-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Generic web service wrapper for efficient embedding of
legacy codes in service-based workflows
Tristan Glatard, David Emsellem, Johan Montagnat

» To cite this version:

Tristan Glatard, David Emsellem, Johan Montagnat. Generic web service wrapper for efficient embed-
ding of legacy codes in service-based workflows. Grid-Enabling Legacy Applications and Supporting
End Users Workshop, Jun 2006, Paris, France. pp.1-10. hal-00683196

HAL Id: hal-00683196
https://hal.archives-ouvertes.fr/hal-00683196
Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/49908574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00683196
https://hal.archives-ouvertes.fr

Generic web service wrapper for efficient embedding of legacy codes i
service-based workflows

Tristan Glatard, David Emsellem, Johan Montagnat
I3S laboratory, CNRSt t p: / / www. i 3s. uni ce. fr/ ~j ohan
{glatard,emsellem,joha@i3s.unice.fr

Abstract the service-based framework at very little cost, thus allow
ing an easy composition of complex application workflows.
In this paper, we present a generic wrapper that enables Our service wrapper is dynamically treating processing re-
the optimization of legacy codes assembled in application quests at the execution time and can thus be exploited to op-
workflows on grid infrastructures. We first describe advan- timize the application execution on grid infrastructurgs b
tages of a service-based approach for job management. Wegrouping jobs, as shown by experimental results. We then
then introduce our wrapper, that works at execution time, propose a complete service-oriented architecture (SOA) of
thus allowing service grouping strategies to optimize the the system, from application composition to grid execution
execution. We demonstrate performance results on a real
medicql imaging a_pplication. We finally propose a new ser- 2 Grid enabling applications
vice oriented architecture of the whole system, from appli-

cation composition to job submission on the grid. ) ) o ) )
Two main paradigms are used in different grid middle-

wares for describing and controlling application process-

ings. The task-based approach is the most widely available

and has been exploited for the longest time. It consists of a
Grids technologies are very promising for addressing command-line description and the remote execution of ap-

the computing and storage needs arising from many scien-plication code. The service-based approach has more re-

tific and industrial application areas. In this context, en- cently emerged. It consists in using a standard invocation

abling legacy code execution on modern grid infrastruc- protocol for calling application code embedded in the ser-

tures is challenging. A tremendous amount of work has vice. It is usually completed by a service discovery and an

been put in the development of various sequential data pro-interface description mechanism.

cessing algorithms without taking into account particular

ties of distributed systems nor specific middlewares. Even2.1  Task-based job submission

considering new codes development, instrumenting appli-

cations with middleware specific interfaces or designingap |, the task-based job submission approach, each process-
plications to explicitly take advantage of distributedtg- i js related to an executable code and described through
sources is a significant burden for the developers who are, . individual computatiotask A task description encom-
often reluctant to allocate sufficient effort on non appiica aqses at least the executable code name and a command-
tion specific problems. line to be used for code invocation. It may be completed
Grid middlewares are therefore expected to ease sequenpy additional parameters such as input and output files to
tial codes migration to grid infrastructures by (i) prop®i  pe transferred prior or next to the execution, and additiona
a non-intrusive interface to existing application coded an 55k scheduling information such as minimum system re-
(if) optimizing the execution of the application on grid re- quirements. Tasks may be described either directly on the
sources. job submission tool command-line, or indirectly through a
In this paper we first discuss task-based job submissiontask description file. Unless considering very simple code
and service-based code invocation, the two main paradigmsnvocation use cases, description files are often needed to
proposed for executing application code on grid infrastruc specify the task in depth. Many file description formats
tures. We defend the benefit of the service-based approacthave been proposed and the GGF is currently working on
from a user point of view. unifying different formats in the Job Submission Descrip-
We then propose an application-independent service
wrapper to ease the migration of existing application code i

1 Introduction


http://www.i3s.unice.fr/~johan

tion Language (JSDL) working group [1]. The task-based
approach is also often referred toglebal computing

In the task-based paradigm, code invocation is straight-
forward, through the legacy code command-line. It does
not require any adaptation of the user code and for this rea-
son it has been implemented in most existing batch systems
for decades (e.g. PBS, NQS, OAR). Many grid middle-
wares are also task-based, such as Globus Toolkit, CO
DOR, LCG2 and gLite. Indeed, even if those middlewares
(Globus Toolkit and gLite in particular) may themselves be
made from services orchestrating features such as security

may need to be executed through different service in-
terfaces.

¢ In the case of legacy code, recompilation for instru-

menting the code may be very difficult or even impos-
sible (in case of non availability of source code, com-
pilers, dependencies, etc).

N_Therefore, the only way to deal with legacy code in a user-
friendly way is to propose a service-compliant code execu-
tion interface.

job management and data management, the computing re2-3 ~Discussion

sources of the grid are accessed through task submissions.

Apart from the invocation procedures and the ease of

2.2 Service-based code execution

implementation mentioned above, the task-based and the

service-based approaches differ by several fundamental
points which impact their usage:

The service-based approach was widely adopted for
dealing with heterogeneous and distributed systems. In ®
particular for middleware development, the OGSA frame-
work [5] and the subsequent WSRF standard encountered
a wide adoption from the international community. In the
service-based approach, the code is embedded in a standard
service shell. The standard defines an interface and an in-
vocation procedure. The Web Services standard [20], sup-
ported by the W3C is the most widely available although
many existing implementations do not conform to the whole
standard yet. It has been criticized for the low efficiency re
sulting from using text messages in XML format and alter- ®
natives such as GridRPC [15] have been designed to speed-
up message exchanges. The service-based approach is also
often referred to asneta computing Middlewares such as
DIET [3] adopted this approach.

The main advantage of the service based approach is the
flexibility that it offers. Clients can discover and invoke
any service through standard interfaces without any prior
knowledge on the code to be executed. The service-based
approach delegates to the server side the actual code exe-
cution procedure. However, all application codes need to
be instrumented with the service interface to become avail-
able. In the case of legacy code application, it is often not
the case and an intermediate code invocation layer or some ®
code reworking is needed to exploit this paradigm. Users
are often reluctant to invest efforts in writing specific eod
for services on the application side for different reasons:

e The complexity of standards often makes service con-
formity a matter of specialists. Some tooling are avail-
able for helping in generating service interfaces but e
they cannot be fully automated and they all require a
developer intervention.

e Standards tend to evolve quickly, especially in the grid
area, obsoleting earlier efforts in a too short time scale.

e Multiple standards exist and a same application code

To submit a task-based job, a user needs to precisely
know the command-line format of the executable, tak-
ing into account all of its parameters. It is not always
the case when the user is not one of the developers.
In the service-based approach conversely, the actual
code invocation is delegated to the service which is
responsible for the correct handling of the invocation
parameters. The service is a black box from the user
side and to some extent, it can deal with the correct
parametrization of the code to be executed.

The handling of input/output data is very different in
both cases. In the task-based approach, input/output
data have to be explicitly specified in the task descrip-
tion. Invoking a new execution of a same code on dif-
ferent data requires the rewriting of a new task descrip-
tion. Services better decouple the computation and
data handling parts. A service dynamically receives
inputs as parameters. This decoupling of processing
and data is particularly important when considering
the processing of complete data sets rather than sin-
gle data. Indeed, grid infrastructures are particularly
well suited for data-intensive applications that require
repeated processings of different data.

The service-based approach enables discovery mech-
anisms and dynamic invocation even fipriori un-
known services. This provides a lot of flexibility both
for the user (discovery of available data processing
tools and their interface) and the middleware (auto-
matic selection of services, alternatives services dis-
covery, fault tolerance, etc).

In the service-based framework, the code reusability is
also improved by the availability of a standard invoca-
tion interface. In particular, services are naturally well
adapted to describe applications with a complex work-
flow, chaining different processings whose outputs are
piped to the inputs of each other.

Services are adding an extra layer between the code
invocation and the grid infrastructure on which jobs are



submitted. The caller does not need to know anything act Web-Services and other components such as Soaplab
about the underlying middleware that will be directly services|[18] and Biomoby ones; Triana [19], from the
invoked internally by the service. Different services GridLab projed%, which is decentralized and distribute sev-
might even communicate with different middlewares eral control units over different computing resources, im-
and/or different grid infrastructures. plementing both a parallel and a peer-to-peer distribution
e On the other hand, services deployment introduces anpolicies; the MOTEUR workflow enactor, developed in our
extra effort w.r.t the task-based approach. Indeed, toteam [7], aims at optimizing the execution of data intensive
enable the invocation, services first have to be installed applications.
on all the targeted resources, which becomes a chal- Thanks to the decoupling between processings and data,
lenging problem when their number rises. services easily accommodate with input data sets. Data
o ) ) ] sources are sequentially delivering input data but no addi-
The.erX|b|I|ty and dynamlc.nature of services dep!cted tional complexity of the application graph is needed. An
above is usually very appreciated from the user point of gyample of the flexibility offered by the service-based ap-
view. Given that application services can be deployed at proach is the ability to define differemtata composition
very low development cost, there are number of advantagessirategiesover the input data of a service. When a ser-
in favor of this approach. _ _ ~ vice owns two inputs or more, a composition strategy de-
From middleware developers point of view, the efficient fines the composition rule for the data coming from all
execution of application services is more difficult though. input ports pairwise. Considering two input sets =
As mentioned above, the service is an intermediate Iayer{A()’Ah ...,A,} andB = {Bg,Bi,...,B,} to a ser-
between the user and the grid middleware. Thus, the USejice, the most common strategy isRe-to-oneomposition
does not know nor see anything of the underlying infrastruc- \hjch consists in processing each data of the first set with
ture. Tuning of the jobs submission for a specific applica- the matching data of the second set in their order of defi-
tion is more difficult. Services are completely independent nition, thus producingnin(n, m) result. This corresponds
from each other and global optimization strategies are thusig the case where a sequence of pairs need to be processed.
hardly usable. Therefore, some precautions need to be takemnnother common composition strategy isahto-all strat-

when considering service based applications to ensure googgy which consists in processing all input data from the first

application performances. set with all input data from the second set, thus producing
. m X n results.
2.4 Workflow of services Using iteration strategies to design complex data inter-

action patterns is a very powerful tool for data-intensige a

Building applications by assembling legacy codes for plication developers. This is another advantage assakciate
processing and analyzing data is very common. It allows to the service-based approach from the user point of view.
code reusability without introducing a too high load on the
application developers. The logic of such acomposed appli-2.5 Legacy code wrapping
cation, referred to as thegpplication workflowis described
through a set of computation tasks to perform and data de- Tg ease the embedding of legacy-codes in the service-
pendencies imposing constraints on the order of processhased framework, an application-independent job submis-
Ings. sion service is required. In this section, we briefly review

Many workflow representation formats and execution systems that are used to wrap legacy code into services to
managers have been proposed in the literature with verype embedded in service-based workflows.

different properties [21]. When dealing with workflows,  The Java Native Interface (JNI) has been widely adopted
the taSk'baseq and the service-based paradlgms exhibit Nevipr the Wrapping of |egacy codes into services. Wrappers
fundamental differences. have been developed to automate this process. |In [9], an

The emblematic task-based workflow manager is the gutomatic JNI-based wrapper of C code into Java and the
CONDOR Directed Acyclic Graph Manager (DAG- corresponding type mapper with Triana [19] is presented:
Man) [13]. Based on the static description of such a work- JACAW generates all the necessary java and C files from a
flow, many different optimization strategies for the execu- C header file and compiles them. A coupled tool, MEDLI,
tion have been proposed [2]. then maps the types of the obtained Java native method to

Services are naturally very well suited for representing Triana types, thus enabling the use of the legacy code into
and chaining workflow components. The service based ap-this workflow manager. Related to the ICENI workflow
proach has been implemented in different workflow man- manager [6], the wrapper presented in [12] is based on code

agers such as: the Kepler system [14] which can orches-reengineering. It identifies distinct components from aecod
trate standard Web-Services; the Taverna project [17infro

the myGrid e-Science UK proj&clwhich is able to en-

2GridLab projectht t p: / / www. gri dl ab. or g

ImyGrid projectht t p: // mygri d. or g. uk


http://mygrid.org.uk
http://www.gridlab.org

analysis, wrap them using JNI and adds a specific CXML 3 Generic web service wrapper
interface layer to be plugged into an ICENI workflow.
We developed a specific grid submission Web Service.

The WSPeer framework [8], interfaced with Triana, aims  Thijs service is generic in the sense that it is unique and it
at easing the deployment of Web-Services by exposingdoes not depend on the executable code to submit. It ex-
many of them at a single endpoint. It differs from a con- poses a standard interface that can be used by any Web Ser-
tainer approach by giving to the application the controlrove yice compliant client to invoke the execution. It complgtel
service invocation. The Soaplab system [18] is especially hides the grid infrastructure from the end user as it takes
dedicated to the wrapping of command-line tools into Web- care of the interaction with the grid middleware. This inter
Services. It has been largely used to integrate bioinfor- face plays the same role as the ACD and LCID files quoted

matics executables in workflows with Taverna [17]. Itis in the previous section, except that it is interpreted at the
able to deploy a Web-Service in a container, starting from axecution time.

the description of a command-line tool. This command-
line description, referred to as the metadata of the armglysi 3,1 Generic web service wrapper
is written for each application using the ACD text format

file and then converted into a corresponding XML format. To accommodate to any executable, the generic service
Among domain specific descriptions, the authors underline is taking two different inputs: a descriptor of the legacg-ex
that such a command-line description format must include cytable command line format, and the input parameters and
(i) the description of the executable, (i) the names anés$yp  data of this executable. The production of the legacy code
of the input data and parameters and (iii) the names andgescriptor is the only extra work required from the applica-
types of the resulting output data. As described latter, thetjon developer. It is a simple XML file which describes the

format We. used in.CIUdeS those features .and adds new One%gacy executable |Ocation, command line parameterst inpu
to cope with requirements of the execution of legacy code and output data.

on grids.

_ 3.2 Legacy code descriptor
The GEMLCA environment [4] addresses the problem

of e>.<posing ,legacy code cpmmand-line programs as Grid - 1he command line description has to be complete
services. Itis interfaced with the P-GRADE portal work- - oy6,gh to allow dynamic composition of the command line
flow manager [10]. The command-line tool is described o the |ist of parameters at the service invocation time
with the LCID (Legacy Code Interface Description) format 54 g access the executable and input data files. As a con-
which contains (i) a description of the executable, (ii) the sequence, the executable descriptor contains:

name and binary file of the legacy code to execute and (iii)
the name, nature (input or output), order, mandatory, file 1. The name and access method of the executable. In our

or command line, fixed and regular expressions to be used  currentimplementation, access methods can be a URL,

as input validation. A GEMLCA service depends on a set a Grid File Name (GFN) or a local file name. The
of target resources where the code is going to be executed. ~ wrapper is responsible for fetching the data according
Architectures to provide resource brokering and service mi to different access modes.
gration at execution time are presented in [11]. 2. The access method and command-line option of the
input data. As our approach is service-based, the ac-
Apart from this latest early work, all of the reviewed ex- tual name of the input data files is not mandatory in
isting wrappers are static: the legacy code wrapping is done the description. Those values will be defined at the
offline, before the execution. This is hardly compatiblehwit execution time. This feature differs from various job
our approach, which aims at optimizing the whole applica- description languages used in the task-based middle-

tion execution at run time. We thus developed a specific grid wares. The command-line option allows the service to
submission Web-Service, which can wrap any executable at dynamically build the actual command-line at the exe-

run time, thus enabling the use of optimization strategies b cution time.
the workflow manager. 3. The command-line option of the input parameters:
parameters are values of the command-line that are
The following section 3 introduces a generic applica- not files and therefore which do not have any access
tion code wrapper compliant with the Web Services spec- method.

ification. It enables the execution of any legacy executable 4. The access method and command-line option of the
through a standard service interface. The subsequent sec-  output data. This information enables the service to
tion[4 proposes a code execution optimization strategy that register the output data in a suitable place after the exe-
can be implemented thanks to this generic wrapper. Finally, cution. Here again, in a service-based approach, names
section 5 proposes a service oriented architecture of the sy

tem, based on a service factory.



of output data files cannot be statically determined be-

cause output file names are only generated at execution

time.

Sandboxed files are external files such as dynamic li-
braries or scripts that may be needed for the execution
although they do not appear on the command-line.

3.3 Example

An example of a legacy code description file is presented
in figure[1. It corresponds to the description of the ser-
vicecr est Li nes of the workflow depicted in figure 4. It
describes the scripfr est Li nes. pl which is available
from the servet egacy. code. fr and takes 3 input ar-
guments: 2 files (optionsi mL and- i n? of the command-

line) that are already registered on the grid as GFNs at ex-

ecution time and 1 parameter (opties of the command-
line). It produces 2 files that will be registered on the grid.

It also requires 3 sandboxed files that are available from the

server.

3.4 Discussion

. The name and access method of the sandboxed files.

<descri ption>
<execut abl e name="Crest Li nes. pl">
<access type="URL">
<path val ue="http://| egacy.code. fr"/>

</ access>

<val ue val ue="CrestLines.pl"/>

<i nput name="fl oating_i nage" option="-inml">
<access type="GFN'/>

</input>

<i nput name="ref erence_i nage" option="-inR">
<access type="GFN'/>

</i nput >

<i nput nanme="scal e" option="-s"/>
<out put nanme="crest_reference" option="-cl1">
<access type="GFN'/>
</ out put >
<out put nanme="crest_floating" option="-c2">
<access type="GFN'/>
</ out put >
<sandbox nanme="convert8bits">
<access type="URL">
<path value="http://|egacy.code.fr"/>
</ access>
<val ue val ue="Convert8bits.pl"/>
</ sandbox>
<sandbox nane="copy">
<access type="URL">
<path val ue="http://| egacy.code. fr"/>
</ access>
<val ue val ue="copy"/>
</ sandbox>
<sandbox name="cmatch">
<access type="URL">
<path value="http://|egacy.code.fr"/>
</ access>
<val ue val ue="cnatch"/>
</ sandbox>
</ execut abl e>

This generic service highly simplifies application devel- < gescripti on>
opment because it is able to wrap any legacy code with a
minimal effort. The application developer only needs to
write the executable descriptor for her code to become ser-
vice aware.

But its main advantage is in enabling the sequential ser-
vices grouping optimization introduced in section 4. In- application workflow. Services grouping strategies have to
deed, as the workflow enactor has access to the executableautiously take care of them, to avoid execution slow down.

descriptors, itis able to dynamically create a virtual &y Workflow parallelism. The intrinsic workflow paral-
composing the command lines of the codes to be invoked,jglism depends on the application graph topology. For in-
and submitting a single job corresponding to this sequencesiance if we consider the application example presented in

of command lines invocation. . . figure 4, serviceBal adi n andYasmi na can be executed
Itis important to notice that our solution remains com- jn parallel.

patible with the services standards. The workflow can still
be executed by other enactors, as we did not introduce an)%ro
new invocation method. Those enactors will make standard
service calls (e.g. SOAP ones) to our generic wrapping ser-
vice. However, the optimization strategy described in the
next section is only applicable to services including the de
scriptor presented in section 3.2. We call those services
MOTEUR services, referring to our workflow manager pre-
sented in sectidn 2.4.

Figure 1. Descriptor example

Data parallelism. Data are processed independently

m each other. Therefore, different input data can be pro-
cessed in parallel on different resources. This may lead
to considerable performance improvements given the high
level of parallelism achievable in data-intensive applica

tions

Services parallelism The processing of two different
data sets by two different services are totally independent
This pipelining model, very successfully exploited inside
CPUs, can be adapted to sequential parts of service-based
workflows. Considering the workflow represented on fig-
urel4, servicesr est Li nes andcr est Mat ch may be
run in parallel on independent data sets. In practice tiid ki
of parallelism strongly improves the workflow execution on
grids.

4 Services grouping optimization strategy

The main interest for using grid infrastructures in the
processing of data-intensive applications is to explod th
potential application parallelism thanks to the distréalit
grid resources available. There are three different levels
of parallelism that can be exploited when considering any



4.1 Grouping service calls as it is demonstrated in the next section. However, it may
also slow down the execution by limiting parallelism. We
We propose a services grouping strategy to further op- thus have to determine efficient strategies to group sesvice
timize the execution time of a workflow. Services group- In order to determine a grouping strategy that does not
ing consists in merging multiple jobs into a single one. introduce any overhead, neither from the user point of view,
It reduces the grid overhead induced by the submission,nor from the infrastructure one, we impose the two fol-
scheduling, queuing and data transfers times whereas ifowing constraints: (i) the grouping strategy must not timi
may also reduce the parallelism. In particular, sequential any kind of parallelism (user point of view) and (ii) during
processors grouping is interesting because those prasessotheir execution, jobs cannot communicate with the work-
do not benefit from any parallelism. For example, con- flow manager (infrastructure point of view). The second
sidering the workflow of our application presented on fig- constraint prevents a job from holding a resource just wait-
ure/4 we can, for each data set, group the execution of theing for one of its ancestor to complete. An implication of

crest Li nes and thecr est Mat ch jobs on the one hand
and thePFMat chl CP and thePFRegi st er ones on the
other hand.

this constraint is that if services A and B are grouped to-
gether, the results produced by A will only be available once
B will have completed.

Grouping jobs in the task-based approach is straightfor- A workflow may include both MOTEUR Web-Services
ward and it has already been proposed for optimization [2]. (i.e. services that are able to be grouped) and classical ones,
Conversely, jobs grouping in the service-based approach isthat could not be grouped. Assuming those two constraints,
usually not possible given that (i) the services composing the following rule is sufficient to process all the possible
the workflow are totally independent from each other (each groupings of two services of the workflow:
service is providing a different data transfer and job submi
sion procedure) and (ii) the grid infrastructure handlihg t
jobs does not have any information concerning the work-
flow and the job dependencies. Consider the simple work-
flow represented on the left side of figlre 2. On top, the ser-
vices for P, and P, are invoked independently. Data trans-
fers are handled by each service and the connection between
the output ofP; and the input of?, is handled at the work- L , ,
flow engine level. On the botton®, and P, are grouped Indeed,. every ylolatlon qf this rule also violates one of our
in a virtual single service. This service is capable of invok constral_nts as it can easily be shown. T_he grouping strategy
ing the code embedded in both services sequentially, thu fests this rule for each MOTEUR service A of the work-

S ) X
resolving the data transfer and independent code invatatio flow. Groups of more than two services may be recursively
issues.

composed from successive matches of the grouping rule.

For example, the workflow displayed in figuré 3, ex-
tracted from our medical imaging application, is made of
4 MOTEUR services that can be grouped into a single one
through 3 applications of the grouping rule. On this figure,
notations nearby the services corresponds to the ones intro
duced in the grouping rule.

The first application case of the grouping rule is repre-
sented on the left of the figure. The tested MOTEUR ser-
vice A is crest Li nes. A is connected to the workflow
inputs and it has two childrer3, and B;. By is a father of
B, and it only has as single ancestor whichdis The rule
thus matches:A and B, can be grouped. If there were a
serviceC' ancestor of3, but not of A as represented on the
figure, the rules would not matchd andC would have to
be executed in parallel before startifg. Similarly, if there
were a serviceD the rule would not match as the workflow
manager would need to communicate results during the ex-
ecution of the grouped jobs in order to allow workflow par-
allelism betweerBy and D.

Services grouping can lead to significant speed-ups, es- In the second application case, in the middle of the fig-
pecially on production grids that introduce high overheads ure, the tested servicé is nowcr est Mat ch. A has only

Let A be a MOTEUR service of the workflow and
{By,...By} its children in the service graph. IF
there exists a MOTEUR chil@®; which is an an-
cestor of evenB; (i # j) and whose each ances-
tor C is an ancestor of or A itself, THEN group
A andB,;.

Workflow manager

invocation

[ —

Application services

Input data transfer
Code 1 submission
Output data transfer

i

command lines generation

standard

- ]
F interface

Services

Input data transfer
Code 2 submission
Output data transfer

standard
interface

standard
interface
to generic
wrapper
service

Input data transfer
Code 1 + code 2 submissio
Output data transfer

Figure 2. Classical services invocation (top)
and services grouping (bottom).

4.2 Grouping strategy



Number of input| Speed-up onthe Speed-up on the
image pairs sub-workflow | whole application

12 291 1.42
66 1.72 1.34
126 2.30 1.23

Table 1. Grouping strategy speed-ups

andr ef erence i mage). Those pairs are first regis-
tered by thecr est Mat ch method and this result initial-
Figure 3. Services grouping examples izes the 3 remaining algorithms. At the end of the workflow,
theMul ti Transf oTest service is a statistical step that
computes the accuracy of each algorithm from all the pre-
a single child: By. By has two ancestors} andC. The  vijously obtained resultr est Li nes is a pre-processing
rule matches becausgeis an ancestor off. A andBj can step forcr est Mat ch andPFMat chl CP.
then be grouped. For the last rule application case, on the
right of figure/ 3, A is the PFMat ch service. It has only
one child, By, who only has a single ancestat, The rule
matches and those services can thus be grouped.
When A is thePFRegi st er service, the grouping rule
does not match because it does not have any child. Note th
in this example, the recursive grouping strategy will lead t
a single job submission.

To show how services grouping is able to speed-up the
execution on highly sequential applications, we also ex-
tracted a sub-workflow from our application, as shown
in figure[4. It is made of 4 services that correspond
o thecr est Li nes, crest Mat ch, PFMat chl CP and
FRegi st er ones in the application workflow. Our
grouping rule groups those 4 services into a single one, as it
has been detailed in the example of figure 3. It is important
. . . to notice that even if this sub-workflow is sequential, and
4.3 Experiments on a production grid thus does not benefit from workflow parallelism, its execu-
tion on a grid does make sense because of data and service
To quantify the speed-up introduced by services group- parallelisms.

ing on a real application workflow, we made experiments To evaluate the impact of our grouping strategy on the

on the EGEE production grid infrastructure. The EGEE performances, we compared the execution times of those

system is a pool of thousands computing (standard PCs . : : :
and storage resources accessible through the LCG2 middle)\-NorkﬂOWS with and without using the grouping strategy.

ware. The resources are assembled in computing centers,
each of them running its internal batch scheduler. Jobs are
submitted from a user interface to a central Resource Bro-
ker which distributes them to the available resources. The
access to EGEE grid resources is controlled for each virtual
organizations (VOs). For our VO, about 3000 CPUs acces- Table 1 presents the speed-ups induced by our grouping
sible through 25 batch queues are available. The large scalétrategy for a growing number of input image pairs and

and multi-users nature of this infrastructure makes the-ove for the two experimental workflows described above. This

head due to submission, scheduling and queuing time of thespeed-up indicates the acceleration provided by the group-
order of 5 to 10 minutes. Limiting job submissions by ser- ing strategy with respect to a regular grid execution, where

vices grouping is therefore highly suitable on this kind of €ach service invocation leads to a job submission. We can
production infrastructure. notice on those tables that services grouping does effec-

tively provide a significant speed-up on the workflow ex-
ecution. This speed-up is ranging fran23 to 2.91.

4.3.2 Results

4.3.1 Experimental workflows
The speed-up values are greater on the sub-workflow

We made experiments on a medical imaging registration ap-than on the whole application one. Indeed, on the sub-
plication which is made from 6 legacy algorithms developed workflow, 4 services are grouped into a single one, thus
by the Asclepios team of INRIA Sophia-Antipolis [16]. The providing a 3 jobs submission saving for each input data
workflow of this application is represented on figure 4. It set. On the whole application workflow, the grouping rule

aims at assessing the accuracy of 4 registration algorithmsis applied only twice, leading to a 2 jobs saving for each
namely crest Mat ch, PFMat chl CP/ PFRegi st er, input data set, as depicted on figure 4.

Bal adi n andYasmi na. A number of input image pairs

constitutes the input of the workflow ( oat i ng i mage



referencelmage floatinglmage

Sub-workflow, ©
P

-’
-
-
-
-
-,

f ! — s
I
: PFMatchICP | ‘getFromEGEE‘ ‘ Yasmina ‘
1 | —
I I T
I I
| I / —
| PFRegister ! ‘ getFromEGEE ‘ ‘ getFromEGEE ‘
1 I
I I

MethodToTest

j—
getFromEGEE
| —

MultiTransfoTest

accuracy_translation accuracy_rotation

Figure 4. Workflow of the application. Services to be grouped are squared in blue.
5 Dynamic generic service factory respecting the main principles of Service Oriented Ar-
chitectures (SOA).

e To enable the grouping of two of these web services as

The generic web service wrapper introduced in section 3 . Lo .
g Pp ¢t a unique one for optimizing the execution.

drastically simplifies the embedding of legacy code into ap-
plication services. However, it is mixing two different est On one hand, the specific web service implementation
(i) the legacy command line generation and (ii) the grid details {.e. the execution of legacy code on a grid infras-
submission. Submission is only dependent on the targettructure) are hidden to the consumer. On the other hand,
grid and not on the application service itself. In a Service when the consumer is a workflow manager which can group
Oriented Architecture (SOA) it is preferable to split these jobs, it needs to be aware of the real nature the web ser-
two roles into two independent services for several reasons vice (the encapsulation of a MOTEUR descriptor) so that it
First, the submission code does not need to be replicateccould merge them at run time. We choose to use the WSDL
in all application services. Second, the submission rate ca XML Format extension mechanism which allows to insert
be transparently and dynamically changed (to submit to auser defined XML elements in the WSDL content itself. On
different infrastructure) or updated (to adapt to middlesva  figure'6, we represent the overall architecture and some us-
evolutions). In addition, an application wrapper factogy-s  age scenario. First, the legacy code provider subriits) (
vice further facilitates the wrapping of legacy code sezgic a MOTEUR XML descriptor P1 to the MOTEUR factory.
and their grouping. We thus introduce a complete SOA de- The factory, then dynamically deployt.p) a web service
sign based on three main services as illustrated in figure 6. which wraps the submission of the legacy code to the grid

The (blue) MOTEUR web services represents legacy via the generic service wrapper. Another provider do the
code wrapping services. They are assembling commandsame with the descriptor of P2.6). The resulting web
lines and invoking the (red) submission service for han- services expose their WSDL contracts to the external world
dling code execution on the grid infrastructure. The code with a specific extension associated with the WSDL opera-
wrapper factory service is responsible for dynamically-gen tion. For instance, the WSDL contract resulting of the de-
erating and deploying application services. The aim of this ployment of thecr est Li nes legacy code described on
factory is to achieve two antagonist goals: figurel 1 is printed on figure 5.

This WSDL document defines two types
e To expose legacy codes as autonomous web servicegCr est Li nes-r equest and CrestLi nes-



MOTEUR Generate composite web service :
from DESC(P1) and DESC(P2) | motEuRext 4

..........................................

2.a

MOTEUR
descriptor

R,

DESC(P2) : MOTEUR
o e T T T : Composite )
1a H H H Web Service H

Legacy code H H H
Deployer = | wsbL Contract
DESC(P1) ; : : :
i

FACTORY

O
Web Service

DESC(P1)
& DESC(P2)

MOTEUR
WSDL Contract Web Service

: | MOTEURext : i
JOB i : : Generic submission Service — Grid 1

MOTEUR
Web Service

p, Ivoke '

WSDL Contract

MOTEUR ext

4., Invoke

Workflow Manager

Figure 6. Services factory.

response) corresponding to the descriptor inputs applicationin a user-friendly way.

and outputs and a singEexecut e operation. Notice that We then introduced a workflow optimization strategy

in the binding section, the WSDL document contains an based on this wrapper, which consists in grouping services
extraMOTEUR- descr i pt or tag pointing to the URL of  that do not benefit from any parallelism. We showed re-
the legacy code descriptor filegcat i on) and a binding  sults on workflows related to our application, deployed on

to the Execute operatios ¢ap: oper at i on). the EGEE infrastructure. Our grouping strategy is able to
Suppose now that the workflow manager identifies a ser-provide speed-ups close to 3 on one of our examples.
vices grouping optimizatione(g. P1 and P2)3.a on fig- We finally introduced a fully SOA compliant architecture

ure 6). Because of its ability to discover the extended ®eatur of the whole system, from application composition to job
of these two services, the engine can retrieve the two corre-submission, that fully automatizes the legacy code wrap-
sponding MOTEUR descriptors. It can ask the factory to ping and the grouping strategy procedures. Any legacy
combinghem @.b) resulting in a single composite web ser- code-based application can thus be instantiated by only pro
vice (3.¢) which exposes an operation taking its inputs from viding a MOTEUR descriptor to the service factory.

P1 (and P2 inputs coming from other external services) a”dAcknowledgments

returning the outputs defined by P2 (and P1 outputs going to This work is partially funded by the French research

other external services). This composite web service is Ofprogram “ACI-Masse de domes” (http://acimd.labri.fr/),
the same type than any regular legacy code wrapping ser- . i S
. . : : ; AGIR project (http://www.aci-agir.org/). We are gratefol
vice. It is accessible through the same interface and it also A - -
; . : o the EGEE European project for providing the grid infras-
delegates the grid submission to the generic submission we ructure and user assistance
service by sending the composite MOTEUR descriptor and '

the input link of P1 and P2 in the workflow.
References

6 Conclusion [1] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,

S. McGough, D. Pulsipher, and A. Savva. J8hbmis-
In this paper, we first described an application- sion Description Language (JSDL) Specification, Version
independent legacy code wrapper that works at run time, 1.0. Technical report, GGF, nov 2005.
by interpreting a command-line description file. This wrap-
per made possible the deployment of a real medical imaging



<?xm version="1.0" encodi ng="utf-8" ?>
<definitions ...>
<types>
<schema>
<el ement nane="Crest Li nes-request">
<conpl exType>
<sequence>
<el ement nane="fl oati ng_i nage"
type="string"... />
<el enent nane="r ef er ence_i nage"
type="string"... />
<el ement nanme="scal e" type="string"... />
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="Crest Li nes-response" >
<conpl exType>
<sequence>
<el ement nane="crest_reference"
type="string"... />
<el enment nane="crest_fl oating"
type="string"... />
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</types>
<message nanme="Execut eSoapl n">
<part name="paraneters"
el ement =" Crest Li nes. pl -request" />
</ message>
<message nane="Execut eSoapCut ">
<part name="paraneters"
el ement =" Cr est Li nes. pl -response" />
</ message>
<port Type name="Crest Li nes. pl Soap" >
<operation nanme="Execute">
<i nput nessage="Execut eSoapl n" />
<out put nessage="Execut eSoapQut" />
</ operati on>
</ port Type>
<binding ...>
<soap: binding transport="http://..." />
<operati on nane="Execute">
<soap: operation soapAction="http://.../Execute"
styl e="docunent" />
<MOTEUR- descri ptor xmns="urn:...">
<l ocation>http://...</location>
</ MOTEUR- descri pt or >

</ oper ati on>
</ bi ndi ng>
</ definitions>

Figure 5. WSDL generated by the factory

[2] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy. Task Scheduling Strategies for Workflow-

based Applications in Grids. I6CGrid, Cardiff, UK, 2005.

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[3] E. Caronand F. Desprez. DIET: A Scalable Toolbox to Build [18]

Network Enabled Servers on the Gridgternational Journal
of High Performance Computing Applicatiqr)05.

[4] T. Delaitre, T. Kiss, A. Goyeneche, G. Terstyanszky, S. Win- [19]

ter, and P. Kacsuk. GEMLCA: Running Legacy Code Appli-
cations as Grid Servicedournal of Grid Computing (JGC)

3(1-2), 2005.

[5] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Technical report, Open
Grid Service Infrastructure WG, Global Grid Forum, June

2002.

[20]

[21]

N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field,
and J. Darlington. ICENI : Optimisation of component ap-
plications within a Grid environmentJournal of Parallel

Computing 28(12):1753-1772, 2002.
T. Glatard, J. Montagnat, and X. Pennec. An optimized

workflow enactor for data-intensive grid applications. Tech-
nical Report 1I3S/RR-2005-32-, 13S, Sophia-Antipolis, oct

2005.
A. Harrison and |. Taylor. Dynamic Web Service Deploy-

ment Using WSPeer. IRroceedings of 13th Annual Mardi
Gras Conference - Frontiers of Grid Applications and Tech-

nologies pages 11-16, feb 2005.
Y. Huang, |. Taylor, D. M. Walker, and R. Davies. Wrap-

ping Legacy Codes for Grid-Based Applications.1Ifth In-
ternational Parallel and Distributed Processing Symposium

(IPDPS) page 139. IEEE Computer Society, 2003.
P. Kacsuk, G. Dzsa, J. Kovcs, R. Lovas, N. Podhorszki,

Z. Balaton, and G. Gombs. P-GRADE: A Grid Programing
Environment.Journal of Grid Computing (JGCYL(2):171—

197, 2003.
G. Kecskemeti, Y. Zetuny, T. Kiss, G. Sipos, P. Kacsuk,

G. Terstyanszky, and S. Winter. Automatic deployment of
Interoperable Legacy Code Services. UK e-Science All

Hands MeetingNottingham, UK, sep 2005.
J. Li, Z. Zhang, and H. Yang. A Grid Oriented Approach to

Reusing Legacy Code in ICENI Framework. IEEE Inter-
national Conference on Information Reuse and Integration

(IRI'05), Las Vegas, USA, aug 2005.
M. Livny. Direct Acyclic Graph Manager (DAGMan).

http://www.cs.wisc.edu/condor/dagman/.
B. Ludascher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific Work-
flow Management and the Kepler Syste@oncurrency and

Computation: Practice & Experienc@005.
H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,

and H. Casanova. A GridRPC Model and API for End-User
Applications. Technical report, Global Grid Forum (GGF),

jul 2005.
S. Nicolau, X. Pennec, L. Soler, and N. Ayache. Evalua-

tion of a New 3D/2D Registration Criterion for Liver Radio-
Frequencies Guided by Augmented Realitylriternational
Symposium on Surgery Simulation and Soft Tissue Modeling
(IS4TM’03) volume 2673 ofLNCS pages 270-283, Juan-

les-Pins, 2003. INRIA Sophia Antipolis, Springer-Verlag.
T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition
and enactment of bioinformatics workflowBioinformatics

journal, 17(20):3045-3054, 2004.
M. Senger, P. Rice, and T. Oinn. Soaplab - a unified Sesame

door to analysis tool. IJK e-Science All Hands Meeting

pages 509-513, Nottingham, sep 2003.
I. Taylor, I. Wand, M. Shields, and S. Majithia. Distributed

computing with Triana on the GridConcurrency and Com-

putation: Practice & Experiencel7(1-18), 2005.
W. World Wide Web Consortium. Web Services

Description Language (WSDL) mar  2001.

http://www.w3.org/TR/wsdl.
J. Yu and R. Buyya. A taxonomy of scientific workflow sys-

tems for grid computingACM SIGMOD Record34(3):44—
49, Sept. 2005.

1.1,



	Introduction
	Grid enabling applications
	Task-based job submission
	Service-based code execution
	Discussion
	Workflow of services
	Legacy code wrapping

	Generic web service wrapper
	Generic web service wrapper
	Legacy code descriptor
	Example
	Discussion

	Services grouping optimization strategy
	Grouping service calls
	Grouping strategy
	Experiments on a production grid
	Experimental workflows
	Results


	Dynamic generic service factory
	Conclusion

