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Abstract—Traffic measurement and analysis are crucial man-
agement activities for network operators. With the increase
in traffic volume, operators resort to sampling primitives to
reduce the measurement load. Unfortunately, existing systems use
sampling primitives separately and configure them statically to
achieve some performance objective. It becomes then important
to design a new system that combines different existing sampling
primitives together to support a large spectrum of monitoring
tasks while providing the best possible accuracy by spatially
correlating measurements and adapting the configuration to
traffic variability. In this paper, and to prove the interest of the
joint approach, we introduce an adaptive system that combines
two sampling primitives, packet sampling and flow sampling,
and that is able to satisfy multiple monitoring tasks. Our
system consists of two main functions: (i) a global estimator
that investigates measurements done by the different sampling
primitives in order to deal with multiple monitoring tasks and
to construct a more reliable global estimator while providing
visibility over the entire network; (ii) an optimization method
based on overhead prediction that allows to reconfigure monitors
according to accuracy requirements and monitoring constraints.
We present an exhaustive experimental methodology with differ-
ent monitoring tasks in order to assess the performance of our
system. Our experimentations are done on our MonLab platform
that we developed for the purpose of this research.

I. INTRODUCTION

The widespread use of the Internet infrastructure and the
tremendous growth in its size have made the management
and monitoring of ISP networks an indispensable function.
Currently, the world of traffic measurements presents a large
number of network management tasks including traffic en-
gineering, network resource provisioning and management,
accounting and anomaly detection.

In order to cope with the increasing trend in line speed that
exceeds the monitoring capabilities of monitors, several pro-
posals try to provide a widespread monitoring infrastructure
that coordinates monitoring responsibilities and distributes the
work between the different monitors in a way to satisfy to
the best management applications requirements. The common
objective of these efforts is to design a distributed monitoring
system that samples traffic in a cost-effective manner by
carefully placing monitors and configuring their sampling
rates. However, these application-specific systems still present
some drawbacks including the problem of tightly coupling
target applications and sampling primitives (i.e. they focus on
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satisfying a specific application using one sampling primitive).
For instance, the authors in [1] use the packet sampling
primitive and reconfigure periodically the different sampling
rates in order to calculate the traffic matrix, while the authors
in [2] use the flow sampling primitive for flow counting.
The main consequence of this trend is the deployment of
monitoring systems using different sampling primitives for the
achievement of specific monitoring tasks without thinking of
a combination of these primitives for a broader usage.

We argue that it is possible to integrate the different existing
monitoring tools and sampling primitives in order to support
a larger spectrum of applications. In fact, the proliferation of
monitoring solutions and sampling primitives motivates us to
build a novel system able to achieve a myriad of concurrent
monitoring tasks while offering the best possible accuracy at
limited monitoring overhead.

Three main challenges arise in the development of such
system:

• How to deal with multiple monitoring objectives and
how to combine independent measurements collected
across the network using different sampling primitives
and different monitoring tools?

• How to coordinate responsibilities across the different
monitors and how to share resources between the different
sampling primitives in order to improve the global accu-
racy while respecting resource consumption constraints?

• How to adapt to variations in the monitored traffic and
in network conditions?

In this paper, we introduce a novel system that is able to
integrate various existing monitoring primitives in order to
support multiple monitoring tasks. We explain and validate
the system design for two sampling primitives, packet sam-
pling and flow sampling, and for three monitoring tasks, flow
counting, flow size estimation and heavy-hitter detection. Our
system extends the local monitoring tools with a network-
wide cognitive engine that consists of two main design mod-
ules: (i) a global estimator module that investigates the local
measurements of the different deployed techniques in order to
provide a global more accurate estimation; (ii) an optimization
module that dynamically adjusts the different monitors and
shares resources between the supported sampling primitives
according to the requirements of the monitoring tasks while
addressing the tradeoff between resource consumption and
global measurement accuracy. This optimization is based on



an overhead prediction method to track short-term and long-
term changes in the traffic and on a global weighted utility
function to deal with multiple monitoring tasks.

In order to evaluate the performance of our system, we intro-
duce out an exhaustive evaluation methodology for network-
wide monitoring applications to cope with the lack of a univer-
sal experimental platform for such applications. Indeed, for the
purpose of this research, we have implemented MonLab [10], a
real experimental platform for traffic sampling and monitoring
using real traffic traces and real Netflow-like monitoring tools.
Using our platform, we provide a global experimental study
of the performance of the proposed system.

The rest of the paper is organized as follows. In Section
II, we summarize the related work. Then, we present the
system architecture in Section III. The experimental platform
is presented in Section IV. Evaluation results are presented in
Section V. Finally, conclusions and future work are drawn in
Section VI.

II. RELATED WORK

The importance of passive traffic measurements for the
understanding and diagnosis of core IP networks has led to
a considerable evolution in the number and quality of moni-
toring tools and techniques. Recently, numerous monitoring
primitives have been proposed in order to achieve a large
number of network management tasks. The spectrum is broad
covering among others flow sampling [3], sample and hold [4]
and packet sampling [1]. Currently, NetFlow [5] is the most
widely deployed measurement solution by ISPs. However,
this solution still presents some shortcomings, namely the
problem of configuring sampling rates according to network
conditions and the requirements of monitoring applications.
Another problem comes from the low values at which the
sampling rate is set in practice (between 0.01 and 0.001) and
this in order to cope with the increasing trend in line speed.

In order to provide a balance between scalability (respecting
the resource consumption constraints) and accuracy, many
works have investigated the existing sampling primitives and
have used them to build network-wide monitoring systems that
coordinate responsibilities between the different monitors. For
example, the authors of [6] argue that performance limits can
be addressed by reducing the sampling rates in the different
monitors while accuracy can be improved by combining the
parallel measurements of the same flow made in different
monitors. The authors in [2] focus on improving the use of
network resources to achieve network-wide monitoring tasks.
They present a system approach that uses a hash-based flow
selection to eliminate duplicate measurements in the network
and a framework for distributing responsibilities across routers
to satisfy network-wide monitoring objectives. The authors in
[1] use packet sampling primitives and reconfigure periodically
the different sampling rates in order to increase accuracy of
traffic matrix estimations.

All the above solutions propose systems that use single sam-
pling primitives to achieve specific management applications.
No one of these systems is optimized to achieve a general class

Fig. 1. System architecture.

of monitoring tasks and to combine different sampling primi-
tives. In order to solve these limitations, some proposals have
presented simple combination of existing sampling primitives
in order to achieve a larger class of tasks. For instance, the
authors in [7] combine a small number of simple and generic
router primitives that collect flow-level data to estimate traffic
metrics, while the authors in [8] use a combination of flow
sampling and sample-and-hold to provide traffic summaries
and detect resource hogs. The system we propose in this paper
is not only able to combine different sampling primitives,
but more importantly can adapt their contribution in a way
to maximize the global measurement accuracy at limited
overhead. Different monitoring applications will automatically
lead to different tuning of the sampling primitives.

III. SYSTEM ARCHITECTURE

Figure 1 depicts the basic functional components of the
proposed monitoring system together with the interactions
among them. The system relies on existing NetFlow-like
local measurement tools (Monitoring Engine (ME)) deployed
in network routers. We chose to use two complementary
sampling primitives: (i) Flow Sampling (FS) which is well
suited for security and anomaly detection applications that
require analyzing the flow communication structure, and (ii)
Packet Sampling (PS) which is well suited for traffic engineer-
ing and accounting applications based on the traffic volume
structure, e.g., heavy-hitter detection and traffic engineering
that require an understanding of the number of packets/bytes
per-port or per-prefix [7].1 Our system extends these local

1While packet sampling consists in capturing a subset of packets indepen-
dently of each other, flow sampling consists in capturing flows independently
of each other. Once a flow is captured by flow sampling, all its packets are
captured and analyzed. The decision to capture a flow or not is done at the
beginning of the flow.



existing monitoring tools (MEs) with a centralized network-
wide cognitive engine (CE) that drives its own deployment
by automatically and periodically reconfiguring the different
monitors in a way to improve the overall accuracy (accord-
ing to monitoring application requirements) and reduces the
resulting overhead (respecting some resource consumption
constraints, typically the volume of measurements). Next we
give a detailed description of the two main components of
the cognitive engine of our system, which are (i) the global
estimator engine that combines measurements and estimates
network traffic, and (ii) the reconfiguration engine that updates
the sampling rates in routers.

A. Global Estimator Engine

This component is motivated by the need to extend local
existing monitoring tools (MEs) with a network-wide inference
engine that combines their measurements to support a large
spectrum of applications and provide more accurate results.
Given a set of measurement tasks T to realize, this inference
engine investigates the local measurements made by the differ-
ent routers to obtain a global and more reliable view. Consider
the set of available sampling primitives S. For each monitoring
task Ti ∈ T , the global estimator takes as input the estimations
of Ti, (T̂ s

i )s∈S made using the different sampling primitives
in routers. The inference engine then tries to combine the
different estimators and derive a better estimation of the Ti.
This combination is motivated by the need to minimize the
variance of the global estimation error for Ti. To this end, we
construct the global estimator of the task Ti as a weighted
sum of the estimators obtained from the different sampling
primitives. This weighted summation of estimators is known
to be the best linear combination in terms of minimization of
mean square error [6],

T̂i =
∑
s∈S

λsT̂
s
i with λs =

1
V ar(T̂ s

i )∑
l∈S

1
V ar(T̂ l

i )

. (1)

Note that the weights are inversely proportional to the
estimator error, which in their turn are inversely proportional
to the configured sampling rate. Thus, primitives providing
estimates with smaller error have a larger impact on the global
estimator than those providing estimates with larger error.

In order to explain the operation of our system and how it
combines their measurements, we consider three monitoring
applications: flow counting, flow size estimation and heavy
hitter detection. The analysis and validation are done for the
two-well known sampling primitives: packet sampling and
flow sampling.

1) Flow counting:: We explain in this section how the
central estimator can combine measurements collected from
the PS and FS tools to provide a global estimation of the
number of flows N crossing the entire network, or part of it,
during some observation time d that we define later. A flow
is an aggregate of packets sharing some common features.
Here we use the basic definition called the 5-tuple definition
where packets of a flow share the same source and destination

IP addresses and port numbers plus the protocol number. A
flow can be flow-sampled using the FS tool or packet-sampled
using the PS tool.

Consider the set of monitored paths A. Each path a ∈ A
consists of a set of monitors. Consider Na to be the total
number of flows crossing the path a. Let N̂f

a and N̂p
a be

two estimators of Na using respectively FS and PS and let
V ar(N̂f

a ) and V ar(N̂p
a ) be their corresponding variances.

Hence, according to (1), we can derive a better estimation
of Na using a linear combination of these two estimators:

N̂a = αN̂p
a + βN̂f

a , (2)

where,

α =

1
V ar(N̂p

a )

1
V ar(N̂p

a )
+ 1

V ar(N̂f
a )

and β =

1

V ar(N̂f
a )

1

V ar(N̂f
a )

+ 1
V ar(N̂p

a )

.

(3)
Note that if a sampling primitive is not executed over a certain
path, we set its corresponding weight to 0 and we verify that
the weights sum to 1.

Next, we explain how to calculate N̂f
a , N̂p

a and their
corresponding variances V ar(N̂f

a ) and V ar(N̂p
a ). Consider

for this the packet sampling rate vector P p = (ppk)k∈R and
the flow sampling rate vector P f = (pfk)k∈R. R is the set
of monitors in the network, each monitor k is tuned with a
packet sampling rate ppk and a flow sampling rate pfk .

First, using the FS primitive, the probability that a flow
is flow-sampled along a path a is equal to: πf

a = 1 −∏
k∈a(1−p

f
k). Consider nfa to be the number of flow-sampled

flows crossing the path a. We can derive a first estimation
of the number of flows along the path a that maximizes the
likelihood:

N̂f
a =

nfa

πf
a

. (4)

Under independent sampling of flows with probability πf
a ,

the number of flow-sampled flows nfa follows a binomial
distribution whose variance is well known and equal to
Na.π

f
a .(1 − πf

a ). It follows that this path-level estimator of
the number of flows has a variance equal to:

V ar(N̂f
a ) =

N
(t)
a .(1− πf

a )

πf
a

. (5)

Now we give the expression of the estimator of Na using
the PS primitive (denoted above N̂p

a ). Let npa be the number of
packet-sampled flows crossing path a. Let S be the size of a
given flow, then the probability that this flow is packet-sampled
along path a is equal to 1−

∏
k∈a(1− p

p
k)

S (i.e. at least one
packet sampled), which can be approximated by S.πp

a for small
ppk, where πp

a =
∑

k∈a p
p
k. The average number of packet-

sampled flows npa can then be approximated by πp
a.Σa.Na,

where Σa is the mean size of 5-tuple flows crossing path a.
Hence, we can give a second estimation of Na:

N̂p
a =

npa
πp
a.Σa

. (6)



This estimator has a variance equal to

V ar(N̂p
a ) =

V ar(npa)

(πp
a)2.(Σa)2

=
(1− πp

a.Σa).Na

πp
a.Σa

. (7)

We still need to provide an estimation for the average flow
size. We use the number of sampled flows to this end.

Let Oa = nfa + npa be the total number of sampled flows
along the path a. Given the global estimator for the number
of flows N̂a, we can approximate this overhead by: Oa =
πf
a .N̂a+(1−πf

a )π
p
a.Σa.N̂a. This gives the following estimator

for the mean size of flows crossing path a:

Σ̂a =
Oa − πf

a .N̂a

(1− πf
a )π

p
a.N̂a

. (8)

Eq. (2) and (8) constitute a system of two equations with two
unknowns that we can solve to find the values of N̂a and Σ̂a.

2) Flow size estimation:: Consider C traffic aggregate
flows whose volumes in packets are labeled F1, F2, . . ., FC .
Denote by F̂1, F̂2, . . ., F̂C the corresponding estimators. Each
aggregate flow Fi is formed of a set of 5-tuple flows whose
volumes are denoted by Sji. Again, denote by Ŝji the best
estimator for the size of each of these 5-tuple flows. We have
then F̂i =

∑
j Ŝji. As target application and without loosing

generality, we define a flow Fi as the set of 5-tuple flows
that share the same AS source and AS destination. All AS-to-
AS flows are jointly considered, which is often called in the
literature the traffic matrix.

Similarly to (1), we can derive a global estimator for the
size of flows F̂i using estimations made by packet-sampled
flows, F̂ p

i , and flow-sampled flows, F̂ f
i :

F̂i = χF̂ p
i + ψF̂ f

i , (9)

where,

χ =

1
V ar(F̂p

i )

1
V ar(F̂p

i )
+ 1

V ar(F̂ f
i )

andψ =

1

V ar(F̂ f
i )

1

V ar(F̂ f
i )

+ 1
V ar(F̂p

i )

. (10)

Next we calculate F̂ p
i , F̂ f

i and their corresponding vari-
ances, V ar(F̂ p

i ) and V ar(F̂ f
i ).

Take a 5-tuple flow Sji crossing path a and belonging to
aggregate flow Fi, and let (spkji)k∈a be the number of packet-
sampled packets from this 5-tuple flow in monitor k. We can
easily derive an estimation for the size of this 5-tuple flow:

Ŝp
ji =

∑
k∈a

λkŜ
p
kji, with λk =

1
V ar(Ŝp

kji)∑
l∈a

1
V ar(Ŝp

lji)

, (11)

where Ŝp
kji =

spkji

pp
k

is the best local estimator for the size of
the 5-tuple flow in the monitor k ∈ a. This local estimator has
a variance equal to V ar(Ŝp

kji) = Sp
ji.(1 − p

p
k)/p

p
k. It follows

that the estimator Ŝp
ji is equal to:

Ŝp
ji =

1

φa
.
∑
k∈a

skji
1− pk

, where φa =
∑
l∈a

ppl
1− ppl

. (12)

The variance of this estimator is simply equal to:

V ar(Ŝp
ji) = Sji/φa. (13)

Hence, under independent sampling of packets in the different
monitors, we can derive the expression of F̂ p

i =
∑

j Ŝ
p
ji and

its corresponding variance V ar(F̂ p
i ) =

∑
j V ar(Ŝ

p
ji).

Now we move to deriving the estimator of flow size using
flow sampling. Consider sfji to be the number of flow-sampled
packets of the 5-tuple flow Sji. Hence:

F̂ f
i =

∑
j sji

πf
a

. (14)

This estimator has a variance equal to:

V ar(F̂ f
i ) =

1− πf
a

πf
a

.
∑
j

(Sji)2 =
1− πf

a

(πf
a )2

.
∑
j

(sji)2. (15)

3) Heavy hitter detection:: The goal here is to identify the
top flows with the most traffic volume. These flows are used
by operators to understand application patterns and resource
hogs, as well as for traffic engineering and accounting. In this
paper, we track heavy hitters at the AS level, i.e. we define
a flow as the total volume of traffic generated by each stub
AS and we make sure to count both outgoing and incoming
traffic in each AS flow.

For the calculation of the outgoing and incoming traffic
for each AS, we use the method used for flow size estima-
tion while considering only large ASes in the optimization
procedure. We estimate all AS flows but we only optimize
sampling rates over those contributing to more than some
percentage of the total network traffic. We present results
for a 5% threshold under the Large ASes task. Some ASes
are smaller than this threshold but their traffic might still be
reported to the central collector, yet they are not included
in the optimization procedure and they not returned to the
monitoring application. For this application, our system will
try to minimize the volume of undesirable measurement traffic
coming from small flows.

B. Network Reconfiguration Engine

Given a list of measurement tasks T and an overhead con-
straint measured in terms of reported NetFlow records (Target
Overhead T O), our system adaptively adjusts its configura-
tion to answer the requirements of the multiple tasks while
tracking short-term and long-term variations in the traffic. A
configuration is a selection of sampling rates of the different
primitives on the different interfaces of network routers (or
monitors). This configuration is periodically updated as a
function of the overhead and in a way to optimize the accuracy
of the considered measurement tasks. Next, we present the
architectural ideas behind our system.

1) Overhead prediction: The optimization procedure re-
quires the prediction of overhead after any reconfiguration,
in order to find the optimal configuration that keeps the real
overhead within a target value while providing the best pos-
sible measurement accuracy for the considered tasks. Defined



as the total volume of NetFlow records collected at the central
cognitive engine, the overhead can be expressed as follows:

O =
∑
M∈R

∑
a∈ΓM

(πf
a .Na + (1− πf

a )π
p
a.Na.Σa), (16)

where ΓM ⊂ A is the subset of paths containing the monitor
M . In order to track signification variations in the traffic
while removing undesirable noise, we use the Exponentially
Weighted Moving Average (EWMA) filter which is a memo-
ryless moving average filter whose weights are exponentially
decreasing from more recent historical samples to older ones.
Hence, an EWMA filter gives more importance to recent ob-
servations while still not discarding older observations entirely.

Let Na and Σa be respectively the smoothed version of the
number of flows across a path a and their mean size expressed
in number of packets. Every period d, which is the period
at which sampling rates are reconfigured, we update these
moving averages as follows:

Na ← δNa + (1− δ)Na, (17)

Σa ← δΣa + (1− δ)Σa, (18)

where Na and Σa are the last estimations provided by Eq. (2)
and (8) over the last d period. δ = 2

(n+1) is the smoothing
factor where n is the window length over which we smooth
the traffic. This factor allows us to choose the time scale τ
at which we track variations in the traffic. For instance, if we
want to track changes on hourly scale (i.e. τ = 3600s), we
calculate the window length n = τ

d , d being the period of
configuration updates.

Using (17) and (18) and a slightly simplified version of (16),
we can now give the analytical expression of the overhead
prediction. This overhead prediction is no other than the
smoothed version of the number of collected NetFlow records
per d period.

O =
∑
M∈R

∑
a∈ΓM

(πf
a .Na + πp

a.Na.Σa). (19)

The overhead prediction method works as follows. For each
path a ∈ A, first we look for initial values for the number of
flows Na and the mean flow size Σa. To do so, we can use
values of the same period of the last week or the last day. Then,
we start using the collected traffic to update estimators and
predict the overhead. Algorithm 1 explains how the EWMA
filter is implemented for prediction according to Eq. (19).
Note that the smoothing factor δ plays a crucial role in the
overhead prediction. In fact, using short time scale can disrupt
the system with unnecessary details specific to a particular
observation period while the use of a large time scale can
lead to the loss of important changes in the traffic. One has to
find the suitable time scale that addresses the tradeoff between
these two extremes.

2) Optimization method: The optimization method is mo-
tivated by the need to coordinate responsibilities across the
different monitors to improve the accuracy. This method is
fed by the list of tasks Ti, their associated weights γi, and

Data: Number of flow-sampled flows and packets
(nfa)a∈A and (sfaji)a∈A.

Number of packet-sampled flows and packets (npa)a∈A
and (spkji)k∈R.
The predictions: Na and Σa, and the sampling rate
vectors P f and P p.
Time scale τ and computation period d
Result: The expression of the overhead prediction O
begin

n← τ
d ; δ ← 2/(n+ 1) ;

foreach a ∈ A do
calculate N̂f

a =
nf
a

πf
a

; calculate N̂p
a =

np
a

πp
a.Σa

.;

calculate N̂a = αN̂p
a + βN̂f

a ;
\\Estimate the number of 5-tuple flows.
Na ← δN̂a + (1− δ)Na ;
calculate Σ̂a =

Oa−πf
a .N̂a

πp
a.N̂a

;
\\Estimate the mean size of 5-tuple flows.
Σa ← δΣ̂a + (1− δ)Σa ;
\\Derive the expression of the overhead
prediction of the next period.
Oa ← πf

a .Na + πp
a.Na.Σa ;

end
\\Derive the global overhead prediction expression.
O =

∑
M∈R

∑
A∈ΓM

Oa ;
return {O}

end

Algorithm 1: Overhead prediction method

the normalized error of the global estimation of each task T̂i,
MRE(T̂i). Our objective is to find the optimal sampling rate
vector that minimizes this utility function:

U =
∑
i

γiMRE(T̂i), (20)

under the following constraints:

O ≤ T O, (21)

pk ≤ SRmax, (22)

pk ≥ SRmin. (23)

SRmin and SRmax are respectively the minimum and maxi-
mum sampling rate values. To solve this constrained optimiza-
tion problem we define the corresponding Lagrangian:

L = U+δ(O−TO)+
∑
k

ak(pk−SRmax)+
∑
k

bk(SRmin−pk).

(δ, ak, bk) is the set of Lagrange multipliers that enforce the
satisfaction of the constraints. We solve this Lagrangian by
an iterative procedure using the Newton method (refer to [9],
Chapter 9.5). The idea of the method is as follows. We start
with an initial guess of the optimal sampling rate vector. Then,
at each iteration, we use the Newton method to go into a better
direction while using a sophisticated line search algorithm to



Fig. 2. Experimental platform

find the best step value. We continue until we either reach
the global minimum or we exceed the maximum number of
iterations.

IV. EVALUATION METHODOLOGY

In order to evaluate the performance of our system, we
developed an experimental platform Monlab [10]2. This plat-
form has the following main features: (i) it is fed by real
traffic captured on a transit link then spread and played over
an emulated network topology, (ii) it includes real NetFlow-
like tool for traffic monitoring on all router interfaces of the
emulated topology, and (iii) it implements the central unit as
it should be in reality.

A. Experimental platform

As shown in Figure 2, our experimental platform, is com-
posed of three services: (i) the traffic emulation service, (ii)
the traffic monitoring and sampling service, and (iii) the data
collection and analysis service. Routers can be either virtual
nodes connected by virtual links, or real routers connected
by real links. The first service is responsible of generating
the emulated traffic across the network routers. The second
service implements packet sampling and flow monitoring a
la NetFlow on each router interface. The later functionality
is provided by SoftFlowd [11], an open source free software
capable of NetFlow measurements in high speed networks.
The third service mainly consists of the Flowd tool in the
SoftFlowd package. It is a centralized service that collects
NetFlow records, correlates them to better estimate network
traffic, and then runs our adaptive algorithm to decide on
which sampling rates to update.

SoftFlowd requires network traffic in the TcpDump for-
mat. Unfortunately, obtaining real traffic data from an entire
backbone network is a hard issue. To cope with, we proceed
in the following way. We first seek unsampled packet traces
collected on high speed transit links. We consider for this study
the ones coming from the Japanese MAWI project [12]. We
parse the traces for the IP prefixes, and we dispatch them
over the Autonomous Systems (ASes) connected to the edge
routers of the emulated topology. The dispatching is done
randomly according to some predefined weights that determine
the importance of each stub AS. Our system allows to define
the length of the prefix as a function of the granularity of the

2URL: http://planete.inria.fr/MonLab/

dispatching we want to achieve. For this work, we consider
the /16 prefix as the unit for IP address assignment to ASes.

Once addresses are allocated, the packets in the TcpDump
trace are split accordingly between the different ASes con-
nected to the emulated topology. Shortest routes are calcu-
lated. Then packets in the TcpDump trace are associated to
the different monitors over their respective paths across the
network with the correct timestamps derived from the trace.
SoftFlowd samples then packets, form flows and send them
back to the central collector. This sampling and monitoring is
done in parallel on all network router interfaces.

B. Scenario description

Our platform requires the definition of a network topology
over which it dispatches and replays a real traffic. We chose to
experiment over network topologies similar to the Geant topol-
ogy [13]. The weights of ASes needed for traffic dispatching
are set according to the size of stub ASes in Geant and we
make sure these weights sum to 1. An AS of weight w will see
itself attributed 100.w% of the prefixes available in the trace
and will see its traffic (incoming or outgoing) being around
100.w% of the total trace traffic, both at the flow and packet
levels (random prefix allocation). Once topology and weights
are set, TcpDump traces coming from [12] are replayed.

The three services of the platform run on one machine
each. In order to initialize the different estimators, we run
a first computation without sampling. As target applications,
we consider the three applications we introduced in Sec-
tion III-A1: flow counting, flow size estimation and heavy
hitter detection. The objective is to minimize the weighted
normalized estimation error (Eq. 20).

V. VALIDATION RESULTS

In this section, we show first the practical benefits of
deploying our system by comparing it to application-specific
sampling systems. Second, we evaluate the efficiency of our
adaptive solution. Last, we present a global sensitivity analysis
to study the importance of the different parameters.

A. Comparison with application-specific sampling

For this experiment, we set the timer d for updating
sampling rates to 5 minutes, the time scale β to 3600s, the
minimum possible sampling rate SRmin to 0.0005 and the
maximum possible one SRmax to 1. The T O is set to 200
NetFlow-records/s.

We plot in Figure 3 the average mean relative error for three
specific monitoring applications:

• Flow counting application (FC).
• Flow size estimation (FS).
• Heavy hitter detection (HH).

For these applications, we use our proposed joint method and
we compare its performance with the two application-specific
primitives when used separately, i.e., packet sampling and flow
sampling primitive.

We plot in Figure 3(d) the global accuracy defined as the
global weighted accuracy as described in Eq. (20). This figure
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(a) Flow counting
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(b) Flow size estimation
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(c) Heavy hitter detection
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(d) Global accuracy

Fig. 3. Average mean relative error vs. Target overhead (T O) for three applications: Our approach vs. two application-specific approaches.

shows that our solution provides the best global accuracy for
the different monitoring applications. It combines measure-
ments of the different monitoring primitives to improve the
accuracy of the global estimator. As we can see in this figure,
in order to have similar global accuracy to our joint method
using application-specific primitive, one has to use a T O
value larger than 150% of the value used by the method we
propose. In fact, each primitive focuses on achieving a specific
application. Therefore, while the use of a single primitive
allows improving results for its specific monitoring applica-
tion, it provides inaccurate results for the other monitoring
applications. These results are illustrated in figures 3(a),3(b)
and 3(c). We observe that each primitive provides accurate
measurements for its specific application and less accurate
results for the other applications. For instance, packet sampling
primitive improves accuracy of FS and HH applications while
it provides a large estimation error for FC application. On the
other hand, flow sampling primitive improves results of FC
application and provides less accurate results for FS and HH
applications. We notice that our solution based on combining
results of the different monitoring primitives improves accu-
racy of the different applications especially when the value of
T O is small. In this case, sampling rate values are low and
each single primitive provides inaccurate results. We can thus
combine their measurements in order to improve the global ac-
curacy. Hence, using our solution based on combining different
sampling primitive measurements, allows not only optimizing
resource consumption but also improving the global accuracy

as well as the accuracy of each specific monitoring application.
Furthermore, these figures also show the large impact of the
monitoring constraint (T O) on measurement accuracies. We
observe in particular the clear reduction of estimation errors
when increasing the value of T O.

B. System efficiency and adaptability

Now we want to study the impact of the weights used in
the global utility function on the behavior of our system. The
parameters of experiments are set as in the previous section.
We run three scenarios while changing each time the assigned
weight value to each monitoring application. Periodically, we
measure the mean relative error. Then, we consider the average
over all these values measured during the experiment. Table
I and II present a summary of experimental results for a
selection of scenarios. We notice that assigned weights have
an impact on the behavior of our system. We observe I that
increasing the weight value assigned to a given monitoring
application allows reducing the average mean relative error
(AMRE) of its measurement.

Consider the following experiments: in a first scenario
(SC1), the operator assigns equal weights to the different tasks
(0.33). In order to validate the operation of our solution we
run again the same experiment in SC2 while increasing the
weight assigned to the FC application from 0.33 to 0.5. We
see in table I that the error of FC application is reduced from
0.1045 to 0.0738. In fact, by increasing the weight assigned
to FC application the system finds automatically the new best
configuration that minimizes the global error while respecting



TABLE I
SUMMARY OF ASSIGNED WEIGHTS AND EXPERIMENTAL RESULTS FOR A SELECTION OF SCENARIOS

Scenario Flow counting Flow size estimation Heavy hitter detection Global accuracy
assigned weight AMRE assigned weight AMRE assigned weight AMRE

SC1 0.333 0.1045 0.333 0.0834 0.333 0.06745 0.08511
SC2 0.5 0.0738 0.25 0.164 0.25 0.0865 0.09952
SC3 0.5 0.0889 0.5 0.114 - - 0.1014

TABLE II
AVERAGE SAMPLING RATE VALUES AND REPORTED NETFLOW RECORDS FOR A SELECTION OF SCENARIOS

Scenario Flow Sampling Packet Sampling
Average sampling Percentage of reported Average sampling Percentage of reported

rate value NetFlow records rate value NetFlow records
SC1 0.016 39.65% 0.314 60.35%
SC2 0.0287 62.84% 0.197 37.16%
SC3 0.03613 58.23% 0.023 41.77%

the monitoring constraint (T O). We see in table II that the
new average sampling rate value for flow sampling primitive
increases from 0.016 to 0.0287 introducing an increase of the
percentage of flow sampled flows (reported Netflow record
for flow sampling primitive) from 39, 65% to 62, 84%. Hence,
for a set of applications with their corresponding weights, our
solution finds the best monitors configuration that optimizes
the global accuracy while respecting monitoring constraints.
This result is illustrated in SC3. We assign the same weight
(0.5) to FC application and we use only two applications
instead of three. We observe in table II that the system finds
a new optimal configuration for this new set of applications
and their assigned weights.

C. Overhead prediction process validation

In order to evaluate the performance of the overhead predic-
tion method, we plot in figure 4 the evolution of the measured
overhead (exported NetFlow records) over time. We observe
that for the two time scale values the system maintains the
overhead around the T O. In fact, the system tries to profit
from the available resources in order to provide the best
possible accuracy. However, the use of a small time scale
(τ = 600s) leads to an oscillating behavior of the overhead
since the system tracks more details and changes in the traffic
while tracking changes on a large scale (τ = 5400s) leads to a
stable behavior of the overhead. This is due to the avoidance
of some details and variations in the traffic specific to one
observation period.

VI. CONCLUSIONS

In this paper, we have presented an adaptive system that
combines different existing sampling primitives in order to
support a large spectrum of monitoring tasks while providing
the best possible accuracy. Our system coordinates responsi-
bilities between the different monitors and shares resources be-
tween the different sampling primitives. Experimental Results
proved the ability of our system to keep the resulting overhead
around a target value. Compared to application-specific solu-
tions, our system has shown its advantages in providing more
accurate results especially for low values of T O. Our system
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is practical and provides a flexible optimization method based
on overhead prediction that reconfigures monitors according to
monitoring applications requirements and network conditions.

Our ongoing work is centred on the distribution of the
control.
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