

(
−24p ·Δ

C

)
>∗ 3pΔ.

Hence, if E1(v) holds, then X must be smaller than its expected value by at least pΔ.
But we assert that

(1) Pr (E(X)−X > pΔ) �∗ Δ−17,

which will yield the desired result.
To establish equation (1), we apply Talagrand’s inequality, stated in section 3. We

set X1 to be the number of colors assigned to at least two vertices in N(v), including
both members of at least one pair in Ω, and X2 is the number of colors that (i) are
assigned to both members of at least one pair in Ω and (ii) create a conflict with one
of their neighbors, or are also assigned to at least one other vertex in N(v). Note
that X = X1 − X2. Therefore, by what precedes, if E1(v) holds, then either X1 or
X2 must differ from its expected value by at least 1

2pΔ. Notice that

E(X2) � E(X1) � C · 450pΔ3 · 1

C2
� 450pΔ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

154 F. HAVET, B. REED, AND J.-S. SERENI

If X1 � t, then there is a set of at most 4t trials whose outcomes certify this,
namely, the activation and color assignment for t pairs of variables. Moreover, chang-
ing the outcome of any random trial can only affect X1 by at most 1, since X1 can
decrease by 1 in case the old color is not counted anymore and increase by 1 in case the
new color was not counted before and is counted now. Thus Talagrand’s inequality
applies and, since E(X1) � E(X) >∗ 3pΔ, we obtain

Pr

(
|X1 −E(X1)| > 1

2
pΔ

)
� 4 exp

(
− p2Δ2

4 · 32 · 1 · 4 · 450pΔ
)

�∗ 1

2
Δ−17.

Similarly, if X2 � t, then there is a set of at most 6t trials whose outcomes certify
this fact, namely, the activation and color assignment of t pairs of vertices and, for
each of these pairs, the activation and color assignment of a color creating a conflict
to a neighbor of a vertex of the pair. As previously, changing the outcome of any
random trial can only affect X2 by at most 2p. Therefore by Talagrand’s inequality,
if E(X2) � 1

2pΔ, then

Pr

(
|X2 −E(X2)| > 1

2
pΔ

)
� 4 exp

(
− p2Δ2

4 · 32 · 4p2 · 6 · 450pΔ
)

�∗ 1

2
Δ−17.

If E(X2) < 1
2pΔ, then we consider a binomial random variable that counts each

vertex of NS(v) independently with probability 1
4|NS(v)|pΔ. We let X ′

2 be the sum

of this random variable and X2. Note that 1
4pΔ � E(X ′

2) � 3
4pΔ by linearity of

expectation. Moreover, observe that if |X2 −E(X2)| > 1
2pΔ, then |X ′

2 −E(X ′
2)| >

1
4pΔ. Therefore, by applying Talagrand’s inequality to X ′

2 with c = 2p, r = 6, and

t = 1
4pΔ ∈ [60c

√
rE(X ′

2) ,E(X ′
2)], we also obtain in this case

Pr

(
|X2 −E(X2)| > 1

2
pΔ

)
� Pr

(
|X ′

2 −E(X ′
2)| >

1

4
pΔ

)

� 4 exp

(
− 2 · p2Δ2

16 · 32 · 4p2 · 6 · pΔ
)

�∗ 1

2
Δ−17.

Consequently, we infer that Pr (E(X)−X > Δ) �∗ Δ−17, as desired.
It remains now to deal with E3(i, j). We use Lemma 13. For each i, every vertex

of Ai has at most Δ5/4 external neighbors. Moreover, for each color j, each such
neighbor is activated and assigned a color in [j − p + 1 , j + p − 1] with probability

at most 9
10 · (2p−1)

C <∗ 1
Δ5/4·Δ2/5 . As these assignments are made independently, the

conditions of Lemma 13 are fulfilled, so we deduce that the probability that E3(i, j)
holds is at most exp

(−Δ1/20
)
�∗ Δ−17. Thus, we obtained the desired upper bound

on Pr(E3(i, j)), which concludes the proof.

4.3.2. Second step. In the second step, we extend the partial coloring of S to
all the vertices of Ŝ. To do so, we need the following general lemma, which will also
be used in the next subsection to color the vertices of the sets Bi ∪ Ci. Its proof is
long and technical, so we postpone it to section 6.

Lemma 15. Let F be a subset of V ∗ with a partial nice coloring and H be a set
of uncolored vertices of F . For each vertex u of H, let L(u) be the colors available to
color u, that is, that create no conflict with the already colored vertices of F ∪H. We
assume that for every vertex u, |L(u)| � 11pΔ33/20 and |L(u)| � δ1H(u) + 6pΔ.

Then, the partial nice coloring of F can be extended to a nice coloring of H such
that for every index i ∈ {1, 2, . . . , �} and every color j, the size of Notbigi,j increases

by at most Δ19/10.
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Consider a partial nice coloring of S obtained in the first step. In particular,∣∣Notbigi,j∣∣ � Δ19/10. We wish to ensure that every vertex of Ŝ is colored. This can be
done greedily, but to be able to continue the proof we need to have more control on the
coloring. We apply Lemma 15 to the set H of uncolored vertices in Ŝ. For each vertex
u ∈ H , the list L(u) is initialized as the list of colors that can be assigned to u without
creating any conflict. By Lemmas 11–14(ii), |L(u)| � 1

20Δ
2 − 4pΔ �∗ 11pΔ33/20.

Suppose that u is in no set Bigi. Then δ1S(u) � deg1S(u) � Δ2 − 90pΔ, and u has
at most Δ G∗

2-neighbors. Hence, we infer that |L(u)| � δ1H(u) + 88pΔ. Assume now
that u belongs to some set Bigi. By Lemma 11(i)–(ii), we have δ1(u) � Δ2 − 8pΔ
and δ2(u) � Δ. So, |L(u)| � δ1H(u) + 8pΔ− 2pΔ = δ1H(u) + 6pΔ.

Therefore, by Lemma 15 we can extend the partial nice coloring of S to Ŝ such
that

∣∣Notbigi,j ∣∣ � 2Δ19/10 for every index i and every color j.

4.4. Coloring the sets Bi and Ci. Let H be the set of vertices which are
uncolored at this stage. Then H is the union of

⋃�
i=1(Bi∪Ci) and the set of uncolored

vertices of S \ Ŝ.
We first apply Lemma 15 to extend the partial nice coloring of S to the vertices

of H in such a way that Notbigi,j does not grow too much, for every index i and color
j. Next, we show that the good coloring derived from this nice coloring verifies the
conditions of Lemma 8.

For each vertex u of H , let L(u) be the list of colors that would not create any

conflict with the already colored vertices. If u ∈ ⋃�
i=1(Bi ∪ Ci), by Lemma 11(iii),

δ1(u) � 3
4Δ

2. Hence, |L(u)| � 1
4Δ

2+ δ1H(u)−4pΔ �∗ max
(
11pΔ33/20, δ1H(u) + 6pΔ

)
.

If u ∈ S \ Ŝ, then by Lemma 14(i), |L(u)| � δ1H(u) + 6pΔ.
Therefore, by Lemma 15, we extend the partial nice coloring of the vertices of S

to the vertices of H . Moreover, for each index i and each color j, the size of each
Notbigi,j is at most 3Δ19/10.

Consider now the partial good coloring of V1 associated to this nice coloring. Let
us show that it verifies the conditions of Lemma 8. By the definition, it satisfies
condition (i). Hence, it only remains to show that condition (iv) holds.

Fix an index i and a color j. Recall that Bigi is a clique, so there is at most
one vertex of Bigi of each color. Consequently, the number of vertices of Ai with a
G1-neighbor in Bigi colored j is at most max

(
2 · 1

4Δ
2, 34Δ

2
)
= 3

4Δ
2, by Lemma 5(c).

Besides, the number of vertices of Ai with a G2-neighbor in Bigi with a color in
[j−p+1 , j+p−1] is at most 4pΔ. Finally, the number of vertices of Ai with either a
G1-neighbor not in Bigi ∪Di colored j or a G2-neighbor not in Bigi ∪Di with a color
in [j−p+1 , j+p−1] is at most

∣∣Notbigi,j∣∣ � 3Δ19/10. Thus, all together, the number
of vertices of Ai with a G1-neighbor not in Bi ∪Ci colored j or a G2-neighbor not in
Bi ∪ Ci with a color in [j − p+ 1 , j + p− 1] is at most

3

4
Δ2 + 3Δ19/10 + 4pΔ �∗ 4

5
Δ2,

as desired.
This concludes the proof of Lemma 8.

5. The proof of Lemma 9. We consider a good coloring of V satisfying the
conditions of Lemma 8. The procedure we apply is composed of two phases. In the
first phase, a random permutation of a subset of the colors is assigned to the vertices
of Ai. In doing so, we might create two kinds of conflicts: a vertex of Ai colored
j might have an external G1-neighbor colored j or a G2-neighbor with a color in
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[j − p + 1 , j + p − 1]. We shall deal with these conflicts in a second phase. To be
able to do so, we first ensure that the coloring obtained in the first phase fulfills some
properties.

Proposition 16.

|Ai|+ |Bi|+ 1

2
|V (Mi)| � Δ2 + 1.

Proof. By the maximality of Mi, for every edge e = xy of Mi there is at most
one vertex ve of Ki that is adjacent to both x and y in Hi. Hence, every edge e of
Mi has an endvertex n(e) that is adjacent in Hi to every vertex of Ki except possibly
one, called x(e). By Lemmas 5 and 6,

|Ki| = |Ai|+ |Bi| � Δ2 − 8000pΔ− 2.103pΔ �∗ 103pΔ > |Mi| .

So there exists a vertex v ∈ Ai ∪ Bi \ ∪e∈Mix(e). The vertex v is adjacent in G1 to
all the vertices of Ki (except itself) and all the vertices n(e) for e ∈ Mi. So

|Ki| − 1 +
1

2
|V (Mi)| � deg1(v) � Δ2.

Phase 1. For each set Ai, we choose a subset of ai := |Ai| colors as follows.
First, we exclude all the colors that appear on the vertices of Bi ∪Ci. Moreover, if a
color j is assigned to at least 2p− 1 pairs of vertices matched by Mi, we exclude not
only the color j but also the colors in [j − p + 1 , j + p − 1]. By Proposition 16 and
because every edge of Mi is monochromatic by Lemma 8(i), we infer that at least ai
colors have not been excluded. Then we assign a random permutation of those colors
to the vertices of Ai. We let Tempi be the subset of vertices of Ai with an external
G1-neighbor of the same color or a G2-neighbor with a color at distance less than p.

Lemma 17. With positive probability, the following hold:
(i) For each i, |Tempi| � 3Δ5/4.
(ii) For each index i and each color j, at most Δ19/10 vertices of Ai have a

G1-neighbor in ∪k �=iAk colored j or a G2-neighbor in ∪kAk with a color in
[j − p+ 1 , j + p− 1].

Proof. We use the Lovász local lemma. For every index i, we let E1(i) be the
event that |Tempi| is greater than 3Δ5/4. For each index i and each color j, we define
E2(i, j) to be the event that condition (ii) is not fulfilled. Each event is mutually
independent of all events involving dense sets at distance greater than 2, so each
event is mutually independent of all but at most Δ9 other events. According to the
Lovász local lemma, it is enough to show that each event has probability at most
Δ−10, since Δ9 ×Δ−10 <∗ 1

4 .
Our first goal is to upper bound Pr(E1(i)). We may assume that both the color

assignments for all cliques other than Ai and the choice of the ai colors to be used on
Ai have already been made. Thus it only remains to choose a random permutation
of those ai colors onto the vertices of Ai. Since every vertex v ∈ Ai has at most
Δ5/4 external neighbors and Δ G2-neighbors, the probability that v ∈ Tempi is at
most (Δ5/4 + 2pΔ)/ai. So we deduce that E(|Tempi|) � Δ5/4 + 2pΔ. We define
a binomial random variable B that counts each vertex of Ai independently with
probability Δ5/4/(2ai). We set X := |Tempi|+B. By linearity of expectation,

1

2
Δ5/4 � E(X) = E(|Tempi|) +

1

2
Δ5/4 �∗ 2Δ5/4.
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Moreover, if |Tempi| > 3Δ5/4, then |Tempi| − E(|Tempi|) > Δ5/4, and hence X −
E(X) > 1

2Δ
5/4. We now apply McDiarmid’s inequality to show thatX is concentrated.

Note that if |Tempi| � s, then the colors to 2s vertices (that is, s members of Tempi
and one neighbor for each) certify that fact. Moreover, switching the colors of two
vertices in Ai may only affect whether those two vertices are in Tempi and whether at
most four vertices with a color at distance less than 2 are in Tempi. So we may apply
McDiarmid’s inequality to X with c = 6, r = 2 and t = 1

2Δ
5/4 ∈ [60c

√
rE(X) ,E(X)].

We deduce that the probability that the event E1(i) holds is at most

Pr
(
|Tempi| −E (|Tempi|) > Δ5/4

)
� Pr

(
|X −E(X)| > 1

2
Δ5/4

)

< 4 exp

(
− Δ5/2

4× 32× 36× 2Δ5/4

)
<∗ Δ−10.

We now upper bound Pr(E2(i, j)). To this end, we use Lemma 13. Recall that
the vertices of Ai get different colors. Every vertex v ∈ Ai has at most Δ5/4 external
neighbors and Δ G2-neighbors. We set Q := Δ5/4 + Δ. We let S(v) be the set of
all vertices that are either external G1-neighbors of v or G2-neighbors of v. Hence,
|S(v)| � Q. Note that each vertex is in at most Δ5/4 sets S(v) for v ∈ Ai. Each
vertex of a set S(v) is assigned a color in [j−p+1 , j+p− 1] with probability at most

max
k

2p− 1

ak
<∗ 1

(2p− 1)Q×Δ2/5
,

because min ak � Δ2−9000pΔ7/4 by Observation 7. Moreover, at most 2p−1 vertices
in each set Ak are assigned a color in [j−p+1 , j+p−1]. As the random permutations
for different cliques are independent, Lemma 13 implies that the probability that more
than Δ37/20 vertices of Ai have an external G1-neighbor in some Ak colored j or a G2-
neighbor in some Ak colored in [j−p+1 , j+p− 1] is at most exp

(−Δ1/20
)
<∗ Δ−10.

This concludes the proof.
Phase 2. We consider a coloring γ satisfying the conditions of Lemma 17. For

each set Ai and each vertex v ∈ Tempi we let Swappablev be the set of vertices u
such that

(a) u ∈ Ai \ Tempi;
(b) γ(u) does not appear on an external G1-neighbor of v;
(c) γ(v) does not appear on an external G1-neighbor of u;
(d) No color of [γ(u)− p+ 1 , γ(u) + p− 1] appears on a G2-neighbor of v; and
(e) No color of [γ(v)− p+ 1 , γ(v) + p− 1] appears on a G2-neighbor of u.
Lemma 18. For every v ∈ Tempi, the set Swappablev contains at least 1

10Δ
2

vertices.
Proof. Let us upper bound the number of vertices that are not in Swappablev.

By Lemma 17(i), at most 3Δ5/4 vertices of Ai violate condition (a) and at most Δ5/4

vertices violate condition (b) by the definition of Ai. As v has at most Δ neighbors
in G2, the number of vertices violating condition (d) is at most 2pΔ. According to
Lemma 8(ii), the number of vertices of Ai violating condition (c) or (e) because of a
neighbor not in

(∪�
k=1Ak

)∪ (Bi ∪Ci) is at most 4
5Δ

2. Moreover, by the way we chose
the ai colors for Ai, for any color α ∈ [γ(v) − p + 1 , γ(v) + p − 1] \ {γ(v)}, at most
2 · (2p− 2) vertices of Mi and one vertex of Bi are colored α. Each of these vertices
has at most Δ neighbors in G2. Hence, as there are 2p− 2 choices for the color α, the
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number of vertices violating condition (e) because of a neighbor in Bi ∪Ci is at most

(2p− 2) · (2 · (2p− 2) + 1) ·Δ = (8p2 − 14p+ 6) ·Δ.

Finally, the number of vertices violating condition (c) or (e) because of a color assigned
during Phase 1 is at most Δ19/10 thanks to Lemma 17(ii). Therefore, we deduce that

|Swappablev| � |Ai| − 4

5
Δ2 −Δ19/10 − 4Δ5/4 − (8p2 − 14p+2p+6) ·Δ− 1 �∗ 1

10
Δ2,

as |Ai| � Δ2 − 9000pΔ
7
4 by Observation 7.

For each index i and each vertex v ∈ Tempi, we choose 100 uniformly random
members of Swappablev. These vertices are called candidates of v.

Definition 19. A candidate u of v is unkind if either
(a) u is a candidate for some other vertex;
(b) v has an external neighbor w that has a candidate w′ with the same color as

u;
(c) v has a G2-neighbor w that has a candidate w′ with a color in [γ(u) − p +

1 , γ(u) + p− 1];
(d) v has an external neighbor w that is a candidate for exactly one vertex w′,

with γ(w′) = γ(u);
(e) v has a G2-neighbor w that is a candidate for exactly one vertex w′, which

has a color in [γ(u)− p+ 1 , γ(u) + p− 1];
(f) u has an external neighbor w that has a candidate w′ with the same color as

v;
(g) u has a G2-neighbor w that has a candidate w′ with a color in [γ(v) − p +

1 , γ(v) + p− 1];
(h) u has an external neighbor w that is a candidate for exactly one vertex w′

with the same color as v; or
(i) u has a G2-neighbor w that is a candidate for exactly one vertex w′ with a

color in [γ(v)− p+ 1 , γ(v) + p− 1].
A candidate of v is kind if it is not unkind.

Lemma 20. With positive probability, for each index i, every vertex of Tempi has
a kind candidate.

We choose candidates satisfying the preceding lemma. For each vertex v ∈ Tempi
we swap the color of v and one of its kind candidates. The obtained coloring is the
desired one. So to conclude the proof of Lemma 9, it only remains to prove Lemma 20.

Proof of Lemma 20. For every vertex v in some Tempi, let E1(v) be the event that
v does not have a kind candidate. Each event is mutually independent of all events
involving dense sets at distance greater than 2. So each event is mutually independent
of all but at most Δ9 other events. Hence, if we prove that the probability of each
event is at most Δ−10, then the conclusion would follow from the Lovász local lemma
since Δ−10 ·Δ9 <∗ 1

4 .
Observe that the probability that a particular vertex of Swappablev is chosen is

100/ |Swappablev|, which is at most 1000Δ−2.
We wish to upper bound Pr(E1(v)) for an arbitrary vertex v ∈ Tempi, so we

can assume that all vertices but v have already chosen candidates. Hence, we can
consider that the candidates are chosen in two rounds: in the first round, we choose the
candidates for all vertices but v; in the second round we choose the candidates for v.

Let Y be the number of vertices u ∈ Swappablev that meets conditions (f)–(i)
of the definition of unkind; note that Y is determined by the candidates selected in
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the first round. We shall use Lemma 13 to show that with high probability, Y is not
too large. For each vertex u ∈ Swappablev, we define Nu to be the set of external
and G2-neighbors of u. Since every vertex in V2 has at most Δ5/4 external neighbors
and at most Δ G2-neighbors, each set Nu has size at most Δ5/4 + Δ � 2Δ5/4 =
Q and no vertex lies in more than Δ5/4 + Δ � Δ9/5 of these sets. We consider
a vertex in

⋃
u∈Swappablev

Nu to be marked if it chooses a candidate with color in

[γ(v) − p + 1 , γ(v) + p − 1] or it is chosen as a candidate for a vertex with color
in [γ(v) − p + 1 , γ(v) + p − 1]. Each of these vertices has at most 2p − 1 potential
candidates with color in [γ(v) − p + 1 , γ(v) + p − 1] and can be chosen for at most
2p − 1 vertices with color in [γ(v) − p + 1 , γ(v) + p − 1]. So the probability that a
vertex is marked is at most (4p− 2)103/Δ2 <∗ 1/(Q×Δ2/5). Furthermore, it is easy
to check that for any set of s � 1 vertices, the probability that all are marked is at
most ( 1

Q·Δ2/5 )
s. Therefore, by Lemma 13

Pr(Y > Δ
37
20 ) � exp

(
−Δ1/20

)
� 1

2
Δ−10.

We now analyze the second round. By Lemma 17(i), the number of vertices that
satisfy condition (a) of Definition 19 is at most 300Δ5/4. Note that the vertex v has
at most Δ5/4 external neighbors, each having at most 100 candidates. Since each
color appears on at most one member of Swappablev, we deduce that the number of
vertices satisfying one of the conditions (b) and (d) is at most 101Δ5/4. Similarly, the
number of vertices satisfying one of the conditions (c) and (e) is at most 202pΔ. If
Y � Δ37/20, then the number of unkind members of Swappablev is at most Δ37/20 +
300Δ5/4+101Δ5/4+202pΔ <∗ 2Δ37/20. So the probability that v chooses an unkind
candidate during the second round is at most

(
2Δ37/20

Δ2/1000

)100

�∗ 1

2
Δ−10.

Consequently, the probability that E1(v) holds is at most 1
2Δ

−10+ 1
2Δ

−10 = Δ−10,
as desired.

6. The proof of Lemma 15. In this subsection we prove Lemma 15. The
proof is similar to that of a lemma of Molloy and Reed [21, Lemma 31]. However
the existence of the G2-edges introduce many small technical changes. Therefore, for
clarity and to make this paper self-contained, we include a complete proof rather than
simply an explanation of the changes that would be necessary to that proof in order
to prove our result.

We color H using a two-phase quasi-random procedure.
Phase 1. We fix a small real number ε ∈ (0 , 1

10000 ] and carry out K := 2Δε logΔ
iterations. In each iteration, we analyze the following random procedure, which
produces a partial coloring. Note that at every time of the procedure, |L(v)| �
δ1U (v) + 2pΔ for every vertex v of H , where U is the subgraph of H induced by the
uncolored vertices.

1. Each uncolored vertex of H is activated with probability α := Δ−ε.
2. Each activated vertex v chooses a uniformly random color λ(v) ∈ L(v).
3. If two activated neighbors create a conflict, both are uncolored.
4. Each activated vertex u that is still colored is uncolored with probability q(v),

where q(v) is defined so that v has probability exactly 1
2α of being activated

and retaining its color.
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5. For each vertex v that retains a color, we remove from the lists of each yet
uncolored vertex every color whose assignment to this vertex would create a
conflict.

First, we have to show that the parameter q(v) is well defined. Let N1(v) be the
set of all uncolored G∗

1-neighbors of v. Given that v is activated, the probability that
it is uncolored in the third step of the procedure is at most

∑
j∈L(v)

Pr(λ(v) = j)×
∑

u∈N1(v)

αPr(λ(u) ∈ [j − p+ 1 , j + p− 1])

=
α

|L(v)|
∑

u∈N1(v)

∑
j∈L(v)

Pr(λ(u) ∈ [j − p+ 1 , j + p− 1])

� α

|L(v)|
∑

u∈N1(v)

∑
k∈L(u)

(2p− 1) ·Pr(λ(v) = k)

� α

|L(v)|
∑

u∈N1(v)

(2p− 1)

= (2p− 1)α
|N1(v)|
|L(v)| � (2p− 1)α <∗ 1

2
,

since |L(v)| > |N1(v)|. Thus, the probability of being activated and not being uncol-
ored after the third step of the procedure is more than 1

2α. So q(v) is well defined.
Lemma 21. After K iterations, with positive probability,
(i) Each vertex of ∪�

i=1Ai has at most Δ200ε uncolored external neighbors in H;
(ii) Each vertex of H has at most Δ200ε uncolored neighbors in H; and
(iii) For every i and every color j, the size of Notbigi,j grows by at most 1

2Δ
19/10.

We postpone the proof of this lemma to the end of this section. We choose a
partial coloring of H that verifies the conditions of the preceding lemma and proceed
with Phase 2.

Phase 2. For every uncolored vertex of H , let L1(v) be the list of available colors
after Phase 1. At most δ∗H(v) � δ1H(v) + 4pΔ colors have been removed from L(v).
Hence, |L1(v)| � 2pΔ. We apply the following procedure:

1. For each uncolored vertex v of H , we choose a uniformly random subset
L′(v) ⊂ L1(v) of size 2pΔ200ε.

2. We color all such vertices v from their sublist L′(v), greedily one at a time.
Observe that the second step is possible thanks to Lemma 21(ii). Thus, we obtain

a good coloring ofH . It only remains to prove that it fulfills the condition of Lemma 15.
To this end, we first establish the following result about the coloring constructed in
Phase 2.

Lemma 22. With positive probability, for every i and every color j, the size of
Notbigi,j grows by at most 1

2Δ
19/10 during Phase 2.

Proof. We want to apply the Lovász local lemma. For each set Ai and each
color j, let E(i, j) be the event that more than 1

2Δ
19/10 vertices of Ai have neighbors

outside of Bigi ∪Di with a color in [j − p + 1 , j + p − 1] in their sublist. We bound
Pr (E(i, j)) using Lemma 13. By Lemma 21(i), every vertex of Ai has at most Q :=
Δ200ε uncolored external neighbors in H . Each such neighbor u chooses a color in
[j−p+1 , j+p−1] in its sublist with probability at most 4p2Δ200ε/ |L1(u)| <∗ 1

QΔ2/5 ,

because |L1(u)| � 2pΔ. Besides, these assignments are made independently. So, as
1
2Δ

19/10 >∗ Δ37/20, Lemma 13 yields that Pr (E(i, j)) < exp(−Δ1/20) <∗ Δ−10.
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Observe that each event is mutually independent of all events involving
dense sets at distance more than 2, and each dense set is adjacent to at most 8000pΔ3

other dense sets. As a result, each event is mutually independent of all but at
most Δ9 other events. Consequently, the Lovász local lemma applies and yields the
conclusion.

Using the last two lemmas, we can prove Lemma 15.
Proof of Lemma 15. We consider a coloring obtained after Phases 1 and 2. By

Lemmas 21(iii) and 22, Notbigi,j grows by at most 1
2Δ

19/10 during each phase for
every index i and every color j.

Thus, to complete the proof, it only remains to prove Lemma 21. To this end,
we inductively obtain an upper bound Uk on the number of uncolored external G′

1-
neighbors of a vertex of ∪l

i=1Ai after the kth iteration and lower and upper bounds
m−

k (v) andm+
k (v) on the number of neighbors in U of a vertex v after the kth iteration.

Let θ := (1− 1
2Δ

−ε). Note that θ > 1
2 since Δε >∗ 1. We set

U0 := Δ5/4 and ∀k > 0, Uk := θUk−1 + U
49/50
k−1 ,(2)

and for every vertex v,

m+
0 (v) := δ1H(v) and ∀k > 0, m+

k (v) := θm+
k−1(v) +m+

k−1(v)
49/50,(3)

m−
0 (v) := δ1H(v) and ∀k > 0, m−

k (v) := θm−
k−1(v)−m−

k−1(v)
49/50.(4)

As shown by Lemma 34 of [21], parameters satisfying the above inequalities fulfill
some useful properties.

Lemma 23. The following hold:
(i) If Uk � Δ150ε, then Uk �∗ 2θkU0.
(ii) If m−

k (v) � Δ150ε, then

1

2
θkδ1H(v) �∗ m−

k (v) � m+
k (v) �∗ 2θkδ1H(v).

Proof of Lemma 21. We apply the Lovász local lemma to each iteration of the
procedure to prove inductively that with positive probability, after k � K iterations
the following hold:

(a) If Uk � 1
2Δ

200ε, then every vertex in ∪l
i=1Ai has at most Uk uncolored exter-

nal G′
1-neighbors in H .

(b) For every vertex v of H , if m−
k (v) � 1

8Δ
200ε, then m−

k−1(v) � δ1U (v) �
m+

k−1(v).
(c) For every index i and every color j, the size of Notbigi,j increases by at most

1
4 log ΔΔ19/10−ε during iteration k.

Assuming this, we can finish the proof as follows. Note that

2θKΔ2 <∗ 1 <∗ Δ150ε.

Since U0 = Δ5/4 and δ1H(v) � Δ2 for every vertex v, the contrapositive of Lemma 23
implies that both UK and m−

K(v) are less than Δ150ε �∗ 1
8Δ

200ε. Furthermore, all

these parameters decrease with k. Note that Uk and m+
k (v) decrease by less than half

at each iteration, and this is also true for m−
k (v) provided it is large enough, e.g., if

m−
k (v) � Δ150ε. Therefore, as Δ200ε < Δ5/4, there exist two integers k1 and k2(v),

both at most K, such that

1

2
Δ200ε � Uk1 < Δ200ε
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and, if δ1H(v) > Δ200ε, then

1

8
Δ200ε � m−

k2(v)
(v) <

1

4
Δ200ε.

Note that the number of uncolored vertices cannot increase; therefore applying (a)
at iteration k1 yields (i). Similarly, applying (b) at iteration k2(v) yields (ii), since
m+

k2(v)
(v) � 4m−

k2(v)
(v) < Δ200ε, using Lemma 23(ii). Finally, (iii) follows from (c)

because the number of iterations is K = 2Δε logΔ.
It only remains to prove (a), (b), and (c). We proceed by induction on k, the

three assertions holding trivially when k = 0. Let k be a positive integer such that
the assertions hold for all smaller integers.

For every uncolored vertex v of ∪l
i=1Ai, we define E1(v) to be the event that v

violates (a). For every vertex u of H , we define E2(u) to be the event that u violates
(b). For every index i and each color j, we define E3(i, j) to be the event that Notbigi,j
violates (c). Each event is mutually independent of all other events involving vertices
or dense sets at distance more than 4 in G∗

1 and hence is mutually independent of
all but at most Δ16 other events. We prove that each event E1(v), E2(v) and E3(i, j)
occurs with probability at most Δ−17. Consequently, the Lovász local lemma applies
since 3Δ−17 ·Δ16 <∗ 1

4 , and therefore with positive probability none of these events
occurs.

Bounding Pr(E3(i, j)). Fix an index i and a color j. We apply Lemma 13 with
Q := max(Uk−1,Δ

200ε). By induction, we know that every vertex in Ai has at most
Q uncolored external G′

1-neighbors at the beginning of iteration k. Moreover, the
probability that a vertex v of H is assigned a color in [j − p+ 1 , j + p− 1] is at most

2p
|L(v)| . Note that these color assignments are independent. Consequently, provided

that |L(v)| � 2pQΔ2/5, Lemma 13 implies that Pr(E3(i, j)) < exp(−Δ1/20) �∗ Δ−17,

since Δ19/10−ε

4 log Δ �∗ Δ37/20.

Now, let us show that |L(v)| � 2pQΔ2/5. Note that at most δ∗H(v) colors can
be removed from L(v), so by hypothesis |L(v)| � 2pΔ. This remark establishes the
result if Q � Δ3/5. Notice that Δ200ε < Δ3/5, since ε < 3

1000 . So we may assume

now that Uk−1 > Δ3/5, and hence Q = Uk−1. Recall that at the beginning |L(v)| �
11pΔ33/20 by hypothesis. Thus, if δ1H(v) � 8pΔ33/20, then |L(v)| � 3pΔ33/20−4pΔ �∗

2pΔ33/20 � 2pQΔ2/5 since Q = Uk−1 � U0 = Δ5/4. If δ1H(v) > 8pΔ33/20, then as
Uk−1 > Δ3/5 observe that m−

k (v) � Δ150ε. Indeed, m+
k−1(v) > Δ3/5 since m+

0 (v) =

δ1H(v) > U0. Hence m+
k (v) >

∗ 1
2 ·Δ3/5. Consequently, m−

k (v) >
1
8 ·Δ3/5 � Δ150ε by

Lemma 23(ii). So by Lemma 23(i)–(ii), we deduce that

|L(v)| � δ1U (v) � m−
k−1(v) �

1

2
θk−1δ1H(v)

> 4pθk−1U0Δ
2/5

�∗ 2pUk−1Δ
2/5 = 2pQΔ2/5.

Bounding Pr(E1(v)). Fix a vertex v of ∪l
i=1Ai. We assume that Uk � 1

2Δ
200ε.

Let m be the number of uncolored external neighbors of v in H at the beginning of
iteration k. By induction, m � Uk−1. We define Y to be the number of those vertices
that are colored during iteration k. The probability of an uncolored vertex becoming
colored during iteration k is exactly 1

2Δ
−ε. Hence, E(Y ) = 1

2Δ
−εm. Consequently, if

E1(v) holds, then Y must differ from its expected value by more than U
49/50
k−1 .
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As in the proof of Lemma 14, we express Y as the difference of two random
variables. Let Y1 be the number of uncolored external G′

1-neighbors of v that are
activated during iteration k. Let Y2 be the number of uncolored external G′

1-neighbors
of v that are activated and uncolored during iteration k. Thus, Y = Y1 − Y2 and
hence if E1(v) holds, then either Y1 or Y2 differs from its expected value by more than
1
2U

49/50
k−1 .
Note that Y1 � Uk−1; hence E(Y1) � Uk−1. Moreover, Y1 is a binomial random

variable, so Chernoff’s bound implies that

Pr

(
|Y1 −E(Y1)| > 1

2
U

49/50
k−1

)
� 2 exp

(
− U

49/25
k−1

12Uk−1

)
�∗ 1

2
Δ−10,

since Uk−1 � Uk > 1
2Δ

200ε.
The random variable Y2 is upper-bounded by the random variable Y ′

2 , defined
as the number of uncolored external G′

1-neighbors of v that are activated and (i)
uncolored or (ii) assigned a color that is assigned to at least logΔ G′

1-neighbors of v.
Furthermore, we assert that Y2 = Y ′

2 with high probability. Indeed, if Y2 �= Y ′
2 , then

there exists a color assigned to at least logΔ G′
1-neighbors of v. By Lemma 23(i), the

number of uncolored G′
1-neighbors of v in H is at most d := 2θk−1U0. Moreover, by

the induction hypothesis, δ1U (u) � m−
k−1(u) �∗ 1

2θ
k−1δ1H(u) for every G′

1-neighbor u
of v in H . Therefore, the number of colors available for u is at least

max
(
δ1H(u) + 6pΔ, 11pΔ33/20

)
− δ∗H(u) +m−

k−1(u)

� max
(
δ1H(u) + 6pΔ, 11pΔ33/20

)
− 4pΔ−

(
1− 1

2
θk−1

)
δ1H(u)

� max
(
δ1H(u), 8pΔ33/20

)
·
(
1−

(
1− 1

2
θk−1

))

� 1

2
θk−1 × 8pΔ33/20

� 2pΔ2/5d.

Consequently,

Pr(Y2 �= Y ′
2) � Δ2 ×

(
d

logΔ

)(
2pΔ2/5d

)− logΔ

� Δ2 ×
(

e

2pΔ2/5

)logΔ

<∗ 1

4
Δ−17,

which proves the assertion.
Since |Y2 − Y ′

2 | � Δ2, this implies that |E(Y2)−E(Y ′
2)| = o(1). As a result,

it is enough to establish that Pr(|Y ′
2 −E(Y ′

2)| > 1
4U

49/50
k−1 ) <∗ 1

4Δ
−17 to deduce that

Pr(|Y2 −E(Y2)| > 1
2U

49/50
k−1 ) �∗ 1

2Δ
−17.

We apply Talagrand’s inequality. For convenience, we consider that each vertex
v of H is involved in two random trials. The first, which combines steps 1 and 2
of our procedure, is to be assigned the label “unactivated” or “activated with color
j” for some color j in L(v). The former label is assigned with probability 1 − Δ−ε

and the latter with probability Δ−ε

|L(v)| . The second random trial assigns to v the

label “uncolored” with probability q(v), whatever the result of the first trial is. The
technical benefit of this approach is to obtain independent random trials.

If Y ′
2 � s, then there is a set of at most s logΔ random trials that certify this fact,

i.e., for each of the s vertices counted by Y ′
2 , the activation and color assignment of the
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vertex and either the choice to uncolor it in step 4, or the activation and assignment
of a conflicting color to a neighbor of that vertex, or the activation and assignment
of the same color to logΔ − 1 other G′

1-neighbors of v. Furthermore, changing the
outcome of one of the random trials can affect Y ′

2 by at most logΔ. Recalling that
E(Y2) � Uk−1 and Uk−1 � Δ200ε, Talagrand’s inequality yields that

Pr

(
|Y ′

2 −E(Y ′
2)| >

1

4
U

49/50
k−1

)
< 4 exp

(
− U

49/25
k−1

16× 32 log3 ΔUk−1

)
<∗ 1

4
Δ−17,

provided that E(Y2) � 1
4U

49/50
k−1 . If E(Y2) < 1

4U
49/50
k−1 , then we consider the random

variable Y ′
2 defined to be the sum of Y2 and a binomial random variable that counts

each of the m uncolored external neighbors of v in H independently at random with

probability max(1, 1
8mU

49/50
k−1 ). Notice that 1

8U
49/50
k−1 � E(Y ′

2) � 3
8U

49/50
k−1 . Moreover, if

|Y2 −E(Y2)| > 1
4U

49/50
k−1 , then |Y ′

2 −E(Y ′
2)| > 1

8U
49/50
k−1 . Applying Talagrand’s inequal-

ity to Y ′
2 , we infer that the last inequality occurs with probability less than 1

4Δ
−17,

as wanted. Therefore, we obtain Pr (E1(v)) � Δ−17, as desired.
Bounding Pr (E2(v)). We fix a vertex v of H , and we assume that m−

k (v) �
1
8Δ

200ε. Our aim is to prove that Pr (E2(v)) �∗ Δ−17. To this end, we wish to use a
similar approach to that for E1(v). However, for every G∗

1-neighbor u of v in H , the
degree of u in H may be a lot bigger than the degree of v in H , which makes it more
difficult to bound the analogue of Pr (Y2 �= Y ′

2).
For every vertex u, let δ̃(u) := δ1U (u). Let Lu be the set of colors available to

color u. Recall that |Lu| � δ1H(u) + 2pΔ > δ̃(u).
We define Z1 and Z2 analogously to Y1 and Y2, that is, we let Z1 be the number

of uncolored G∗
1-neighbors of v that get activated, and we let Z2 be the number of

those activated neighbors of v that get uncolored. Similarly as before, it suffices to
prove that with high probability, neither Z1 nor Z2 differs from its expected value

by more than 1
2

(
m−

k−1(v)
)49/50

. Observe that Z1 � m+
k−1(v) < 4m−

k−1(v), and so

E(Z1) � 4m−
k−1(v). Therefore, Chernoff’s bound implies that

Pr

(
|Z1 −E(Z1)| > 1

2

(
m−

k−1(v)
)49/50) � 2 exp

(
−m−

k−1(v)
49/25

48 ·m−
k−1(v)

)
<∗ 1

2
Δ−17,

since m−
k−1(v) � 1

8Δ
200ε.

We partition the neighbors of v in H into two parts NA and NB, where NA

contains those vertices u with δ̃(u) � δ̃(v)3/4 and NB those with δ̃(u) < δ̃(v)3/4. We
define ZA and ZB to be the number of vertices that get activated and uncolored
during this iteration in NA and NB, respectively. Thus, Z2 = ZA + ZB.

We use a similar argument as the one for Y2 to show that ZA is concentrated. Let
ZA′ be the number of vertices in NA that get activated and are (i) uncolored or (ii)
assigned a color that is assigned to at least δ̃(v)3/10 members of NA. As |NA| � δ̃(v),
and |Lu| � δ̃(u) � δ̃(v)3/4 for every vertex of u ∈ NA, the probability that ZA and
Z ′
A are different is at most

(
Δ2 + 1

)( δ̃(v)

δ̃(v)3/10

)(
δ̃(v)3/4

)−δ̃(v)3/10

<
(
Δ2 + 1

)( eδ̃(v)

δ̃(v)3/10δ̃(v)3/4

)δ̃(v)3/10

< ∗ 1
8
Δ−17,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRIGGS AND YEH’S CONJECTURE AND L(p, 1)-LABELINGS 165

since δ̃(v) � m−
k−1(v) >

1
8Δ

200ε. As |ZA − Z ′
A| � Δ2, we infer that |E(ZA)−E(Z ′

A)| =
o(1).

By the same argument as for Y ′
2 , we deduce that if Z

′
A � s, then there are at most

δ̃(v)3/10 · s trials whose outcomes certify this fact. Furthermore, each trial can affect
Z ′
A by at most δ̃(v)3/10. Therefore, if E(Z ′

A) � 1
4m

−
k−1(v)

49/50, then Talagrand’s
inequality yields that

Pr

(
|Z ′

A −E(Z ′
A)| >

1

4

(
m−

k−1(v)
)49/50)

� 4 exp

(
− m−

k−1(v)
49/25

32 ·m+
k−1(v)

6/10 ·m+
k−1(v)

3/10 · 4 ·m−
k−1(v)

)

� 4 exp

(
− m−

k−1(v)
49/25

128 · 49/10 ·m−
k−1(v)

6/10 ·m−
k−1(v)

3/10 ·m−
k−1(v)

)

<∗ 1

8
Δ−17.

If E(Z ′
A) < 1

4m
−
k−1(v)

49/50, then we define Z ′′
A to be the sum of Z ′

A and a bi-
nomial random variable that counts each vertex of NA independently with prob-
ability max(1, 1

8|NA|m
−
k−1(v)

49/50). By linearity of expectation, 1
8m

−
k−1(v)

49/50 �
E(Z ′′

A) � 3
8m

−
k−1(v)

49/50. Furthermore, if |Z ′
A −E(Z ′

A)| > 1
4m

−
k−1(v)

49/50, then

|Z ′′
A −E(Z ′′

A)| > 1
8m

−
k−1(v)

49/50. Applying Talagrand’s inequality to Z ′′
A yields that

this latter inequality occurs with probability less than 1
8Δ

−17, as desired. Conse-
quently,

(5) Pr

(
|ZA −E(ZA)| > 1

2
m−

k−1(v)
49/50

)
�∗ 1

4
Δ−17.

We finish by considering ZB. We first expose the assignments to all vertices other
than NB. Let H be this assignment. We now condition on H. First, we consider the
conditional expected value of ZB regarding H. We assert that

(6) Pr

(
|E(ZB|H)−E(ZB)| > 1

2
m−

k−1(v)
49/50

)
<∗ 1

8
Δ−17.

To see this, let μH be the conditional expectation E(ZB |H). Note that the expected
value of μH over the space of random colorings of H − NB is equal to the expected
value of ZB over the space of random colorings of H . So our assertion is that μH is
indeed concentrated.

For each vertex u of NB, let Fu = Fu(H) ⊆ Lu be the set of colors of Lu that
conflict with the assignments made by H to the neighbors of u in H that are not in
NB. First, we use Talagrand’s inequality to prove that |Fu| is concentrated.

The random variable |Fu| is determined by the independent color assignments to
the vertices of H −NB. If |Fu| � s, then there is a set of at most s assignments that
certify this fact, namely, the assignments of colors to s vertices. Observe that the
assignments to one vertex can affect |Fu| by at most 2p. Moreover, |Fu| � |Lu| so
E(Fu) � |Lu|. Therefore, Talagrand’s inequality implies that

Pr
(
||Fu |−E(|Fu |)| > Δ−2/5 |Lu|

)
< 4 exp

(
−Δ−4/5 |Lu|2

128p2 |Lu|

)
<∗ 1

8
Δ−19,
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since |Lu| � 2Δ, in the case where E(|Fu|) � Δ−2/5 |Lu|. In the opposite case, we
define F to be the sum of the random variable Fu and a binomial random variable that
counts each color of Lu independently at random with probability 1

2Δ
−2/5. Note that

1
2Δ

−2/5 |Lu| � E(F ) � 3
2Δ

−2/5 |Lu|. Moreover, if ||Fu |−E(|Fu |)| > Δ−2/5 |Lu|,
then |F −E(F )| > 1

2Δ
−2/5 |Lu|. Applying Talagrand’s inequality to F shows that

this latter inequality occurs with probability less than 1
8Δ

−19, as desired.
Consequently, the probability that there is at least one vertex u of NB for which

|Fu| differs from its expected value by more than Δ−2/5 |Lu| is at most |NB| 1
8Δ

−19 �
1
8Δ

−17. Hence, we assume that there is no such vertex u, and we prove that this

implies that |μH −E(μH)| < 1
2m

−
k−1(v)

49/50.

Given a particular assignmentH to H \∪�
i=1Ai and a color j ∈ Lu, the probability

that u keeps the color j is 0 if j ∈ Fu and at most

(1− q(u))
∏

w∈N(u)∩NB

j∈Lw

(
1− 2p− 1

|Lw|
)

otherwise. Note that the product is at most 1 and does not depend on Fu. Hence,
changing whether j belongs to Fu affects the probability that u retains its color by
at most 2p−1

|L(u)| . So, as |Fu| differs from its expected value by at most Δ−2/5 |Lu|, the
conditional probability that u is uncolored differs from its expected value by at most
(2p − 1)Δ−2/5. Since μH is the sum of these probabilities over all the vertices u of
NB, we deduce that

|μH −E(μH)| � (2p− 1)Δ−2/5 |NB| < 1

2
m−

k−1(v)
49/50,

because |NB| < 2m−
k−1(v) and m−

k−1(v) � Δ2. This concludes the proof of our
assertion.

We define Z ′
B to be the number of vertices of NB that are activated and uncolored

because (i) they are assigned a color conflicting with a neighbor outside of NB or (ii)
they are assigned a color conflicting with a neighbor w ∈ NB and this color is assigned
to at least δ̃(v)3/10 vertices of NG∗

1
(w) ∩NB.

If ZB �= Z ′
B, then some vertex u of NB receives the same color as at least δ̃(v)3/10

of its neighbors. Since each vertex u of NB has at most δ̃(v)3/4 neighbors, and
|Lw| � 2Δ for every vertex w, we deduce that

Pr (ZB �= Z ′
B) � |NB| ×

(
δ̃(v)3/4

δ̃(v)3/10

)
· (2Δ)

−δ̃(v)3/10

� Δ2

(
eδ̃(v)3/4

2δ̃(v)3/10Δ

)δ̃(v)3/10

= Δ2

(
δ̃(v)9/20

2Δ

)δ̃(v)3/10

� Δ2

(
Δ18/20

2Δ

)δ̃(v)3/10

<∗ 1

8
Δ−17,(7)

as 1
8Δ

200ε � δ̃(v) � Δ2. Since |ZB − Z ′
B| � Δ2 for every choice of H, we infer that

|E(ZB| H)−E(Z ′
B |H)| = o(1).

After conditioning on H, the random variable Z ′
B is determined by at most δ1H(v)

assignments and each assignment can affect Z ′
B by at most δ1H(v)1/3. Note that
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δ1H(v) � m+
k−1(v) � 2m−

k−1(v). So, for every choice of H, the simple concentration
bound yields that

Pr

(
|Z ′

B −E(Z ′
B| H)

∣∣∣∣> 1

4
m−

k−1(v)
49/50

∣∣∣∣H
)

< 2 exp

(
− m−

k−1(v)
49/25

32× 2m−
k−1(v)

2/3 × 2m−
k−1(v)

)

<∗ 1

8
Δ−17.(8)

Therefore, by (6)–(8), we infer that Pr
(|ZB −E(ZB)| > 1

2m
−
k−1(v)

49/50
)
<∗ 1

2Δ
−17.

Thus, along with (5), we deduce that

Pr(E2(v)) <
∗ Δ−17,

which concludes the proof.
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