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Abstract: Local descriptors are ubiquitous in image and shape analysis, as they allow the
compact and robust description of the local content of a signal (image or 3D shape). A common
problem that emerges in the computation of local descriptors is the variability of the signal scale.
The standard approach to cope with this is scale selection, which consists in estimating a char-
acteristic scale around the few image or shape points where scale estimation can be performed
reliably. However, it is often desired to have a scale-invariant descriptor that can be constructed
densely, namely at every point of the image or 3D shape.

In this work, we construct scale-invariant signal descriptors by introducing a method that does not
rely on scale selection; this allows us to apply our method at any point. Our method relies on a
combination of logarithmic sampling with multi-scale signal processing that turns scaling in the
original signal domain into a translation in a new domain. Scale invariance can then be guaranteed
by computing the Fourier transform magnitude (FTM), which is unaffected by signal translations.
We use our technique to construct scale- and rotation- invariant descriptors for images and scale-
and isometry-invariant descriptors for 3D surfaces, and demonstrate that our descriptors outper-
form state-of-the-art descriptors on standard benchmarks.
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Dense Scale Invariant Descriptors for Images and Surfaces

Résumé :  Les descripteurs locaux sont omniprésents dans I’analyse d’image et de la forme,
car ils permettent la description compacte et robuste du contenu local d’un signal (image ou
une forme 3D). Un probléme commun qui se dégage dans le calcul de descripteurs locaux est
la variabilité de I’échelle du signal. L’approche standard pour faire face a cette probleme est la
sélection d’échelle, qui consiste & estimer une échelle caractéristique autour des ces points d’image
ou de la forme o 'estimation échelle peuvent étre réalisées de maniére fiable. Cependant, il est
souvent souhaité d’avoir un descripteur invariant d’échelle qui peut étre construit em densément,
soit & chaque point de I'image ou la forme 3D.

Dans ce travail, nous construisons des descripteurs de signaux invariante d’échelle par l'introduction
d’une méthode qui ne repose pas sur la sélection d’échelle; ce qui nous permet d’appliquer notre
méthode & un point quelconque. Notre méthode repose sur une combinaison de I’échantillonnage
logarithmique avec le traitement du signal multi-échelle qui transforme le changement d’échelle
dans le domaine du signal original dans une translation dans un nouveau domaine. L’invariance
d’échelle peut étre garanti par le calcul de la magnitude de la transformée de Fourier (Fourier
Transform Modulus -FTM), qui n’est pas affecté par les translations du signal.

Nous utilisons notre technique pour construire descripteurs invariantes de 1’échelle et la ro-
tation pour les images et les descripteurs invariantes de I’échelle et 'isométrie pour les surfaces
3D, et de démontrer que nos descripteurs peuvent surperformer ’état de ’art des descripteurs
sur les benchmarks standards.

Mots-clés : Invariance d’échelle.
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1 Introduction

Local descriptors have decisively pushed the envelope of solutions to computer vision and pat-
tern recognition problems during the last decade. In image analysis, the emergence of descriptors
that are robust to photometric changes and small displacements, able to cope with geometric
(Euclidean or affine) transformations of the image, and the efficient coding schemes developed
around them have facilitated the development of highly successful retrieval and matching appli-
cations [72, 24, 31, 59|, while affecting the whole field of object recognition. In 3D shape analysis,
3D shape (surface) descriptors have been developed to describe local structure in a manner that
is intrinsic, and thus invariant to isometric shape deformations, and used in applications such as
shape retrieval [11].

A problem that emerges both in image and shape analysis when extracting descriptors is
the variability in scale (signal resolution). Scale is a nuisance parameter, and it is commonly
desirable to eliminate its effect on the descriptors. The standard approach for coping with scale
has been scale selection, as in the seminal works of Lindeberg [40] and Lowe [44], where some
low-level image processing criterion estimates a characteristic scale around a few salient interest
points. This scale is then used to adapt the region over which the descriptor is computed, and
thereby scale invariance is achieved. Scale selection was also used by Sun et al. [74] in their work
on heat kernel signature (HKS) surface descriptors.

We argue that the scale selection strategy has many limitations both in image and shape
analysis, since most structures in images and shapes do not lend themselves easily to reliable
scale estimation, with the exception of some special cases. In image analysis, such cases are
symmetric structures such as blobs or ridges where scale can be naturally correlated with the
structure width. However, other structures such as edges are inherently 1D, so it is hard to
estimate their scale. In practice, this means that when relying on a scale selection approach,
scale-invariant local descriptors can be constructed only at a sparse set of points where scale can
be estimated accurately. However, it is often desired to have a dense scale-invariant descriptor
that can be constructed at every point of the image or 3D shape; moreover, regular sampling
strategies have outperformed sparse (interest point-based) ones in an empirical evaluation [54].

In this paper, we take a different approach and compute scale-invariant descriptors without
relying on scale selection. Instead we use a logarithmic (or log-polar) transformation of the signal
domain that converts signal scalings (scalings and rotations, respectively) into translations, as
shown in Figure 1. The effects of translations can then be eliminated using the properties of the
Fourier transform.

We exploit this observation to build descriptors for two different applications. In the first part
of the paper we present a dense scale- and rotation-invariant descriptor computed around image
points. We build on the Daisy [77] descriptor to extract dense descriptors around all image points.
Unlike Daisy, our descriptor is scale- and rotation- invariant; and unlike scale-adapted SIFT-type
descriptors, our descriptor can be extracted around any image point. Our descriptor is thus
both dense and invariant to image scalings and rotations, combining two desirable properties
of STFT and Daisy descriptors. A caveat related to our method is that our descriptor can get
distorted around signal boundaries - we therefore assume that we are provided with large images
and discard points on the image periphery. We demonstrate on a standard descriptor matching
benchmark that our method outperforms state-of-the-art descriptors under a broad range of
image transformations.

In the second part of the paper we introduce a scale-invariant descriptor for 3D surfaces,
building on the intrinsic heat kernel signature (HKS) descriptor of [74]. By virtue of being
intrinsic, i.e. depending solely on the Riemannian metric of the surface, HKS descriptors are
invariant to isometric surface deformations, which include rotations and translations as special
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cases. Moreover, HKS descriptors are applicable to a broad range of surface representations. We
combine these favorable properties of HKS with scale invariance, giving rise to scale-invariant
HKS (SI-HKS) [13]. By combining SI-HKS descriptors with a bag-of-words model [57], we obtain
excellent performance on a non-rigid shape retrieval benchmark [8].

This paper presents the culmination of our early results in [36] and [13]. Comparing to [36],
we present different low-level image measurements (from the monogenic signal [22] to a more
common Daisy-based [77] front end), and extend the method to compute dense descriptors.
Comparing to [13], we also study the use of volumetric intrinsic descriptors, and provide new
results on the SHREC’10 benchmark [8].

We start our paper with an overview of existing works on local descriptors for images and
surfaces in Section 2. We continue with a concise presentation of the scale-free scale-invariance
principle for the case of a one-dimensional signal in Section 3 and proceed to describe how we use
this idea to compute image and surface descriptors in Sections 4 and 5, respectively. In Section 6
we evaluate our approach on image and shape benchmark datasets.

2 Prior work

The main purpose of local descriptors in image and shape analysis is to summarize the infor-
mation contained in the neighborhood of a point on a signal (image or 3D shape) into some
low-dimensional feature vector, designed to be invariant to a certain class of transformations.
For instance, image descriptors employ image derivatives and normalization to deal with addi-
tive and multiplicative illumination variations, respectively, while surface descriptors deal with
isometric surface deformations by relying on intrinsic geometric quantities such as heat kernels.
Furthermore, local descriptors can often deal graciously with occlusions, or boundary effects,
where global descriptors, such as high-dimensional moments, fail. At the same time, it is sub-
stantially more challenging to deal with transformations of the signal domain such as scaling, or
more generally, affine transformations.

In what follows we concisely describe the state-of-the-art in local image and 3D shape de-
scriptors, and point out their shortcomings that our work aims at addressing.

2.1 Image Descriptors

Two seminal works in the development of image descriptors have been the Scale-Invariant Feature
Transform (SIFT) [44] and Shape Contexts [68]. These descriptors perform ‘soft’ perceptual
grouping, aggregating boundary information into a statistical description amenable to subsequent
tasks, such as shape matching and object recognition.

These works have been refined and extended in multiple ways. Geometric Blur descriptors
[5] extended Shape contexts to work with image gradients instead of shape contours. GLOH
descriptors [51] used a log-polar grid to construct SIFT-like descriptors, SURF descriptors [3]
used integral images for efficiency, while [80] used a search algorithm for the optimal combination
of feature extraction, post-processing, and pooling. Moreover, dimensionality reduction [35], as
well as linear [29, 15, 14] and nonlinear [60, 73] metric learning techniques have led to performance
improvements, while using low-dimensional descriptors.

An important recent development includes the construction of dense descriptors over the
whole image domain instead of single points. The computational complexity is handled using ef-
ficient convolution operations, both for rectangular [25] and for log-polar grids [77]. We note that
these methods do not guarantee scale-invariance, since the descriptor scale is fixed beforehand.
Our method addresses this shortcoming.

Inria
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Coming to scale invariance, a two-stage process is commonly used, following the seminal
work of [44]. First, a front end system is used to estimate local image scale, e.g. by using a
scale-adapted differential operator [40]. Then, the estimated scale is used to adapt the domain
over which the descriptor is computed. Variants of this idea include the identification of stable
regions [47], entropy maximizing regions [32] or scale-invariant corners using the second moment-
matrix [50]. In all cases a front-end process picks a certain scale which is then used for descriptor
construction.

As we have argued in Section 1, this two-stage approach can often be problematic. In partic-
ular, around edges (and more generally, around non-symmetric points), there is no low-level cri-
terion to reliably estimate image scale. Some notable exceptions include the works of [42, 52, 20],
which, however, either implicitly exploit symmetry in order to work on edges ([52]), or require
time-demanding operations to achieve invariance (|20, 42]). Instead, our approach provides a
generic, feature-independent process to estimate scale-invariant descriptors, does not rely on ad-
hoc scale-selection criteria, and can be efficiently implemented using the Fast Fourier Transform.

2.2 Shape Descriptors

The success of feature-based methods in image analysis has driven a more recent trend of de-
veloping similar methods for the analysis of 3D shapes in the computer graphics and geometry
processing communities. Feature descriptors play an important role in shape correspondence and
matching [76, 30] and retrieval [53, 57, 78], where the bag of features paradigm [72, 17] has been
successfully employed.

On the one hand, it is possible to apply almost straightforwardly some successful image
analysis methods to 3D shapes. Notable examples of feature detectors and descriptors that
follow analogous methods in image analysis include corners [71] and edges [37], histograms of
gradients [82] (akin to the use of [44] for images), 3D integral invariants [27] (first proposed in
images in [46]), and maximally stable extremal regions (MSER) [19, 43].

On the other hand, it is possible to use 3D shape specific geometric structures for designing
feature detectors and descriptors that have no direct image analogs. An ideal feature descriptor
should be invariant to shape embedding in the 3D space, which includes Fuclidean invariance,
namely invariance to rotation and translation, and deformation invariance, namely invariance
to inelastic deformations that preserve the metric structure of the surface (isometries). As defor-
mation invariance guarantees Euclidean invariance, we focus on the former. Second, a descriptor
should cope with missing parts, and also be insensitive to topological noise and connectivity
changes in the shape (referred together as topological invariance). Third, it should work across
different shape representations and formats (e.g. point clouds and meshes) and be insensitive to
sampling (representation invariance). Finally, the descriptor should be invariant to global and
local shape scaling (scale invariance).

Rotation and translation invariance can be achieved using volume and area descriptors [83],
spherical harmonics [34], geometric moments [75], and distribution of pair-wise Euclidean dis-
tances [56].

Deformation invariance is more challenging. In [21], and later [48, 9] shapes were modeled
as metric spaces with geodesic distances, which are invariant to inelastic deformations. This
framework was used in [42] and [7] with a metric defined by internal distances in 2D shapes,
while [66, 65] used the Laplacian spectra as intrinsic shape descriptors.

In [18] the authors popularize the notion of diffusion geometry, arising from the analysis of
heat diffusion processes on manifolds and giving rise to intrinsic local and global structures. In
[67, 45, 10, 12] global shape representations using different diffusion distances were proposed.

In [4] a conformal factor scalar descriptor is used, which is scale-invariant, but applicable
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Figure 1: Demonstration of how the logarithmic transformation turns scalings into translations: on the
left we have two functions f(z) = cos(z) (red),g(x) = cos(2z) (blue), differing by a scaling factor of
two. By employing the signal transformation f,(z) = f(log(ax)) we obtain fi(x) = cos(log(x)), g1(x) =
cos(log(z) — log 2), which only differ by a translation.

to shapes of fixed (e.g. sphere-like) topology and thus not topology-invariant. In [74] (and
independently, [26]), local multiscale heat kernel signature (HKS) descriptors were constructed
using the heat diffusion equation. This approach was later generalized to shapes with texture
in [38]. HKS descriptors satisfy all of the above desired properties with the exception of scale
invariance. In [2] the Shrodinger equation instead of the heat equation is considered, resulting
in wave kernel signatures (WKS). Finally, [1, 6] show that both HKS and WKS can be regarded
as a “filter” applied to the Laplace-Beltrami eigenvalues, and show that an optimal filter can be
designed from examples by means of supervised learning.

In this paper, we show how to build a scale-invariant HKS descriptor. Our approach can be
extended to other descriptors based on the Laplace-Beltrami operator.

3 Scale-Free Scale Invariance

Consider that we want to describe a one-dimensional signal f(z), > 0 in a manner that does
not change when the signal is scaled as f(x/a), a > 0. For this we consider a logarithmic
transformation h(z) = log(z) of the domain. Denoting by f, the transformation of f(z/a), i.e.

fa(h(z)) = f(z/a), we have:

fa(h(ax)) = f(x) = fi(h(z)) (1)
Since a > 0,z > 0 we can rewrite (1) as:
fa(a' +log(a)) = fr(z'), (2)

where ' = log(z). As illustrated in Figure 1, scaling the signal f(z) by @ thus amounts to
translating the signal fi(2’) by —log(a). We can then obtain a scale-invariant description of
f(z) in terms of the Fourier transform of fi(2’); applying the shifting-in-time property of the
Fourier transform to (2) gives:

Fa(w)el oe@ = Fy(w),
FAMI | Fi(w)], (4)
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where F,(w) is the Fourier transform of f,(z). As per (4), the dependency on a has vanished.

This idea underlies the Fourier Transform Magnitude (FTM) technique, which has been used
to deal with global image rotation and scaling in the context of image registration [16, 81] and
texture classification [62]. One of our main contributions lies in applying this idea locally, at the
level of local feature descriptors.

3.1 Discrete descriptors

So far our treatment has considered continuous signals. To deal with discrete signals we need to
take into account the effects of sampling.

To avoid aliasing, the signals must be smoothed prior to sampling [55]. For equispaced
samples the proper amount of smoothing is determined by the Nyquist theorem: the smoothing
acts as a low-pass filter that cuts off the signal spectral content above the Nyquist frequency.
However, in our case we sample the signal irregularly, namely at a set of locations forming a
geometric progression, as detailed below in (6). We show that in our setting we can guarantee
scale-invariance if we use a multi-scale smoothing scheme, where points close to 0 are subjected
to small amount of smoothing, and points further out to stronger smoothing; this relates to the
‘foveal’ scale space of [41] as well as to Geometric Blur [5].

We consider the scale-space f(z,s) formed by convolving f(z) with a set of kernels gs(z) =

%gl(m/s):

f(z,s) = f(z) * gs(z). (5)
We propose to sample f(z) through f(z,s) as follows:
f[n} = f(C()an, can)v (6)

where f[n] is the sampled version of our original signal f(z). As mentioned above, we use a
geometric spacing of samples while smoothing proportionally to the distance from 0.

Denoting by fo[n] the signal obtained by sampling f(z/«), we prove in the Appendix that
far[n] = filn — k],Vn,k. This allows us to adapt the technique described in the previous
subsection and use the Discrete-Time Fourier Transform (DTFT) [55] of f,[n] and f1[n] instead
of the Continuous-Time Fourier Transform discussed above.

Finally, since we work with finitely supported signals, we face signal boundary effects; we
discuss these as appropriated to image and surface descriptors.

4 Scale-Invariant Image Descriptors

In Section 3 we have described a general approach to achieving scale-invariance for 1D signals.
We now elaborate on how we exploit this to achieve scale- and rotation- invariance on images.

For this, we construct a descriptor around a point by sampling its neighborhood with a
log-polar grid, as shown in Figure 2. This sampling scheme turns image rotations/scalings into
translations, allowing us to use the FTM technique to achieve rotation- and scale- invariance. We
note that the log-polar transform has already been used to deal with global scale and rotation
changes [16, 62, 81, 33|, while in [69] it is associated with the foveal sampling pattern of the
retina. Our contribution lies in exploiting this scheme for local descriptor construction.

As illustrated in Figure 2, we construct a descriptor around a point x = (z1,x2) by sampling
its neighborhood along K rays leaving x at equal angle increments 0, = 2wk/K. Along each ray
we sample the image at N points with distances r, = cpa™ from x, using distance-dependent

RR n° 7914
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ht0[k, n] h*2[k, n]

Scale index, k

Scale index, k

Ray index, n Ray index, n

Figure 2: Effect of scale and orientation changes on log-polar descriptors. On the left we show as needle
diagrams the descriptors computed on a point before and after scaling and rotating an image; needle
length is proportional to the quantity in (9). In the next two columns we show two of the descriptor
components computed by (9). The effect of scaling and rotation amounts to a translation, which can be
eliminated by using the 2D Fourier transform. As the point is arbitrary (i.e. not a corner/junction/blob
center), performing scale selection around it would be far from obvious.

Inria
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Figure 3: The orientations used in directional derivative computation are set relative to ray orientation,
so that image rotation will amount to feature translation; here we show the first two directions on four
different rays.

smoothing with a 2D Gaussian kernel of standard deviation o,, = ar,. These measurements
form a K x N matrix:

hlk,n] = for, [T1 + rn cos(0k), x2 + 1y, sin(6y)], (7)

where f, denotes the sampled field f smoothed by o.

Since we sample according to Section 3.1, rescaling the signal f will amount to shifting h
along the second (n/scale) dimension. Moreover, since the rays are equally spaced, rotating the
image around x by 2% amounts to shifting h along the first (k/orientation) dimension by one.
Image scalings and rotations thus turn into horizontal and vertical translations of h.

We can therefore use the FTM technique to locally describe the image in a scale- and rotation-
invariant manner. In specific, from the time-shifting property of the DTFT [55], we know that

if hk,n] P H(jwg, jwn) are a DTFT pair, we will then have:
Wk — e,n — d) & H(jo, jun)ed retend) ®)

so taking the absolute of the DTFT yields a scale- and rotation- invariant quantity.

In practice our descriptor is not perfectly invariant to scale changes, due to the limited number
of scales considered. As the right columns of Figure 2 illustrate, scaling an image introduces new
observations at fine scales and removes others at coarse scales. As experimentally demonstrated
in Section 6, despite this approximation, our descriptor systematically outperforms SIFT for
scale changes up to an order of 3.

Furthermore, descriptors lying close to the image boundaries can be largely affected by bound-
ary effects; we restrain our evaluation to descriptors lying sufficiently far from the boundaries,
leaving the proper imputation of missing values to future work.

4.1 Directional Derivative Information

The descriptor described so far is scale- and rotation- invariant, but not illumination invariant.
Following [5, 14, 77], we combine the computation of directional derivatives with polarization,
i.e. separating the negative and positive parts. Directional derivatives are invariant to additive
intensity changes and provide information about the signal’s dominant orientations. Polariza-
tion gave consistent improvements [14], which can be attributed to segregating upwards and
downwards trends in the signal values.

Using directional derivatives has two implications. First, we need to align the directional
derivatives with the ray directions as shown in Figure 3; this ensures that image rotation amounts

RR n° 7914
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to feature translation - i.e. the features are rotation-covariant. Concretely, on ray k we use as
d-th feature orientation the angle 045 = k%ﬂ + d%”. The computation of directional derivatives
at all angles is efficiently performed by exploiting the steerability of directional derivatives of the
Gaussian.

Second, the magnitude of the derivative signals will decrease for larger scales, as the derivated
signal becomes increasingly smooth. An analysis similar to [40] therefore suggests scaling the
output of smoothing by the root of the kernel’s standard deviation, o.

Coming to the treatment of multiplicative image changes, we normalize by dividing with the
Lo norm of the descriptor elements. As also mentioned in [77], we have observed that normalizing
over each ring separately gives better results than normalizing over all rings.

4.2 Descriptor Construction

We first briefly summarize the steps used for the construction of our descriptor. We omit some
technical implementation aspects, as we make our image descriptor code publicly available.

For a given scale n we smooth the image at a scale o, = ar,, 7m, = cpa”, giving rise to
I, . To gather samples on ray k and scale n we compute the directional derivatives of I, for

D orientations, 041 = k%’r + d%’“, scale them by o, and split them into positive and negative

parts. This gives 2D signals, ;En’gd’k, where + stands for polarity, 0,4 indicates the derivative
orientation, and o,, the smoothing scale.

These signals are then used instead of f in (7), giving rise to 2D measurements per [k,n]
combination:

Bk, n) =0 fo " (a1 + v cos(Ok), @3 + 7 sin(0))] (9)
where k € {1,...K},n € {1,...N}, with K the number of rays and N the number of rings.
Put together, this gives a 2K D N-dimensional descriptor per point. We form our descriptor at
x by (a) computing the 2D Discrete Fourier Transform (DFT) for every [+, j] combination, (b)
keeping the DFT elements corresponding to DTFT frequencies (wg,wy) € [0,27] x [0, 7) - due to
the symmetry of the Fourier transform and (c) concatenating all components in a single vector.

We use N = 36 rays, D = 4 orientations and K = 28 rings, which results in a 7168-
dimensional descriptor. This descriptor is largely redundant and could be compressed using
dimensionality reduction techniques [29, 15, 60, 14, 73] - we leave this for future work.

Coming to computational cost, we note that the features required to form our descriptor in (9)
can be obtained in batch mode with efficient recursive filtering [28] and steering. As an indicative
measure of relative time performance, we report the timings for the demo script contained in
our distribution: for an image of size 700x1000 all convolutions cost approximately 0.8 seconds;
the formation of ~ 23000 (136x 170 regularly-spaced) descriptor elements 1.2 seconds; steering
and normalization 6.2 seconds; and the FFT 3 seconds. In sum, we obtain 23000 scale-invariant
descriptors in close to 10 seconds. The most time-consuming part is Matlab-based, and could be
accelerated in C, while the descriptor construction is easy to parallelize.

In Figure 4 we show the values of the lowest frequency (and highest-energy) coefficients of
densely computed descriptors, as evaluated on two images. We see that their values are effectively
invariant to image rotations and scalings, despite a scaling factor in the order of 2. In the bottom
row, we use the two points on the left image as references and ‘query’ the right one for points
having similar descriptors. We then show the similarity of ‘query’ point descriptors to the red
(left) and the green (right) reference points, which indicates the discriminative ability of the
descriptor - even though locally the structures are similar, the context helps disambiguate them.

A thorough experimental evaluation of our descriptor follows in Section 6.1.

Inria
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Dense Descriptors, wp, = 1w, = 1,d € {1,2,3}

Dense Descriptors, wp, = 1,w = 2,d € {1,2,3}

) 4 il ! 'y
Query similarity to red (left) and green (right) reference points.

Figure 4: Visualization of dense scale- and rotation- invariant descriptors: we show some our descriptor
dimensions as R, G, and B channels, and compare the resulting images over a reference image and the
corresponding locations of a query image. In the bottom row we superimpose on the image hue maps
(red and colorful is larger) indicating the similarity of descriptors in the query image to the points on the
reference image. Based on context information, our descriptor can discriminate among locally similar
structures.

5 Scale-Invariant Shape Descriptors

In this Section we detail how Scale-Free Scale-Invariance can be applied to the computation of
scale-invariant local shape descriptors. As mentioned in Section 2, the Heat Kernel Signatures
of [74] satisfy deformation invariance and representation invariance, but not scale invariance.
Our contribution consists in making HKS scale-invariant. We first provide a concise descrip-
tion of HKS alongside with their numerical computation, and then describe our scale-invariant
modification of HKS.

5.1 Heat Kernel Signatures

Let us model the shape of a 3D physical object as a connected and compact region X C R3,
whose boundary 0X is a closed connected two-dimensional Riemannian manifold. Traditionally,
shape deformations are modeled as isometries of the 2D boundary surface 0X preserving its
Riemannian metric structure 0X (we refer to such deformations as boundary isometries). Such
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1128
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Figure 5: Invariance of the first three components of the HKS (shown as R, G, and B channels, respec-
tively), for a shape undergoing isometric transformations.

deformations can bend the surface of the shape but not stretch it; however, the volume bounded
by 0X can change. Works on feature descriptors thus mainly focus on defining such geometric
structure that would be intrinsic (i.e., expressible solely in terms of the Riemannian metric of
0X) and consequently, invariant to boundary isometries of 0X.

A recent line of works [66, 18, 39, 67, 58, 74, 13] studied intrinsic descriptions of shapes by
analyzing heat diffusion processes on dX. Such processes give rise to the so-called diffusion
geometry and arise from the heat equation

(% + Aax) u(ta x) = 07 (10)
where u(t,z) : [0,00) x 90X — [0,00] is the heat value at a point = in time ¢, and Ay is the
positive-semidefinite Laplace-Beltrami operator associated with the Riemannian metric of 0X.
The Laplace-Beltrami operator Agx is intrinsic to the two-dimensional manifold 0X, meaning
that it is expressible in terms of the metric of 0X. Consequently, it is invariant under boundary
isometries.

The solution hi(x,y) of (10) corresponding to a point initial condition w(0,z) = §(x,y), is
called the heat kernel and represents the amount of heat transferred on 90X from z to y in time
t due to the diffusion process.

In particular, the diagonal of the heat kernel h;(x,x) (i.e., setting & = y, also referred to as
the auto-diffusivity) describes the amount of heat remaining at point x after time ¢. Its value is
related to the Gaussian curvature K (z) through h(z,z) = 15 (1 + $K(z)t + O(t?)), expressing
the well-known property that heat tends to diffuse slower at points with positive curvature, and
faster at points with negative curvature.

The spectral decomposition of the Laplace-Beltrami operator Agx produces a set of orthonor-
mal eigenfunctions ¢g = const, ¢1, po, ... and corresponding eigenvalues Ag = 0 < A < ...
satisfying Apx @; = A\i¢;. These eigenfunctions form a basis on Ly (9X) analogous to the Fourier
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basis on Euclidean domains, where the heat kernel has the following expansion [39]:

h(,y) = D e M ou()di(y). (11)

i>0

Sun et al. [74] used the diagonal of the heat kernel as a local surface descriptor referred to as
heat kernel signature (HKS). The HKS descriptor at each point z of the surface 0X is defined
as a ¢-dimensional vector

H(x) = (hs, (2, ), ..., he (2, 7)), (12)

where t1,...,t; is a set of time scales. As illustrated in Figure 5, H(z) captures multi-scale
shape curvature information in a isometry-invariant manner. Furthermore, by virtue of being
intrinsic, the HKS is invariant to boundary isometries of 0.X. Equation (11) allows for efficient
computation of the heat kernel, which in practice requires computing the first few eigenpairs of
the Laplace-Beltrami operator.

5.2 Volumetric Heat Kernel Signatures

Raviv et al. [64] argued that a smaller class of volume isometries preserving the metric structure
inside the volume X are more suitable for modeling realistic shape deformations that boundary
isometries, which preserve the area of 9X, but not necessarily the volume of X (volume isometries
are necessarily boundary isometries, but not vice versa). Thus, instead of considering diffusion
processes on the boundary surface 90X, diffusion inside the volume X, arising from the Euclidean
volumetric heat equation with Neumann boundary conditions,

<;+A) Ut,z) =0 z € int(X);

(VU(t,x),n(z)) =0 x € 0X, (13)

was considered in [64] (here, U(t, ) : [0,00) x R3 — [0,00] is the volumetric heat distribution,
A is the Euclidean positive-semidefinite Laplacian, and n(z) is the normal to the surface 0X at
point . In the following, we use capital letter to denote the volumetric quantities). The heat
kernel of the volumetric heat equation (13) is given, similarly to (11) by

Hyey) = 3™ (0)(), (14)

i>0

where ®; and A; are the eigenfunctions and eigenvalues of A satisfying A®; = A;¢; and the
boundary conditions (V®;(x),n(x)) = 0. The diagonal of the heat kernel Hy(z,z) gives rise
to the volumetric HKS (vVHKS) descriptor [64], which is invariant to volume isometries of X.
Compared to the 2D HKS, such descriptors were shown to be less sensitive to geometric and
topological noise [64].

5.3 Scale invariance

A notable disadvantage of heat kernel descriptors (both HKS and vHKS) is their sensitivity to
scale. Given a shape X and its version X’ uniformly scaled by the factor of a, it is easy to
establish! that the eigenfunctions and eigenvalues are scaled inversely proportionally to the area

I The first relation stems from normalization of the Laplace-Beltrami operator; the second relation stems from
the unit norm of the eigenfunctions, [|¢:lr,ox) = [PillLy(x) = 1.
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20 0 5 10 15 20

T T w = Nk/2m

Figure 6: Construction of the SI-HKS. Left: HKS computed at the same point, for a shape that is
scaled by a factor of 11. Middle: the signal i’L[T], where the effects of scale change have been converted
into a shifting in time. Right: the first 20 components of |H(2)| for the two signals; the two descriptors
are virtually identical.

of X (o< a?) or the volume of X (ox a®), respectively. Thus, the new set of the eigenfunctions
and eigenvalues of X’ is given by

X o= a7 ¢ =al (15)
AN = a7 2A; 9 =a 3?0, (16)

so the corresponding heat kernels satisfy

hy(x) = Y e N R (@)a = a2 (2), (17)
1=0

Hiz) = Y e 02 (0)a™® = a3 H,a(2), (18)
1=0

relating the signature h’ (respectively, H') at time t for X’ with the signature h (respectively,
H) at time a2t for X.

Typically, the scaling factor a is unknown a priori. Scale dependence can be removed by global
normalization, for example, dividing the eigenfunctions and eigenvalues by the first non-zero
eigenvalues, \; = )\i)\fl and ¢; = ¢i)\f1 (A = AiAfl and ®; = @iAfl, respectively). However,
global normalization does not work in cases when the shape undergoes transformations changing
its global geometry, such as removing significant parts — in these cases, the resulting eigenvalues
and eigenfunctions can be very different. One thus has to resort to local normalization.

One possibility is to locally normalize the metric structure of the manifold. This approach
has been explored by Raviv et al. [63], who constructed an affine-invariant Riemannian metric
tensor on the manifold (rather then using the metric induced by the embedding) and derived
an affine-invariant diffusion geometry form the associated Laplace-Beltrami operator. Another
possibility is, similarly to image descriptors, to estimate scale locally from a feature detection
algorithm. However, in shape analysis there is no clear analogue for features such as blobs or
corners, and such an estimation is not always possible. Moreover, as mentioned before, in many
cases we are interested in dense descriptors computed at all points.
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Figure 7: Top: three components of the HKS (left) and the proposed SI-HKS (right), represented as
RGB color and shown for different shape transformations (null, isometric deformation+scale, missing
part, topological transformation). Bottom: HKS (left) and SI-HKS (right) descriptors at three points of
the four shapes (different points are coded with red, green, and blue; dashed line shows the null shape
descriptor). We observe that the SI-HKS descriptors are substantially more robust to the deformations
and stay closer to the null shape descriptor.

5.4 Scale-invariant Heat Kernel Signatures

We now describe a method to discard the dependence of h (or H) on the unknown scaling factor a
following the approach outlined in Section II, resulting in a scale-invariant heat kernel signature
(SI-HKS). We develop our construction for the HKS; scale-invariant vHKS can be obtained in a
similar way.

First, at each point x we sample the heat kernel scale logarithmically with some basis «,
denoted here as h(7) = hqr(z,z). In this scale-space, the heat kernel of the scaled shape
becomes h/(7) = a=2h(T + 2log,, a) (Fig. 6, left). Second, in order to remove the dependence
on the multiplicative constant a~2, we take the logarithm of the signal and then differentiate it
w.r.t. the scale variable,

% logh/(7) = % (—2loga + log h(T + 2log,, a))
B Lh(r +2log, a) (19)
h(r + 2log, a)
Denoting
oy~ A T hetloga
h(r) Do MY ¢} () ’

we thus have a new function h which transforms as h/(7) = h(t + 2log,, a) as a result of scaling
(Fig. 6, center). Finally, using the idea of Section II, we apply the Fourier transform to h and
take its absolute value,

FIW)w) = H(w) = Hlwjer2omme, (20)
@I = R, 21)

producing a scale-invariant descriptor (Fig. 6, right).
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~ One caveat of this approach could be that scaling the shape and then resampling the function
h[r] makes the samples at the boundaries change. Fortunately, the HKS is smooth at low- and
high- scales and therefore its derivative is equal to zero for a broad range of 7s at the beginning
and end of h. In Fig. 6 we show the intermediate signals involved in the construction of the
SI-HKS.

5.5 Numerical computation

Due to the possibility to express the heat kernel in the spectral domain, the practical computation
of HKS or vHKS and their scale-invariant versions boils down to discretizing the Laplacian of
the shape, computing its first eigenvectors and eigenvalues, and approximating formulae (11)
or (14) using a finite number of terms (since the exponential coefficients, only a small number of
eigenfunctions and eigenvalues is required). Since there exists a plethora of methods for Laplacian
discretization on different representations of shapes (in particular, meshes, point clouds, volumes,
and implicit surfaces), the heat kernel descriptors are very versatile and, up to errors of the
particular Laplacian approximation, representation-invariant.

In the case of surfaces represented as point clouds V = {vq,..,vny} C 90X or triangular
meshes, the discretization of the Laplace-Beltrami operator of the surface 0X can be written in
the generic matrix-vector form as Agxf = A7'W f, where f = f(v;) is a vector of values of a

scalar function f : X — R sampled on the vertices, W = diag (>, 2 Wit ) — (wij) is a zero-mean

N x N matrix of weights, and A = diag(a;) is a diagonal matrix of normalization coefficients

[23, 79]. A particular choice that is popular in computer graphics for triangular meshes is the
cotangent weight scheme [61, 49], where

ws; = (cot avij + cot Bij)/ (Uf,vj) is an edge; (22)

0 else,

where a;; and 3;; are the two angles opposite to the edge between vertices v; and v; in the
two triangles sharing the edge, and a; are the discrete area elements. The eigenfunctions and
eigenvalues of Agx are found by solving the generalized eigendecomposition problem W¢; =
ApiXi [39].

In the volumetric case, the shapes are rasterized and represented as arrays of voxels on a
regular Cartesian grid, allowing to use the standard Euclidean Laplacian. In [64], the volumetric
Laplacian was discretized using a 6-neighborhood stencil, and boundary conditions were enforced
using the shadow variables technique.

6 Results

6.1 Image Descriptor Evaluation

We use the dataset, code and protocol of [51] to evaluate descriptor performance: ground truth
correspondences between two images of an identical scene are used to evaluate interest point
matches found based on descriptor similarities. Even though our descriptors can be computed
densely, we use the Hessian- and Harris- Laplace interest point operators of [51], in order to
compare with SIFT descriptors on equal grounds. We do not compare with Hessian- and Harris-
affine detectors, as our descriptors are not designed to cope with affine transformations.

An issue regarding evaluation is that these two detectors provide as output points associated
with scale (‘regions’), while our descriptor is only using point information in its construction.
Two points lying at the same location (modulo the transformation registering the images), but
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di; <0q (Ours v') d;; >0 (Ours x)
O@j > 90 (SIFT \/) v X
Oig‘ < by (SIFT X) X v

Table 1: Conditions for incorporating pair i, j in the evaluation. d; ; stands for the Euclidean distance
between the centers of points ¢,j and O;; for the overlap of their regions, while 65 and 6o are the
respective thresholds.

with very different scales are considered different by the evaluation approach of [51]: a match
of two such points is declared a false positive. However, as far as our descriptors can tell, these
two such points are identical, as they correspond to the same scene point. On the flip side, due
to the log-polar sampling, our descriptors are location-sensitive, while STFT descriptors of large
regions are less affected by displacements.

To make the two methods of computing scale-invariant descriptors commensurate we distin-
guish four cases, as indicated in Table 1. In our evaluation we only consider pairs of points where
either both criteria are met (point centers are close, and their areas overlap substantially), or both
criteria are violated (points centers are far, and their areas have low overlap). We exclude points
where one criterion is met, while another is not (e.g. having close centers, but low area overlap).
This amounts to some 5-10% of positive point pairs being excluded from the evaluation.

Moreover, as mentioned in Section 4.2, our descriptor gets distorted around the image bound-
aries. One obvious remedy could be to decrease the size of the used log-polar grid. This comes
at the cost of reducing the contextual information captured by our descriptor, while limiting the
range of scale changes that can be dealt with.

In our experiments we use images of approximately 700x1000 and 1000x1000 pixels, while
our descriptor’s maximal ring size is at a radius of 230 pixels. In our evaluation we only consider
descriptors of points which lie at least 100 pixels from the closest image boundary, accounting
for roughly 60%-85% of points within an image. This ensures that the associated descriptors
are not largely distorted, and deconvolves the evaluation of our descriptors scale-invariance from
the boundary effects. When cutting the pixel distance from 100 down to 50 we observed a
deterioration of our results, in particular for large scale changes.

Three alternative methods are proposed in [51] to find correspondences. The simplest one
(‘similarity’) computes all distances between the descriptors in the two images and declares as
matches all pairs of points whose distance is below a given threshold. A more elaborate technique
(‘k-nearest’) first solves a linear assignment problem, allowing a descriptor in one image to match
at most with a single descriptor in the other. For a given value of k, the k best-matching
descriptors are computed according to this procedure. Finally the most elaborate technique
(‘distance ratio’) normalizes the distances between a descriptor and descriptors in another image
by the distance of the descriptor to its nearest-neighbor in the other image. We report results
using all three criteria, in the form of Precision-Recall curves; we obtain these curves from the
software of [51], adapted to include the evaluation modifications described above.

In Figure 8 we first examine the robustness of our descriptors to transformations other than
scaling and rotation, including blurring due to a change of camera focus, jpeg compression,
and perspective transformations. We observe that according to all three criteria, our descriptor
outperforms SIFT.

To assess the robustness of our descriptor to scale and rotation changes we use all of the
images in [50] and subject them to a common set of synthetic transformations. In the original
dataset only two out of eight images were subjected to scaling and rotation, and the amounts
of scaling were not common across the two images; this hindered the thorough evaluation of our
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method, and led us to use this more controllable setting instead.

In Figure 10 we demonstrate how our descriptor compares to SIFT, for increasingly large
changes in scale. We observe that our descriptor largely outperforms SIFT according to all three
criteria, up to a scale change in the order of 3 (green color). Above that level, the results become
ambiguous, with SIFT performing equally well or better on most images.

In summary, the results verify that our descriptor has excellent performance for a broad
range of scales -at least up to three-, despite being only approximately scale invariant (due to
the use of a limited number of rings/scales). This complements the main merit of our approach,
namely than unlike SIFT, or other descriptors which rely on scale selection, our descriptor can
be evaluated anywhere over the image domain.

6.2 Shape Descriptor Evaluation

We used the SHREC 2010 robust large-scale shape retrieval benchmark, simulating a retrieval
scenario, in which the queries include multiple modifications and transformations of the same
shape [8]. The shapes were represented as triangular meshes with the number of vertices ranging
approximately between 300 and 30,000. The dataset consisted of two parts: 715 shapes from 13
shape classes with simulated transformation (55 per shape) used as queries and the remaining
456 shapes. The query set consisted of 13 shapes taken from the dataset (null shapes), with
simulated transformations of different type and strength applied to them. Each query had only
one correct corresponding null shape in the dataset.

Performance was evaluated using mean average precision and the receiver operating char-
acteristic (ROC). Precision P(r) is defined as the percentage of relevant shapes in the first r
top-ranked retrieved shapes. In the present benchmark, a single relevant shape existed in the
database for each query. Mean average precision (mAP) is defined as mAP = P(r) - rel(r),
(rel(r) is the relevance of a given rank), and ideally should be 100%. The receiver operating
characteristic (ROC) curve is another performance criterion, representing a tradeoff between the
percentages of similar shapes correctly identified as similar ({rue positives rate - TPR) and of
dissimilar shapes wrongfully identified as similar (false positive rate - FPR).

Heat kernel signatures (HKS) and the proposed scale-invariant heat kernel signatures (SI-
HKS), respectively, were used as local shape descriptors. In both cases, the cotangent weight
scheme was used to discretize the surface Laplace-Beltrami operator Agx. The heat kernel was
approximated using the & = 100 largest eigenvalues and eigenvectors. For HKS, we used the
parameters of [57] (six scales 1024, 1351, 1783,2353, 3104 and 4096), which were experimentally
found to give optimal performance. We construct the SI-HKS as described in Section 5, using a
logarithmic base a = 2 and 7 ranging from 1 to 25 with increments of 1/16. The first 6 lowest
frequencies of the Fourier transforms were used.

Bag-of-features shape descriptors were constructed using bags of geometric words proposed
in [57]. For HKS and SI-HKS, a geometric vocabulary of size 48 was built using clustering in
the signature space (six-dimensional in both cases). The HKS and SI-HKS at each point of
the shape were replaced by the closest geometric word from the vocabulary using soft vector
quantization. The distribution of geometric words (48-dimensional bag of features) was used as
the shape descriptor. The L; distance was used to compare the bags of features.

Tables 2-3 show the performance of shape retrieval using bags of features based on HKS and
SI-HKS local descriptors. SI-HKS shows dramatic improvement (from 27.42% to 98.21% MAP
and from 30.34% to 65.07%) in the scale and mized transformations classes, respectively, and a
small improvement (from 80.22% to 82.08% and from 2.95% to 6.61%) in the local scale and partial
classes, respectively. An insignificant performance degradation is manifested in topology, holes,
and sampling. Overall in all transformation classes and strengths in the SHREC benchmark,
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SI-HKS performs better than HKS (90% vs 85.00%). These results are consistent with the ROC
curves shown in Figure 12.

Table 2: Performance (mAP in %) of ShapeGoogle using bags of features of size 48 based on HKS

local descriptor.

Strength

Transform. 1 <2 <3 <4 <5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00  98.08 97.44 96.79 96.41
Holes 100.00 100.00 97.44 95.19 90.13
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 0.98 40.68 43.31 33.72 27.42
Local scale 100.00 100.00  98.72 89.38 80.22
Sampling 100.00 100.00 100.00 100.00  99.23
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 7.54 5.70 4.51 3.58 2.95

Maized 53.13 55.86 47.77 37.54 30.34
Average 94.94 93.12 90.84 87.82 85.00

Table 3: Performance (mAP in %) of ShapeGoogle using bags of features of size 48 based on SI-HKS

local descriptor.

Strength

Transform. 1 <2 <3 <4 <5

Isometry 100.00 100.00 100.00 100.00 100.00
Topology 96.15 96.15 94.87 93.27 92.69
Holes 100.00 100.00 100.00 94.71 89.97
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 91.03 95.51 97.01 97.76 98.21
Local scale 100.00 100.00 97.44 89.38 82.08
Sampling 100.00  100.00 100.00 100.00  97.69
Noise 100.00 100.00 100.00 100.00 100.00
Shot noise 100.00 100.00 100.00 100.00 100.00
Partial 17.43 10.31 9.57 8.06 6.61

Mized 56.47 57.44 63.59 67.47 65.07
Average 97.05 95.16 94.03 92.54 90.79

Figure 11 shows a few examples of retrieved shapes, ordered by relevance, which is inversely
proportional to the distance from the query shape. Using HKS, all the matches for scale and
mized transformations queries (rows 2 — 3 and 4) are incorrect (middle column). On the other

hand, using the SI-HKS the results are mostly correct (right column).

7 Conclusion

In this paper we have introduced a method to construct scale invariant descriptors without
relying on scale selection. Our experimental results demonstrate that these descriptors compare
favorably to current state-of-the-art alternatives when evaluated on standard datasets. Moreover,
by virtue of being independent of scale selection, our descriptors can be computed densely over
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the signal domain.

In future work we intend to explore several avenues to expand their usefulness. In specific,
we intend to pursue the use of scale-invariant image descriptors for object recognition, both for
Bag-of-Words classifiers and for part-based models. We also intend to pursue the integration of
Self-Similarity Descriptors [70] with our approach, as well as the construction of scale-invariant
surface descriptors from open, noisy surfaces, such as those delivered by depth sensors.

Appendix

Denoting by I,[n] the signal obtained by sampling I(xz/a) as in (6), we prove that I,[n] =
ILi[n —1],Vn:

Ln] = Za(coa”, ca™) = Ia(2) * gear ()| p—cyar

I (t — coa™)gean (t)dt

Lt = coa™ V) gean—1 (t')dt’

J

= /tll (t/a = coa™ M) agean—1 (t/a)dt
J
I

By recursion we have that Ix[n] = I1[n — k],Vn, k.
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Figure 8: Precision-Recall curves for transformations other than scale and rotation: we compare SIFT
(dashed) to our descriptors (solid) on Harris-Laplace (green) and Hessian-Laplace interest points (red).
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Figure 9: Precision-Recall curves comparing SIFT (dashed) to our descriptor (solid) for synthetic scaling
transformations. We use a range of simulated scale- o and rotation-0 changes, visualized with differently
colored boxes and curves; red corresponds to (o = .27,0 = 7/4), green to (o = 0.33,0 = w/5), and blue
to (0 = 0.42,0 = 7/8).
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Figure 10: Precision-Recall curves comparing SIFT (dashed) to our descriptor (solid) for synthetic
scaling transformations. We use a range of simulated scale- o and rotation-6 changes, visualized with
differently colored boxes and curves; red corresponds to (o = .27,0 = 7/4), green to (o = 0.33,60 = w/5),
and blue to (0 =0.42,0 = 7/8).
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Figure 11: Examples of first five matches for queries (column 1) found using bags of features based on
HKS (columns 2-6) and SI-HKS (columns 7-11). Correct matches are shown in red. Only one match is
correct, and ideally it should be the first.
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Figure 12: ROC curves showing shape retrieval performance using bags of features based on HKS and
SI-HKS.
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