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We present theoretical and practical advances on the Guided Genome Halving problem, a combinatorial optimisation

problem which aims at proposing ancestral configurations of extant genomes when one of them has undergone a

whole genome duplication. We provide a lower bound on the optimal solution, devise a heuristic algorithm based
on subgraph identification, and apply it to yeast gene order data. On some instances, the computation of the bound

yields a proof that the obtained solutions are optimal. We analyse a set of optimal solutions, compare them with a

manually curated standard ancestor, showing that on yeast data, results coming from different methodologies are

largely convergent: the optimal solutions are distant of at most one rearrangement from the reference.

1. Motivations

The genomes of extant species underwent different changes in the course of evolution. These changes are

studied at various levels: from modifications at a nucleotide-base level to rearrangements of large pieces of

DNA, or duplication of the whole genome.

Genome rearrangement phylogeny methods have matured over the past decade7 and reached the point

where their results can be interpreted together with the results of biologists.

At a low level of resolution, the usually considered mutations that alter genomes are reversals, translo-

cations, fusions and fissions of chromosomes, often included in a general abstract operation called Double

Cut-and-Join (DCJ), which has the advantage of being computationally easy to handle and of modelling

many realistic rearrangements.16

Following El-Mabrouk and Sankoff,5 Zheng et al18 have generalized the genome rearrangement problems

by introducing the possibility of considering a whole genome duplication in the genome histories. They provide

a heuristic algorithm19 which is able to propose the organization of a set of genes along the history of yeast

genomes.

In the same time, Gordon et al8 chose not to use an automatic method to reconstruct the preduplication

ancestor of Saccharomyces cerevisiae. Their arguments, among others, were that (i) only a small subset of

the genes (less than 20%) can be taken into account, those which have retained two copies after the WGD,

and (ii) the optimization problems are computationally complex and the methods are still in development.

In this paper, we report some advances on the theoretical study of the guided genome halving problem,

and apply a heuristic algorithm on “double conserved syntenies” of different yeast species. As shown in

a previous study,12 the computation of double syntenies allows to apply the guided halving problem on

instances that cover a good ratio of the exant genes (over 95%), and the computation of a lower bound proves

that on some instances, the algorithm reaches an optimal solution. It is a solution to the two mentioned

objections of Gordon et al,8 and the comparison of the obtained solutions with the manually constructed one

shows a good convergence. There were other objections in the paper of Gordon et al, as well as in a comment

of Sankoff9 in the same journal, as the possible huge number of optimal solutions, or the inability of the

models to account for certain types of rearrangements, like telomeric translocations. This still calls for a

theoretical answer (though telomeric translocations are actually taken into account by the DCJ framework)

whereas the surprising convergence between all the solutions we find on one instance and the manually

reconstructed ancestor shows that some dataset are already accessible.

Pacific Symposium on Biocomputing 15:21-30(2010)



September 23, 2009 17:12 WSPC - Proceedings Trim Size: 11in x 8.5in document

In the next section, we present the mathematical definitions of the genomes and the rearrangements that

may alter them. Then in Section 3, we propose a lower bound on the guided halving solutions, based on the

so-called “double distance” computation. This bound may be reached, so is able to prove optimality of some

solutions. Its usage in a branch and bound algorithm calls for efficient ways to compute it, since the double

distance computation is NP-hard for the DCJ distance, and we are only able to compute its exact value for

the easiest instances here. In Section 4, we describe the principle of our heuristic algorithm, and compare its

efficiency with the state of the art one of Zheng et al19 on some common instances build from yeast genomes,

but with a low coverage of the whole genomes. Finally in Section 5, we apply this algorithm on good coverage

syntenies on yeast genomes, and provide some information on the history of Hemiascomycetes, which we can

compare to the ones Gordon et al. They are very similar, and give the hope that algorithmic rearrangement

studies can provide good insights into genome evolution.

2. Genomes and rearrangements

2.1. Genes and genomes

We use the standard algorithmic definitions of genes and genomes3,13∗. A gene A is an oriented sequence of

DNA nucleotides, identified by its tail At and its head Ah. Tails and heads are called extremities of the gene.

An adjacency is an unoriented pair of gene extremities. A genome Π is a set of adjacencies on a set of genes,

such that every gene extremity participates in at most one adjacency. In a genome, an adjacency means that

two genes are consecutive on the DNA molecule. In a genome Π, a gene extremity which is not adjacent to

another gene extremity is called a telomere. A telomere a is also written as an adjacency a◦, where ◦ is an

abstract symbol not related to a gene, and called a telomeric adjacency.

For given genome Π, the genome graph GΠ has vertex set the set of all gene extremities, and edge set

the union of non telomeric adjacencies and edges AtAh, called gene edges, for every gene A. This graph

has vertices of degree one or two. Thus, connected components are paths and cycles, and are called the

chromosomes of Π. Paths are linear chromosomes, whereas cycles are circular chromosomes. Telomeres are

degree one vertices of the genome graph. A genome with only linear, or only circular, chromosomes is called

linear or circular genome, respectively.

A genome can also be represented as a set of strings, by writing the genes for each chromosome in the

order in which they appear in the paths and cycles with a bar over the gene if the head of the gene appears

before the tail and none if the tail appears before the head (this depends on an arbitrary direction of reading).

For each linear chromosome, there are two possible equivalent strings, for two opposite traverses of the path.

We have also two oposite circular strings for circular chromosomes.

Example 2.1. Let

Π = {AhCt, ChDh, BhEh, EtBt}

be a genome with five genes {A,B,C,D,E}. The corresponding genome graph is the following:

At Ah Ct Ch Dh Dt

Bh Bt

EtEh

and the string representation consists in the linear string ACD̄ (or DC̄Ā) and the circular string BĒ (or

EB̄).

∗They do not meet the biological definition of genes, but are more precisely “families of homologous sequences”, containing

from 0 to several genes in each genome.
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A Double Cut-and-Join (DCJ) operation (sometimes called 2-break rearrangement) is defined for two

adjacencies pq and rs of a genome. Telomeric adjacencies are also considered and any p, q, r or s could be a

◦ symbol. Moreover even the adjacency ◦◦ is considered. Thus, the DCJ transforms two adjacencies pq and

rs into either pr and qs, or ps and qr. The DCJ was introduced by Yancopoulos et al16 to encompass all

interesting types of genomic rearrangements. Indeed, an inversion, a chromosome fusion or fission, as well as a

reciprocal translocation, is a particular case of a DCJ. A non-reciprocal translocation, meaning a chromosome

arm is translocated to another chromosome, is also a DCJ. Transpositions and block interchanges can be

mimicked by two consecutive DCJs, the intermediate genome containing a circular chromosome.

Example 2.2. Consider genome from Example 2.1 and the DCJ that transforms adjacencies AhCt, BhEt

into AhBh, CtEt. The new genome is then

Π′ = {AhBh, EhBt, CtEt, ChDh}

and its genome graph becomes

At Ah Ct Ch Dh DtBh Bt EtEh

Given a genome Π, it is always possible to transform it into another arbitrary genome on the same set of

genes applying a sequence of DCJ operations. This leads to the definition of DCJ distance.

The DCJ Sorting and Distance Problem. Given two genomes Π and Ψ defined on the same set of

genes, find a shortest sequence of DCJ operations that transforms Π into Ψ. The length of such a sequence

is called the DCJ distance between Π and Ψ, denoted by dDCJ(Π,Ψ).

As the DCJ distance is the main distance we consider here, dDCJ is often abbreviated by d. When three

genomes are considered, this yields the Median problem:

The Genome Median Problem. Given three genomes Π1, Π2, Π3, find a median genome Π wich

minimises dDCJ(Π1,Π)+dDCJ (Π2,Π)+dDCJ (Π3,Π).

The breakpoint graph of a set of genomes on the same set of genes is the graph on vertex set the extremities

of all genes, and edge set the set of adjacencies of all genomes. If an edge is an adjacency on a genome Π, it

is called a Π-edge.

Each vertex of the breakpoint graph has degree at most the number of considered genomes. So for two

genomes, it is a set of paths and cycles. The DCJ distance is easily computed from the breakpoint graph:

for two genomes Π and Ψ on n genes, if C is the number of cycles and P the number of paths with an even

number of edges (including trivial path with 0 edges),

d(Π,Ψ) = n − (C + P/2).

The DCJ sorting and distance problems thus have a linear time running solution.3 The genome median

problem, however, is NP-hard13 under the DCJ distance, thought there are good algorithms to solve it.11,15

2.2. Duplicated genes and genomes

A duplicated gene is a couple of homologous oriented sequences of DNA nucleotides, identified by two tails At
1

and At
2, and two heads Ah

1 and Ah
2 . An all-duplicates genome ∆ is a set of adjacencies on a set of duplicated

genes, where each gene extremity is contained in at most one adjacency.

For a genome Π on a gene set, a doubled genome Π⊕Π is an all-duplicates genome on the set of duplicated

genes from the same gene set such that if AxBy (x, y ∈ {t, h}) is an (possibly telomeric) adjacency of Π (Ax

or By may be ◦), either Ax
1By

1 and Ax
2By

2 , or Ax
1By

2 and Ax
2By

1 , are adjacencies in Π ⊕ Π.

We note that on a doubled genome one finds two identical copies of each chromosome when we ignore the

1′s and 2′s in the names of genes. More precisely, it has two copies of each linear chromosome, and for each
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circular chromosome, either two circular copies or one circular chromosome containing the two successive

copies. For one genome Π there is an exponential number of possible doubled genome Π ⊕ Π.

The DCJ distance and median problems generalize to the case of duplicated genomes in several ways.

The DCJ distance between two all-duplicates genomes is easily derived from the usual DCJ distance

and has a polynomial time computation. But if we ignore the 1′s and 2′s in the names of genes, then then

it calls for an re-assignement of 1′s and 2′s which minimizes the distance, and this problem is NP-complete.

The double distance problem. The double distance between an ordinary genome Π and an all-

duplicates genome ∆ is defined as d(Π,∆) = minΠ⊕Πd(Π ⊕ Π,∆). It is also NP-hard.13

The Genome Halving Problem. Given an all-duplicates genome ∆ on a set of duplicated genes, find

a doubled genome Π ⊕ Π on the same set of genes such that the DCJ distance between ∆ and Π ⊕ Π is

minimal. The DCJ distance minΠ⊕Π d(Π ⊕ Π,∆) (the genome halving score) is denoted by gh(∆).

The genome halving problem aims at constructing possible preduplication configuration of genomes which

have undergone a whole duplication in the course of their histories. Computationnally, it is a generalization

of the DCJ sorting problem (indeed if the two copies of the ancestral doubled genome evolve independently

and no rearrangement concerns both, then it is equivalent to simple DCJ sorting). It was solved in the

most complicated case where only linear chromosomes are allowed by El-Mabrouk and Sankoff,5 resulting

in a rather complicated algorithm. Alekseyev and Pevzner discuss and solved the same problem on unichro-

mosomal genomes.1 Recently, solutions with DCJ distance were presented by Warren and Sankoff14 and

Mixtacki.6

The solution relies on the contracted breakpoint graph† of the genome ∆: its vertex set is the set of pairs

of homologous extremities of duplicates genes (two extremities (Ah
1 , Ah

2 ) or (At
1, A

t
2) form a single vertex).

Two vertices are connected by an edge if two extremities are adjacent in ∆. This graph is a set of cycles

and paths. If we call n the number of genes (counting one for the two duplicates), EC the number of cycles

of even length and EP the number of paths with an even number of edges (including trivial paths with no

edges), then Mixtacki6 proved that

gh(∆) = n − (EC + ⌊
EP

2
⌋).

This formula yields a linear algorithm to solve the Genome Halving problem. The analysis of this

algorithm shows the existence of a large, often exponential, number of optimal solutions. This fact makes it

inappropriate for any practical, biologically significant computation. Seoighe and Wolfe10 noted this extreme

non-uniqueness of solution to genome halving problem and propose to use a reference genome, i.e. outgroup

to reduce this number. Zheng et al18 formalize this approach and propose the first computational method

to solve it following with more recent19 and more efficient method applied to find phylogenetic relationships

among yeasts of the Saccharomyces complex. Here they also define the Genome Halving problem with two

outgroups.

The Guided Genome Halving Problem. Given an all-duplicates genome ∆ and an ordinary genome

Γ defined on the same set of genes, find an ordinary genome Π which minimizes

ggh(∆,Γ) = dDCJ(∆,Π) + dDCJ (Π,Γ).

These problems have different variants depending of the possibility for a genome of having one or several

chromosomes, only linear chromosomes or only circular chromosomes or a mix between the two. In what

follows we consider the genomes with several, exclusively linear chromosomes and the distance is DCJ distance

as defined here. The problem is a generalization of the median problem and is NP-hard as shown by Tannier

et al. and by Zheng et al.13,19

†It is a generalization to linear chromosomes of the “contracted breakpoint graph” defined by Alexseyev and Pevzner,1 and is

the line-graph of the “natural graph” used by Mixtacki.6
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3. A lower bound

For the median problem, there is a usual folklore lower bound that is used for very efficient branch and

bound approaches.15 Indeed, for three genomes Π1, Π2 and Π3, and a median genome Π, it is trivial from

the triangle inequality that

dDCJ(Π1,Π) + dDCJ(Π2,Π) + dDCJ(Π3,Π)

≥
dDCJ(Π1,Π2) + dDCJ(Π1,Π3) + dDCJ(Π3,Π2)

2
.

The Guided Genome Halving problem is a generalization of the median problem (indeed, if from the

ancestor the two copies of the doubled genome evolve independenly and no rearrangement mixes the two,

then it is equivalent to the median problem). But no such bound exists for this problem. We draw an

equivalent, though less trivial and less computationally easy, which helps evaluating solutions.

Theorem 3.1. Given an all-duplicates genome ∆ and an ordinary genome Γ defined on the same set of

genes,

ggh(∆,Γ) ≥
dDCJ(Γ,∆) + gh(∆)

2
.

Indeed, it is an easy exercise to show that the double distance verifies the triangle inequality. This yields,

for any genome Π and doubled genome Π ⊕ Π,

d(Γ ⊕ Γ,∆) ≤ d(Γ ⊕ Γ,Π ⊕ Π) + d(Π ⊕ Π,∆).

Clearly, Γ ⊕ Γ can be chosen so that d(Γ ⊕ Γ,Π ⊕ Π) ≤ 2d(Γ,Π), which gives

d(Γ ⊕ Γ,∆) ≤ 2d(Γ,Π) + d(Π ⊕ Π,∆).

Adding d(Π ⊕ Π,∆) to both sides, we get

d(Γ ⊕ Γ,∆) + d(Π ⊕ Π,∆) ≤ 2(d(Γ,Π) + d(Π ⊕ Π,∆)).

And finally, as by definition gh(∆) ≤ d(Π ⊕ Π,∆) and d(Γ,∆) ≤ d(Γ ⊕ Γ,∆),

d(Γ,∆) + gh(∆)

2
≤ d(Γ,Π) + d(Π ⊕ Π,∆).

Which, for a genome Π such that ggh(Γ,∆) = d(Γ,Π) + d(Π ⊕ Π,∆), yields the result

The bound may be reached only if the optimal solution of the guided halving problem is also an optimal

solution to the halving problem for the all-duplicates genome.

It is based on the computation of the double distance, which is NP-complete.13 So it is not immediately

usable in a branch and bound algorithm as the one for the median problem.15 A less tight bound may be used

by replacing dDCJ(Γ,∆) by dBP (Γ,∆)/2, where dBP is the double breakpoint distance and is computed with

a linear algorithm (see Tannier et al13). This more tractable bound is less often reached and never allows to

prove optimality in our case. For the easiest instances on yeast data (see Section 5), we could compute the

DCJ bound exactly and it allows to prove optimality of our Guided Genome Halving solutions given by the

algorithm below.

4. The Algorithm for Guided Genome Halving

4.1. Contracted breakpoint graphs

Previous work and experience on solving the problem computationally come from Sankoff’s group.18,19 The

first approach18 was to generate all possible genome halving solution and thereafter choose the subset of

solutions that minimize the distance from the outgroup. At the end, the authors develop local improvement

Pacific Symposium on Biocomputing 15:21-30(2010)
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heuristic searching in the neighbourhood of optimal halving solutions in order to find better solutions. Due

to potentially huge number of halving solutions only numerical results for maize with 34 doubled blocks are

reported. For any bigger instance one is obliged to choose heuristically a small subset of halving solutions

and proceed with the method, therefore trade off the time and quality of solutions.

The inspiration for our algorithm is the idea from Zheng et al19 where the authors combine information

from both the all-duplicates genome and the outgroup early in the process of constructing the ancestor. We

will use a small concrete genome with 5 duplicated genes to explain the main idea of the algorithm, and we

will use the genome of Example 2.1 as an outgroup.

Definition 4.1. Let ∆ be all-duplicates genome and let Γ be an ordinary genome defined on the same set

of genes. The contracted breakpoint graph of ∆ and Γ is the graph built on the contracted breakpoint graph

of ∆ (which edges are called the red edges), by adding an edge (called blue edge) for each adjacency of Γ.

We note the obtained graph B(∆,Γ).

Example 3: Let ∆ = a1b1c̄1b2d̄1ē1a2c2d̄2ē2 be an all-duplicated genome. Let Γ = ac̄bdē be an ordinary

linear unichromosomal genome. The associated contracted breakpoint graph follows (red edges are drawn

bold, while blue ones are thin).

et at bt

ct ah

ch

dh bh

eh dt

4.2. The algorithm

We used similar ideas as in Alekseyev and Pevzner2 or Zhao and Bourque,17 who find “reliable rearrange-

ments” in a multiple breakpoint graph, as well as in Xu,15 who searches for “adequate subgraphs” in a

multiple breakpoint graph. The two are the dynamic and static versions of the same principle: indentifing

some subgraphs in a breakpoint graph (whether it is a multiple or a contracted breakpoint graph changes

only the details) for which there is a provably optimal local ancestral arrangement, and thus rearrangements.

That is, for some patterns on the graph, it is possible to draw a realiable ancestor, and then to restrict the

heuristic principles on the rest of the graph, which we expect much smaller.

A DCJ operation on genome ∆ is immediately transposable on the contracted breakpoint graph: it

consists in deleting two edges (or one edge and one telomere), and join the 4 pending vertices by two other

edges. We chose the dynamic approach of Alekseyev and Pevzner2 or Zhao and Bourque,17 identifying reliable

rearrangements: we start with the contracted breakpoint graph of ∆ and Γ, and apply DCJ operations in

sequence until all red edges are doubled, which means we reached a doubled genome, so a solution to the

guided genome halving problem. We detect the following three configurations:

• We apply first all DCJs that directly lead to a red-blue cycle of length two;

• then we choose small sequences of DCJ leading to red-blue cycles of length two, at the condition

that it is not destroying any other red-blue two cycle. We can recognize such a sequence in the

contracted breakpoint graph: it is drawn from cycles consisting of some red edges and one blue edge,

while other blue edges adjacent to cycle are adjacent to red connected components (see Figure 1).

The sequence can be shuffled to diversify the final solution.

• finally choose sequences of DCJ leading to red-blue cycles of length four, at the condition that it

is not destroying immediately any red-blue 2-cycle. We recognize such a sequence in the contracted

breakpoint graph as a cycle consisting of some red edges and two blue edges while other blue edges

adjacent to the cycle are adjacent to other red connected components of the contracted breakpoint

graph (see Figure 1). The sequence can be shuffled to diversify the final solution.

Pacific Symposium on Biocomputing 15:21-30(2010)
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a)

12t 2h 3t 5t 8t

This is a straitforward case where a red

edge is parallel to a blue edge. We choose

the DCJ that transforms (2h, 3t), (5t, 8t)

into (5t, 3t), (2h, 8t), constructing a double-

red/blue cycle.

b)
12t 2h 3t 5t 4h 7h

Here there is a red-blue cycle but its par-

ity does not allow a sequence of DCJs that

construct a double-red/blue cycle.

c)
12t 2h 3t 5t 4h 7h

In this case, there is a red-blue cycle with

adequated parity. A first DCJ connects 3t

and 5t while the other connects 2h and 4h.

Note that any order of these DCJs will con-

struct one double-red/blue cycle.

d)
12t 2h 3t 5t 4h 7h

1t 3h 5h 4t 6h

This configuration forces the choice of two

DCJs: one that connects 3t and 5t while the

other connects 3h and 5h. These operations

lead to a double-red/blue cycle of size 4 that

is solved with only one DCJ.

Fig. 1. The detected DCJ rearrangements. Red edges are drawn black and blue edges are drawn grey.

When no such pattern is found, we apply series of DCJ which all lead to an optimal genome halving

ancestor, with a randomized choice.

4.3. Results on Sankoff’s instances on yeast genomes

Zheng et al19 use their Guide Genome Halving Heuristic on several instances built from yeast genes (personnal

communication). They choose a pool of genes from the Yeast Gene Order Browser,4 namely those which are

in one exemplar in the non duplicated species and in exactly two exemplars in the duplicated species. So a

minority of the genes are covered, make it difficult to compare with the manual reconstructed ancestor of

Gordon et al.8 However they provide a good benchmark for comparison with our method, showing that we

come to similar performances. We achive slighlty better solutions on the majority of instances. Results are

presented on Table 1.

5. Results on high coverage yeast data

5.1. Double conserved syntenies

The instances of the Guided Genome Halving problem were constructed by a double conserved synteny

method described in an earlier paper,12 which roughly consists in, given orthologies between a duplicated

genome and a non-duplicated genome (all orthologies are taken from the YGOB4) looking for a set S of gene

families which have one gene in the first genome, and at least one in the second, and verify

(1) the genes of S are contiguous in Lk;

(2) the genes of S form two contiguous segments ASc and BSc in Sc, of at least 2 genes each;

(3) the two sets ALk and BLk of genes of Lk which have homologs respectively in ASc and BSc form two

intersecting segments in Lk;

(4) At least one extremity of ASc (resp. BSc) is homologous to an extremity of ALk (resp. BLk);

(5) S is maximal for these properties.

The first two conditions impose the presence of one segment in Lk and two orthologous segments in

Sc, with a minimum size. It is the basis of the double synteny signal. The presence of at least two genes

Pacific Symposium on Biocomputing 15:21-30(2010)
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Instance Γ - ∆ 2n d(∆, X ∗ X) d(X,Γ) d(X,Γ)

AG-CG 538 186 153 144

AG-SC 1012 119 188 187

KL-CG 546 186 147 147

KL-SC 1026 122 197 197

KW-CG 542 188 215 205

KW-SC 994 121 323 317

A∗-CG 600 199 84 71

A∗-SC 1062 124 5 8

AG-V 576 61 148 149

KL-V 584 62 157 155

KW-V 582 62 212 210

A∗-V 600 62 29 27

Table 1. Comparison of the results obtained in Zheng et al19 and by our algorithm. The first column indicated the

couple of compared species. The number of duplicated genes (in these instances they are the synteny blocks) is re-

ported in the second column while in the third on we find the genome halving distance. All the best solutions we

found are also genome halving solutions. The forth and the fifth column contain distances from the solution the out-

group as reported by Zheng et al and obtained in this study. AG stands for E. gossypii, CG for C. glabrata, SC

for S. scerevisiae, KL for K. lactis, KW for K. waltii, A∗ for the pre-duplication ancestor of SC and CG, and

V for the post-duplication last common ancestor of SC and CG. These are the notations used by Zheng et al.

avoids the possible fortuitous presence of one transposed or misannotated gene. The third condition avoids

the ambiguous signal of two successive single syntenies. The fourth condition is used to orient the markers.

In this way, we were able to compare every pair of duplicated yeast (2 assembled species) and non-

duplicated yeast (5 assembled species). The coverage of the genomes is always above 95%, which allows to

reconstruct a large part of the history of the genomes.

5.2. The alternative ancestors

One first surprising thing already remarked in the earlier study12 is that the solutions to the Guided Genome

Halving on two species (Saccharomyces cerevisiae and Lachancea kluyverii) and the manually constructed

ancestor of Gordon et al8 from 11 species come very close. It is confirmed here, by the examination of several

solutions.

First of all, on this instance, our program (as well as the one of Zheng et al19) finds an optimal solution:

indeed, the value of the solution is 140, while the bound gives 139.5. This instance is one of the few for which

the bound is tractable without involving deep algorithmics. So it is a good information that no arrangement

can be strictly more parsimonious than the ones we find.

Our solutions are sequences of DCJs on the all-duplicates genome. 26 different sequences lead to an opti-

mal solutions, and among the 26 solutions, only two are different. They vary by one reciprocal translocation

and are both distant of one telomeric translocation from the solution of Gordon et al,8 which is suboptimal

for the number of DCJ (score 141).

The only point in which all three results vary is the position of a small part of Gordon et al8’s ancestral

chromosome 1 (Anc1.1-Anc1.120), which is alternatively fusioned to ancestral chromosome 2 or 6.

5.3. The rearrangements

Gordon et al8 have also manually infered all the rearrangements from the ancestral genome to Saccharomyces

cerevisiae. They found in total 144 rearrangements, 73 being inversions, 66 reciprocal translocations and 5

telomeric translocations.
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We find 115 DCS between our ancestor and the genome of Saccharomyces cerevisiae, and 116 between

Gordon et al’s ancestor. The difference is probably partly due to our definition of Double Conserved Syntenies,

which allow local rearrangements to a certain extant. Rearrangement distances are always difficult to compare

at different levels of resolution. But interchromosomal rearrangements are comparable, since rearrangements

inside the makers should be only inversions.

There is no unique scenario as pointed by Gordon et al,8 and some types of rearrangements are difficult

to assess with certainty. But for a pool of 26 scenarios, we found around 20 inversions, 7 couples of DCJs

transposing or exchanging the positions of blocks, 70-71 reciprocal translocations, and 7-8 telomeric translo-

cations. The number of reciprocal translocations and telomeric translocations hashas the same order than

in the manually reconstructed scenario. Inversions are much less numerous, even if transposition couples

of DCJs are counted as 3 inversions. So most inversions seem so be included local rearrangements within

the syntenies. No current method can faithfully evaluate this number of local rearrangements which involve

double conserved syntenies.

Gordon et al8 only make their analyses on the Saccharomyces cerevisiae branch. Here, we are able

to reconstruct also the whole distance matrix between all yeast species available in YGOB.4 The results,

in terms of numbers of DCJs, are reported in Table 2. The tendecies in the rearrangement rates on all

species follow the “number of blocks” statistic of Gordon et al.8 A multiple study would identify the shared

rearrangements, but this is left for a future work.

E.gossypii K.lactis L.thtolerans L.waltii* L.kluyveri Z.rouxii

S.cerevisiae 117 + 163 116 + 183 111 + 67 114 + 84 115 + 25 119 + 118

S.bayanus* 156 + 164 140 + 175 168 +109 166 + 120 176 + 83 173 + 144

C.glabrata 251 + 177 258 + 189 266 + 108 256 + 124 266 + 75 273 + 136

N.castellii* 177 + 169 166 + 189 192 + 106 192 + 118 199 + 81 195 + 146

V.polyspora* 199 + 173 192 + 182 220 + 101 216 + 117 225 + 78 215 + 146

Table 2. DCJ distances between pairs of genomes. A+B means: A is the distance from the ancestor to the duplicated species, and

B is the distance from the ancestor to the non-duplicated species. So on one line, we expect the first number to be approximatively

the same (up to a variation on the number of local rearrangements inside the markers, which vary for each comparison). Species

which name is followed by an asterisk are not yet assembled, so probably the number of rearrangements is overestimated.

6. Conclusion

We presented an algorithm for the Guided Genome Halving problem, as well as a lower bound. The algorithm

uses ideas similar to the ones of Zheng et al,19 accompagnied by principles used for the median problem by

Xu,15 or for multiple comparisons by Alekseyev and Pevzner2 or Zhao and Bourque,17 which is natural as

the guided halving generalizes the median. On some instances coming from yeast order data, the bound

gives a proof that the obtained solution is optimal. Comparing a set of optimal solutions with a standard

preduplication ancestor of Saccharomyces cerevisiae, we obtain two interesting conclusions : the standard

arrangement is sub-optimal, at one operation from optimal solutions, and the latter vary only by the position

of a single block.

This shows that on yeast data, it seems that the Guided Halving problem provides a very good mod-

elization, perhaps better than on mammalian data, where automatic methods have diverged from standard

manual studies for a while.

Future work will concern the efficient computation of the double distance problem, in order to provide a

bound which is possible to use within an algorithm for the Guided Genome Halving. Zheng et al19 have also

generalized the Guided Halving to instances with two non-duplicated genomes. The data and study from

Gordon et al8 also calls for the possibility of reconstructing the full Saccharomycetes phylogeny on several

duplicated as well as non duplicated species.
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