
HAL Id: hal-00683196
https://hal.archives-ouvertes.fr/hal-00683196

Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic web service wrapper for efficient embedding of
legacy codes in service-based workflows
Tristan Glatard, David Emsellem, Johan Montagnat

To cite this version:
Tristan Glatard, David Emsellem, Johan Montagnat. Generic web service wrapper for efficient embed-
ding of legacy codes in service-based workflows. Grid-Enabling Legacy Applications and Supporting
End Users Workshop, Jun 2006, Paris, France. pp.1-10. �hal-00683196�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49908574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00683196
https://hal.archives-ouvertes.fr


Generic web service wrapper for efficient embedding of legacy codes in
service-based workflows

Tristan Glatard, David Emsellem, Johan Montagnat
I3S laboratory, CNRS,http://www.i3s.unice.fr/∼johan

{glatard,emsellem,johan}@i3s.unice.fr

Abstract

In this paper, we present a generic wrapper that enables
the optimization of legacy codes assembled in application
workflows on grid infrastructures. We first describe advan-
tages of a service-based approach for job management. We
then introduce our wrapper, that works at execution time,
thus allowing service grouping strategies to optimize the
execution. We demonstrate performance results on a real
medical imaging application. We finally propose a new ser-
vice oriented architecture of the whole system, from appli-
cation composition to job submission on the grid.

1 Introduction

Grids technologies are very promising for addressing
the computing and storage needs arising from many scien-
tific and industrial application areas. In this context, en-
abling legacy code execution on modern grid infrastruc-
tures is challenging. A tremendous amount of work has
been put in the development of various sequential data pro-
cessing algorithms without taking into account particulari-
ties of distributed systems nor specific middlewares. Even
considering new codes development, instrumenting appli-
cations with middleware specific interfaces or designing ap-
plications to explicitly take advantage of distributed grid re-
sources is a significant burden for the developers who are
often reluctant to allocate sufficient effort on non applica-
tion specific problems.

Grid middlewares are therefore expected to ease sequen-
tial codes migration to grid infrastructures by (i) proposing
a non-intrusive interface to existing application code, and
(ii) optimizing the execution of the application on grid re-
sources.

In this paper we first discuss task-based job submission
and service-based code invocation, the two main paradigms
proposed for executing application code on grid infrastruc-
tures. We defend the benefit of the service-based approach
from a user point of view.

We then propose an application-independent service
wrapper to ease the migration of existing application code in

the service-based framework at very little cost, thus allow-
ing an easy composition of complex application workflows.
Our service wrapper is dynamically treating processing re-
quests at the execution time and can thus be exploited to op-
timize the application execution on grid infrastructures by
grouping jobs, as shown by experimental results. We then
propose a complete service-oriented architecture (SOA) of
the system, from application composition to grid execution.

2 Grid enabling applications

Two main paradigms are used in different grid middle-
wares for describing and controlling application process-
ings. The task-based approach is the most widely available
and has been exploited for the longest time. It consists of a
command-line description and the remote execution of ap-
plication code. The service-based approach has more re-
cently emerged. It consists in using a standard invocation
protocol for calling application code embedded in the ser-
vice. It is usually completed by a service discovery and an
interface description mechanism.

2.1 Task-based job submission

In the task-based job submission approach, each process-
ing is related to an executable code and described through
an individual computationtask. A task description encom-
passes at least the executable code name and a command-
line to be used for code invocation. It may be completed
by additional parameters such as input and output files to
be transferred prior or next to the execution, and additional
task scheduling information such as minimum system re-
quirements. Tasks may be described either directly on the
job submission tool command-line, or indirectly through a
task description file. Unless considering very simple code
invocation use cases, description files are often needed to
specify the task in depth. Many file description formats
have been proposed and the GGF is currently working on
unifying different formats in the Job Submission Descrip-

http://www.i3s.unice.fr/~johan


tion Language (JSDL) working group [1]. The task-based
approach is also often referred to asglobal computing.

In the task-based paradigm, code invocation is straight-
forward, through the legacy code command-line. It does
not require any adaptation of the user code and for this rea-
son it has been implemented in most existing batch systems
for decades (e.g. PBS, NQS, OAR). Many grid middle-
wares are also task-based, such as Globus Toolkit, CON-
DOR, LCG2 and gLite. Indeed, even if those middlewares
(Globus Toolkit and gLite in particular) may themselves be
made from services orchestrating features such as security,
job management and data management, the computing re-
sources of the grid are accessed through task submissions.

2.2 Service-based code execution

The service-based approach was widely adopted for
dealing with heterogeneous and distributed systems. In
particular for middleware development, the OGSA frame-
work [5] and the subsequent WSRF standard encountered
a wide adoption from the international community. In the
service-based approach, the code is embedded in a standard
service shell. The standard defines an interface and an in-
vocation procedure. The Web Services standard [20], sup-
ported by the W3C is the most widely available although
many existing implementations do not conform to the whole
standard yet. It has been criticized for the low efficiency re-
sulting from using text messages in XML format and alter-
natives such as GridRPC [15] have been designed to speed-
up message exchanges. The service-based approach is also
often referred to asmeta computing. Middlewares such as
DIET [3] adopted this approach.

The main advantage of the service based approach is the
flexibility that it offers. Clients can discover and invoke
any service through standard interfaces without any prior
knowledge on the code to be executed. The service-based
approach delegates to the server side the actual code exe-
cution procedure. However, all application codes need to
be instrumented with the service interface to become avail-
able. In the case of legacy code application, it is often not
the case and an intermediate code invocation layer or some
code reworking is needed to exploit this paradigm. Users
are often reluctant to invest efforts in writing specific code
for services on the application side for different reasons:

• The complexity of standards often makes service con-
formity a matter of specialists. Some tooling are avail-
able for helping in generating service interfaces but
they cannot be fully automated and they all require a
developer intervention.

• Standards tend to evolve quickly, especially in the grid
area, obsoleting earlier efforts in a too short time scale.

• Multiple standards exist and a same application code

may need to be executed through different service in-
terfaces.

• In the case of legacy code, recompilation for instru-
menting the code may be very difficult or even impos-
sible (in case of non availability of source code, com-
pilers, dependencies, etc).

Therefore, the only way to deal with legacy code in a user-
friendly way is to propose a service-compliant code execu-
tion interface.

2.3 Discussion

Apart from the invocation procedures and the ease of
implementation mentioned above, the task-based and the
service-based approaches differ by several fundamental
points which impact their usage:

• To submit a task-based job, a user needs to precisely
know the command-line format of the executable, tak-
ing into account all of its parameters. It is not always
the case when the user is not one of the developers.
In the service-based approach conversely, the actual
code invocation is delegated to the service which is
responsible for the correct handling of the invocation
parameters. The service is a black box from the user
side and to some extent, it can deal with the correct
parametrization of the code to be executed.

• The handling of input/output data is very different in
both cases. In the task-based approach, input/output
data have to be explicitly specified in the task descrip-
tion. Invoking a new execution of a same code on dif-
ferent data requires the rewriting of a new task descrip-
tion. Services better decouple the computation and
data handling parts. A service dynamically receives
inputs as parameters. This decoupling of processing
and data is particularly important when considering
the processing of complete data sets rather than sin-
gle data. Indeed, grid infrastructures are particularly
well suited for data-intensive applications that require
repeated processings of different data.

• The service-based approach enables discovery mech-
anisms and dynamic invocation even fora priori un-
known services. This provides a lot of flexibility both
for the user (discovery of available data processing
tools and their interface) and the middleware (auto-
matic selection of services, alternatives services dis-
covery, fault tolerance, etc).

• In the service-based framework, the code reusability is
also improved by the availability of a standard invoca-
tion interface. In particular, services are naturally well
adapted to describe applications with a complex work-
flow, chaining different processings whose outputs are
piped to the inputs of each other.

• Services are adding an extra layer between the code
invocation and the grid infrastructure on which jobs are



submitted. The caller does not need to know anything
about the underlying middleware that will be directly
invoked internally by the service. Different services
might even communicate with different middlewares
and/or different grid infrastructures.

• On the other hand, services deployment introduces an
extra effort w.r.t the task-based approach. Indeed, to
enable the invocation, services first have to be installed
on all the targeted resources, which becomes a chal-
lenging problem when their number rises.

The flexibility and dynamic nature of services depicted
above is usually very appreciated from the user point of
view. Given that application services can be deployed at a
very low development cost, there are number of advantages
in favor of this approach.

From middleware developers point of view, the efficient
execution of application services is more difficult though.
As mentioned above, the service is an intermediate layer
between the user and the grid middleware. Thus, the user
does not know nor see anything of the underlying infrastruc-
ture. Tuning of the jobs submission for a specific applica-
tion is more difficult. Services are completely independent
from each other and global optimization strategies are thus
hardly usable. Therefore, some precautions need to be taken
when considering service based applications to ensure good
application performances.

2.4 Workflow of services

Building applications by assembling legacy codes for
processing and analyzing data is very common. It allows
code reusability without introducing a too high load on the
application developers. The logic of such a composed appli-
cation, referred to as theapplication workflow, is described
through a set of computation tasks to perform and data de-
pendencies imposing constraints on the order of process-
ings.

Many workflow representation formats and execution
managers have been proposed in the literature with very
different properties [21]. When dealing with workflows,
the task-based and the service-based paradigms exhibit new
fundamental differences.

The emblematic task-based workflow manager is the
CONDOR Directed Acyclic Graph Manager (DAG-
Man) [13]. Based on the static description of such a work-
flow, many different optimization strategies for the execu-
tion have been proposed [2].

Services are naturally very well suited for representing
and chaining workflow components. The service based ap-
proach has been implemented in different workflow man-
agers such as: the Kepler system [14] which can orches-
trate standard Web-Services; the Taverna project [17], from
the myGrid e-Science UK project1 which is able to en-

1myGrid project,http://mygrid.org.uk

act Web-Services and other components such as Soaplab
services [18] and Biomoby ones; Triana [19], from the
GridLab project2, which is decentralized and distribute sev-
eral control units over different computing resources, im-
plementing both a parallel and a peer-to-peer distribution
policies; the MOTEUR workflow enactor, developed in our
team [7], aims at optimizing the execution of data intensive
applications.

Thanks to the decoupling between processings and data,
services easily accommodate with input data sets. Data
sources are sequentially delivering input data but no addi-
tional complexity of the application graph is needed. An
example of the flexibility offered by the service-based ap-
proach is the ability to define differentdata composition
strategiesover the input data of a service. When a ser-
vice owns two inputs or more, a composition strategy de-
fines the composition rule for the data coming from all
input ports pairwise. Considering two input setsA =
{A0,A1, . . . ,An} and B = {B0,B1, . . . ,Bm} to a ser-
vice, the most common strategy is aone-to-onecomposition
which consists in processing each data of the first set with
the matching data of the second set in their order of defi-
nition, thus producingmin(n,m) result. This corresponds
to the case where a sequence of pairs need to be processed.
Another common composition strategy is anall-to-all strat-
egy which consists in processing all input data from the first
set with all input data from the second set, thus producing
m × n results.

Using iteration strategies to design complex data inter-
action patterns is a very powerful tool for data-intensive ap-
plication developers. This is another advantage associated
to the service-based approach from the user point of view.

2.5 Legacy code wrapping

To ease the embedding of legacy-codes in the service-
based framework, an application-independent job submis-
sion service is required. In this section, we briefly review
systems that are used to wrap legacy code into services to
be embedded in service-based workflows.

The Java Native Interface (JNI) has been widely adopted
for the wrapping of legacy codes into services. Wrappers
have been developed to automate this process. In [9], an
automatic JNI-based wrapper of C code into Java and the
corresponding type mapper with Triana [19] is presented:
JACAW generates all the necessary java and C files from a
C header file and compiles them. A coupled tool, MEDLI,
then maps the types of the obtained Java native method to
Triana types, thus enabling the use of the legacy code into
this workflow manager. Related to the ICENI workflow
manager [6], the wrapper presented in [12] is based on code
reengineering. It identifies distinct components from a code

2GridLab project,http://www.gridlab.org

http://mygrid.org.uk
http://www.gridlab.org


analysis, wrap them using JNI and adds a specific CXML
interface layer to be plugged into an ICENI workflow.

The WSPeer framework [8], interfaced with Triana, aims
at easing the deployment of Web-Services by exposing
many of them at a single endpoint. It differs from a con-
tainer approach by giving to the application the control over
service invocation. The Soaplab system [18] is especially
dedicated to the wrapping of command-line tools into Web-
Services. It has been largely used to integrate bioinfor-
matics executables in workflows with Taverna [17]. It is
able to deploy a Web-Service in a container, starting from
the description of a command-line tool. This command-
line description, referred to as the metadata of the analysis,
is written for each application using the ACD text format
file and then converted into a corresponding XML format.
Among domain specific descriptions, the authors underline
that such a command-line description format must include
(i) the description of the executable, (ii) the names and types
of the input data and parameters and (iii) the names and
types of the resulting output data. As described latter, the
format we used includes those features and adds new ones
to cope with requirements of the execution of legacy code
on grids.

The GEMLCA environment [4] addresses the problem
of exposing legacy code command-line programs as Grid
services. It is interfaced with the P-GRADE portal work-
flow manager [10]. The command-line tool is described
with the LCID (Legacy Code Interface Description) format
which contains (i) a description of the executable, (ii) the
name and binary file of the legacy code to execute and (iii)
the name, nature (input or output), order, mandatory, file
or command line, fixed and regular expressions to be used
as input validation. A GEMLCA service depends on a set
of target resources where the code is going to be executed.
Architectures to provide resource brokering and service mi-
gration at execution time are presented in [11].

Apart from this latest early work, all of the reviewed ex-
isting wrappers are static: the legacy code wrapping is done
offline, before the execution. This is hardly compatible with
our approach, which aims at optimizing the whole applica-
tion execution at run time. We thus developed a specific grid
submission Web-Service, which can wrap any executable at
run time, thus enabling the use of optimization strategies by
the workflow manager.

The following section 3 introduces a generic applica-
tion code wrapper compliant with the Web Services spec-
ification. It enables the execution of any legacy executable
through a standard service interface. The subsequent sec-
tion 4 proposes a code execution optimization strategy that
can be implemented thanks to this generic wrapper. Finally,
section 5 proposes a service oriented architecture of the sys-
tem, based on a service factory.

3 Generic web service wrapper

We developed a specific grid submission Web Service.
This service is generic in the sense that it is unique and it
does not depend on the executable code to submit. It ex-
poses a standard interface that can be used by any Web Ser-
vice compliant client to invoke the execution. It completely
hides the grid infrastructure from the end user as it takes
care of the interaction with the grid middleware. This inter-
face plays the same role as the ACD and LCID files quoted
in the previous section, except that it is interpreted at the
execution time.

3.1 Generic web service wrapper

To accommodate to any executable, the generic service
is taking two different inputs: a descriptor of the legacy exe-
cutable command line format, and the input parameters and
data of this executable. The production of the legacy code
descriptor is the only extra work required from the applica-
tion developer. It is a simple XML file which describes the
legacy executable location, command line parameters, input
and output data.

3.2 Legacy code descriptor

The command line description has to be complete
enough to allow dynamic composition of the command line
from the list of parameters at the service invocation time
and to access the executable and input data files. As a con-
sequence, the executable descriptor contains:

1. The name and access method of the executable. In our
current implementation, access methods can be a URL,
a Grid File Name (GFN) or a local file name. The
wrapper is responsible for fetching the data according
to different access modes.

2. The access method and command-line option of the
input data. As our approach is service-based, the ac-
tual name of the input data files is not mandatory in
the description. Those values will be defined at the
execution time. This feature differs from various job
description languages used in the task-based middle-
wares. The command-line option allows the service to
dynamically build the actual command-line at the exe-
cution time.

3. The command-line option of the input parameters:
parameters are values of the command-line that are
not files and therefore which do not have any access
method.

4. The access method and command-line option of the
output data. This information enables the service to
register the output data in a suitable place after the exe-
cution. Here again, in a service-based approach, names



of output data files cannot be statically determined be-
cause output file names are only generated at execution
time.

5. The name and access method of the sandboxed files.
Sandboxed files are external files such as dynamic li-
braries or scripts that may be needed for the execution
although they do not appear on the command-line.

3.3 Example

An example of a legacy code description file is presented
in figure 1. It corresponds to the description of the ser-
vicecrestLines of the workflow depicted in figure 4. It
describes the scriptCrestLines.pl which is available
from the serverlegacy.code.fr and takes 3 input ar-
guments: 2 files (options-im1 and-im2 of the command-
line) that are already registered on the grid as GFNs at ex-
ecution time and 1 parameter (option-s of the command-
line). It produces 2 files that will be registered on the grid.
It also requires 3 sandboxed files that are available from the
server.

3.4 Discussion

This generic service highly simplifies application devel-
opment because it is able to wrap any legacy code with a
minimal effort. The application developer only needs to
write the executable descriptor for her code to become ser-
vice aware.

But its main advantage is in enabling the sequential ser-
vices grouping optimization introduced in section 4. In-
deed, as the workflow enactor has access to the executable
descriptors, it is able to dynamically create a virtual service,
composing the command lines of the codes to be invoked,
and submitting a single job corresponding to this sequence
of command lines invocation.

It is important to notice that our solution remains com-
patible with the services standards. The workflow can still
be executed by other enactors, as we did not introduce any
new invocation method. Those enactors will make standard
service calls (e.g. SOAP ones) to our generic wrapping ser-
vice. However, the optimization strategy described in the
next section is only applicable to services including the de-
scriptor presented in section 3.2. We call those services
MOTEUR services, referring to our workflow manager pre-
sented in section 2.4.

4 Services grouping optimization strategy

The main interest for using grid infrastructures in the
processing of data-intensive applications is to exploit the
potential application parallelism thanks to the distributed
grid resources available. There are three different levels
of parallelism that can be exploited when considering any

<description>
<executable name="CrestLines.pl">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="CrestLines.pl"/>
<input name="floating_image" option="-im1">

<access type="GFN"/>
</input>
<input name="reference_image" option="-im2">

<access type="GFN"/>
</input>
<input name="scale" option="-s"/>
<output name="crest_reference" option="-c1">

<access type="GFN"/>
</output>
<output name="crest_floating" option="-c2">

<access type="GFN"/>
</output>
<sandbox name="convert8bits">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="Convert8bits.pl"/>

</sandbox>
<sandbox name="copy">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="copy"/>

</sandbox>
<sandbox name="cmatch">

<access type="URL">
<path value="http://legacy.code.fr"/>

</access>
<value value="cmatch"/>

</sandbox>
</executable>

</description>

Figure 1. Descriptor example

application workflow. Services grouping strategies have to
cautiously take care of them, to avoid execution slow down.

Workflow parallelism . The intrinsic workflow paral-
lelism depends on the application graph topology. For in-
stance if we consider the application example presented in
figure 4, servicesBaladin andYasmina can be executed
in parallel.

Data parallelism. Data are processed independently
from each other. Therefore, different input data can be pro-
cessed in parallel on different resources. This may lead
to considerable performance improvements given the high
level of parallelism achievable in data-intensive applica-
tions.

Services parallelism. The processing of two different
data sets by two different services are totally independent.
This pipelining model, very successfully exploited inside
CPUs, can be adapted to sequential parts of service-based
workflows. Considering the workflow represented on fig-
ure 4, servicescrestLines andcrestMatch may be
run in parallel on independent data sets. In practice this kind
of parallelism strongly improves the workflow execution on
grids.



4.1 Grouping service calls

We propose a services grouping strategy to further op-
timize the execution time of a workflow. Services group-
ing consists in merging multiple jobs into a single one.
It reduces the grid overhead induced by the submission,
scheduling, queuing and data transfers times whereas it
may also reduce the parallelism. In particular, sequential
processors grouping is interesting because those processors
do not benefit from any parallelism. For example, con-
sidering the workflow of our application presented on fig-
ure 4 we can, for each data set, group the execution of the
crestLines and thecrestMatch jobs on the one hand
and thePFMatchICP and thePFRegister ones on the
other hand.

Grouping jobs in the task-based approach is straightfor-
ward and it has already been proposed for optimization [2].
Conversely, jobs grouping in the service-based approach is
usually not possible given that (i) the services composing
the workflow are totally independent from each other (each
service is providing a different data transfer and job submis-
sion procedure) and (ii) the grid infrastructure handling the
jobs does not have any information concerning the work-
flow and the job dependencies. Consider the simple work-
flow represented on the left side of figure 2. On top, the ser-
vices forP1 andP2 are invoked independently. Data trans-
fers are handled by each service and the connection between
the output ofP1 and the input ofP2 is handled at the work-
flow engine level. On the bottom,P1 andP2 are grouped
in a virtual single service. This service is capable of invok-
ing the code embedded in both services sequentially, thus
resolving the data transfer and independent code invocation
issues.

Grouped
services

P1

2P

2P

P1

interface
standard

interface
standard Code 1 submission

to generic

Input data transfer

Output data transfer

Code 2 submission
Input data transfer

Output data transfer

Output data transfer
Code 1 + code 2 submission
Input data transferinterface

standard

wrapper
service

command lines generation

Workflow manager Application services

invocation
Services

Figure 2. Classical services invocation (top)
and services grouping (bottom).

4.2 Grouping strategy

Services grouping can lead to significant speed-ups, es-
pecially on production grids that introduce high overheads,

as it is demonstrated in the next section. However, it may
also slow down the execution by limiting parallelism. We
thus have to determine efficient strategies to group services.

In order to determine a grouping strategy that does not
introduce any overhead, neither from the user point of view,
nor from the infrastructure one, we impose the two fol-
lowing constraints: (i) the grouping strategy must not limit
any kind of parallelism (user point of view) and (ii) during
their execution, jobs cannot communicate with the work-
flow manager (infrastructure point of view). The second
constraint prevents a job from holding a resource just wait-
ing for one of its ancestor to complete. An implication of
this constraint is that if services A and B are grouped to-
gether, the results produced by A will only be available once
B will have completed.

A workflow may include both MOTEUR Web-Services
(i.e. services that are able to be grouped) and classical ones,
that could not be grouped. Assuming those two constraints,
the following rule is sufficient to process all the possible
groupings of two services of the workflow:

Let A be a MOTEUR service of the workflow and
{B0,...Bn} its children in the service graph. IF
there exists a MOTEUR childBi which is an an-
cestor of everyBj (i 6= j) and whose each ances-
tor C is an ancestor ofA or A itself, THEN group
A andBi.

Indeed, every violation of this rule also violates one of our
constraints as it can easily be shown. The grouping strategy
tests this rule for each MOTEUR service A of the work-
flow. Groups of more than two services may be recursively
composed from successive matches of the grouping rule.

For example, the workflow displayed in figure 3, ex-
tracted from our medical imaging application, is made of
4 MOTEUR services that can be grouped into a single one
through 3 applications of the grouping rule. On this figure,
notations nearby the services corresponds to the ones intro-
duced in the grouping rule.

The first application case of the grouping rule is repre-
sented on the left of the figure. The tested MOTEUR ser-
vice A is crestLines. A is connected to the workflow
inputs and it has two children,B0 andB1. B0 is a father of
B1 and it only has as single ancestor which isA. The rule
thus matches:A andB0 can be grouped. If there were a
serviceC ancestor ofB0 but not ofA as represented on the
figure, the rules would not match:A andC would have to
be executed in parallel before startingB0. Similarly, if there
were a serviceD the rule would not match as the workflow
manager would need to communicate results during the ex-
ecution of the grouped jobs in order to allow workflow par-
allelism betweenB0 andD.

In the second application case, in the middle of the fig-
ure, the tested serviceA is nowcrestMatch. A has only



D

CcrestLines

crest
Match

PFMatch

PFRegister

A

B
0

B
1

crestLines

Match
crest

PFMatch

PFRegister

C

A

0
B A

crest
Match

crestLines

PFMatch

PFRegister
0

B

Figure 3. Services grouping examples

a single child:B0. B0 has two ancestors,A andC. The
rule matches becauseC is an ancestor ofA. A andB0 can
then be grouped. For the last rule application case, on the
right of figure 3,A is thePFMatch service. It has only
one child,B0, who only has a single ancestor,A. The rule
matches and those services can thus be grouped.

WhenA is thePFRegister service, the grouping rule
does not match because it does not have any child. Note that
in this example, the recursive grouping strategy will lead to
a single job submission.

4.3 Experiments on a production grid

To quantify the speed-up introduced by services group-
ing on a real application workflow, we made experiments
on the EGEE production grid infrastructure. The EGEE
system is a pool of thousands computing (standard PCs)
and storage resources accessible through the LCG2 middle-
ware. The resources are assembled in computing centers,
each of them running its internal batch scheduler. Jobs are
submitted from a user interface to a central Resource Bro-
ker which distributes them to the available resources. The
access to EGEE grid resources is controlled for each virtual
organizations (VOs). For our VO, about 3000 CPUs acces-
sible through 25 batch queues are available. The large scale
and multi-users nature of this infrastructure makes the over-
head due to submission, scheduling and queuing time of the
order of 5 to 10 minutes. Limiting job submissions by ser-
vices grouping is therefore highly suitable on this kind of
production infrastructure.

4.3.1 Experimental workflows

We made experiments on a medical imaging registration ap-
plication which is made from 6 legacy algorithms developed
by the Asclepios team of INRIA Sophia-Antipolis [16]. The
workflow of this application is represented on figure 4. It
aims at assessing the accuracy of 4 registration algorithms,
namely crestMatch, PFMatchICP/PFRegister,
Baladin andYasmina. A number of input image pairs
constitutes the input of the workflow (floating image

Number of input Speed-up on the Speed-up on the
image pairs sub-workflow whole application

12 2.91 1.42
66 1.72 1.34
126 2.30 1.23

Table 1. Grouping strategy speed-ups

and reference image). Those pairs are first regis-
tered by thecrestMatch method and this result initial-
izes the 3 remaining algorithms. At the end of the workflow,
theMultiTransfoTest service is a statistical step that
computes the accuracy of each algorithm from all the pre-
viously obtained results.crestLines is a pre-processing
step forcrestMatch andPFMatchICP.

To show how services grouping is able to speed-up the
execution on highly sequential applications, we also ex-
tracted a sub-workflow from our application, as shown
in figure 4. It is made of 4 services that correspond
to thecrestLines, crestMatch, PFMatchICP and
PFRegister ones in the application workflow. Our
grouping rule groups those 4 services into a single one, as it
has been detailed in the example of figure 3. It is important
to notice that even if this sub-workflow is sequential, and
thus does not benefit from workflow parallelism, its execu-
tion on a grid does make sense because of data and service
parallelisms.

To evaluate the impact of our grouping strategy on the
performances, we compared the execution times of those
workflows with and without using the grouping strategy.

4.3.2 Results

Table 1 presents the speed-ups induced by our grouping
strategy for a growing number of input image pairs and
for the two experimental workflows described above. This
speed-up indicates the acceleration provided by the group-
ing strategy with respect to a regular grid execution, where
each service invocation leads to a job submission. We can
notice on those tables that services grouping does effec-
tively provide a significant speed-up on the workflow ex-
ecution. This speed-up is ranging from1.23 to 2.91.

The speed-up values are greater on the sub-workflow
than on the whole application one. Indeed, on the sub-
workflow, 4 services are grouped into a single one, thus
providing a 3 jobs submission saving for each input data
set. On the whole application workflow, the grouping rule
is applied only twice, leading to a 2 jobs saving for each
input data set, as depicted on figure 4.



referenceImage floatingImage

MethodToTest

MultiTransfoTest

PFRegister

Yasmina BaladinPFMatchICP getFromEGEE

getFromEGEE

getFromEGEE getFromEGEE

crestMatch

crestLines

accuracy_rotationaccuracy_translation

Sub−workflow

Figure 4. Workflow of the application. Services to be grouped are squared in blue.

5 Dynamic generic service factory

The generic web service wrapper introduced in section 3
drastically simplifies the embedding of legacy code into ap-
plication services. However, it is mixing two different roles:
(i) the legacy command line generation and (ii) the grid
submission. Submission is only dependent on the target
grid and not on the application service itself. In a Service
Oriented Architecture (SOA) it is preferable to split these
two roles into two independent services for several reasons.
First, the submission code does not need to be replicated
in all application services. Second, the submission role can
be transparently and dynamically changed (to submit to a
different infrastructure) or updated (to adapt to middleware
evolutions). In addition, an application wrapper factory ser-
vice further facilitates the wrapping of legacy code services
and their grouping. We thus introduce a complete SOA de-
sign based on three main services as illustrated in figure 6.

The (blue) MOTEUR web services represents legacy
code wrapping services. They are assembling command
lines and invoking the (red) submission service for han-
dling code execution on the grid infrastructure. The code
wrapper factory service is responsible for dynamically gen-
erating and deploying application services. The aim of this
factory is to achieve two antagonist goals:

• To expose legacy codes as autonomous web services

respecting the main principles of Service Oriented Ar-
chitectures (SOA).

• To enable the grouping of two of these web services as
a unique one for optimizing the execution.

On one hand, the specific web service implementation
details (i.e. the execution of legacy code on a grid infras-
tructure) are hidden to the consumer. On the other hand,
when the consumer is a workflow manager which can group
jobs, it needs to be aware of the real nature the web ser-
vice (the encapsulation of a MOTEUR descriptor) so that it
could merge them at run time. We choose to use the WSDL
XML Format extension mechanism which allows to insert
user defined XML elements in the WSDL content itself. On
figure 6, we represent the overall architecture and some us-
age scenario. First, the legacy code provider submits (1.a)
a MOTEUR XML descriptor P1 to the MOTEUR factory.
The factory, then dynamically deploy (1.b) a web service
which wraps the submission of the legacy code to the grid
via the generic service wrapper. Another provider do the
same with the descriptor of P2 (2.a). The resulting web
services expose their WSDL contracts to the external world
with a specific extension associated with the WSDL opera-
tion. For instance, the WSDL contract resulting of the de-
ployment of thecrestLines legacy code described on
figure 1 is printed on figure 5.

This WSDL document defines two types
(CrestLines-request and CrestLines-



Figure 6. Services factory.

response) corresponding to the descriptor inputs
and outputs and a singleExecute operation. Notice that
in the binding section, the WSDL document contains an
extraMOTEUR-descriptor tag pointing to the URL of
the legacy code descriptor file (location) and a binding
to the Execute operation (soap:operation).

Suppose now that the workflow manager identifies a ser-
vices grouping optimization (e.g. P1 and P2) (3.a on fig-
ure 6). Because of its ability to discover the extended nature
of these two services, the engine can retrieve the two corre-
sponding MOTEUR descriptors. It can ask the factory to
combinethem (3.b) resulting in a single composite web ser-
vice (3.c) which exposes an operation taking its inputs from
P1 (and P2 inputs coming from other external services) and
returning the outputs defined by P2 (and P1 outputs going to
other external services). This composite web service is of
the same type than any regular legacy code wrapping ser-
vice. It is accessible through the same interface and it also
delegates the grid submission to the generic submission web
service by sending the composite MOTEUR descriptor and
the input link of P1 and P2 in the workflow.

6 Conclusion

In this paper, we first described an application-
independent legacy code wrapper that works at run time,
by interpreting a command-line description file. This wrap-
per made possible the deployment of a real medical imaging

application in a user-friendly way.
We then introduced a workflow optimization strategy

based on this wrapper, which consists in grouping services
that do not benefit from any parallelism. We showed re-
sults on workflows related to our application, deployed on
the EGEE infrastructure. Our grouping strategy is able to
provide speed-ups close to 3 on one of our examples.

We finally introduced a fully SOA compliant architecture
of the whole system, from application composition to job
submission, that fully automatizes the legacy code wrap-
ping and the grouping strategy procedures. Any legacy
code-based application can thus be instantiated by only pro-
viding a MOTEUR descriptor to the service factory.

Acknowledgments
This work is partially funded by the French research

program “ACI-Masse de données” (http://acimd.labri.fr/),
AGIR project (http://www.aci-agir.org/). We are gratefulto
the EGEE European project for providing the grid infras-
tructure and user assistance.

References

[1] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva. JobSubmis-
sion Description Language (JSDL) Specification, Version
1.0. Technical report, GGF, nov 2005.



<?xml version="1.0" encoding="utf-8" ?>
<definitions ...>
<types>
<schema>
<element name="CrestLines-request">

<complexType>
<sequence>
<element name="floating_image"

type="string"... />
<element name="reference_image"

type="string"... />
<element name="scale" type="string"... />
</sequence>

</complexType>
</element>
<element name="CrestLines-response">

<complexType>
<sequence>

<element name="crest_reference"
type="string"... />

<element name="crest_floating"
type="string"... />

</sequence>
</complexType>

</element>
</schema>

</types>
<message name="ExecuteSoapIn">
<part name="parameters"

element="CrestLines.pl-request" />
</message>
<message name="ExecuteSoapOut">
<part name="parameters"

element="CrestLines.pl-response" />
</message>
<portType name="CrestLines.plSoap">
<operation name="Execute">
<input message="ExecuteSoapIn" />
<output message="ExecuteSoapOut" />

</operation>
</portType>
<binding ...>
<soap:binding transport="http://..." />
<operation name="Execute">
<soap:operation soapAction="http://.../Execute"

style="document" />
<MOTEUR-descriptor xmlns="urn:...">
<location>http://...</location>

</MOTEUR-descriptor>
....

</operation>
</binding>

</definitions>

Figure 5. WSDL generated by the factory

[2] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy. Task Scheduling Strategies for Workflow-
based Applications in Grids. InCCGrid, Cardiff, UK, 2005.

[3] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build
Network Enabled Servers on the Grid.International Journal
of High Performance Computing Applications, 2005.

[4] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Win-
ter, and P. Kacsuk. GEMLCA: Running Legacy Code Appli-
cations as Grid Services.Journal of Grid Computing (JGC),
3(1-2), 2005.

[5] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Technical report, Open
Grid Service Infrastructure WG, Global Grid Forum, June
2002.

[6] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field,
and J. Darlington. ICENI : Optimisation of component ap-
plications within a Grid environment.Journal of Parallel
Computing, 28(12):1753–1772, 2002.

[7] T. Glatard, J. Montagnat, and X. Pennec. An optimized
workflow enactor for data-intensive grid applications. Tech-
nical Report I3S/RR-2005-32-, I3S, Sophia-Antipolis, oct
2005.

[8] A. Harrison and I. Taylor. Dynamic Web Service Deploy-
ment Using WSPeer. InProceedings of 13th Annual Mardi
Gras Conference - Frontiers of Grid Applications and Tech-
nologies, pages 11–16, feb 2005.

[9] Y. Huang, I. Taylor, D. M. Walker, and R. Davies. Wrap-
ping Legacy Codes for Grid-Based Applications. In17th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), page 139. IEEE Computer Society, 2003.

[10] P. Kacsuk, G. Dzsa, J. Kovcs, R. Lovas, N. Podhorszki,
Z. Balaton, and G. Gombs. P-GRADE: A Grid Programing
Environment.Journal of Grid Computing (JGC), 1(2):171–
197, 2003.

[11] G. Kecskemeti, Y. Zetuny, T. Kiss, G. Sipos, P. Kacsuk,
G. Terstyanszky, and S. Winter. Automatic deployment of
Interoperable Legacy Code Services. InUK e-Science All
Hands Meeting, Nottingham, UK, sep 2005.

[12] J. Li, Z. Zhang, and H. Yang. A Grid Oriented Approach to
Reusing Legacy Code in ICENI Framework. InIEEE Inter-
national Conference on Information Reuse and Integration
(IRI’05), Las Vegas, USA, aug 2005.

[13] M. Livny. Direct Acyclic Graph Manager (DAGMan).
http://www.cs.wisc.edu/condor/dagman/.

[14] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific Work-
flow Management and the Kepler System.Concurrency and
Computation: Practice & Experience, 2005.

[15] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,
and H. Casanova. A GridRPC Model and API for End-User
Applications. Technical report, Global Grid Forum (GGF),
jul 2005.

[16] S. Nicolau, X. Pennec, L. Soler, and N. Ayache. Evalua-
tion of a New 3D/2D Registration Criterion for Liver Radio-
Frequencies Guided by Augmented Reality. InInternational
Symposium on Surgery Simulation and Soft Tissue Modeling
(IS4TM’03), volume 2673 ofLNCS, pages 270–283, Juan-
les-Pins, 2003. INRIA Sophia Antipolis, Springer-Verlag.

[17] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflows.Bioinformatics
journal, 17(20):3045–3054, 2004.

[18] M. Senger, P. Rice, and T. Oinn. Soaplab - a unified Sesame
door to analysis tool. InUK e-Science All Hands Meeting,
pages 509–513, Nottingham, sep 2003.

[19] I. Taylor, I. Wand, M. Shields, and S. Majithia. Distributed
computing with Triana on the Grid.Concurrency and Com-
putation: Practice & Experience, 17(1–18), 2005.

[20] W. World Wide Web Consortium. Web Services
Description Language (WSDL) 1.1, mar 2001.
http://www.w3.org/TR/wsdl.

[21] J. Yu and R. Buyya. A taxonomy of scientific workflow sys-
tems for grid computing.ACM SIGMOD Record, 34(3):44–
49, Sept. 2005.


	Introduction
	Grid enabling applications
	Task-based job submission
	Service-based code execution
	Discussion
	Workflow of services
	Legacy code wrapping

	Generic web service wrapper
	Generic web service wrapper
	Legacy code descriptor
	Example
	Discussion

	Services grouping optimization strategy
	Grouping service calls
	Grouping strategy
	Experiments on a production grid
	Experimental workflows
	Results


	Dynamic generic service factory
	Conclusion

