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Résumé : L’objectif de cet article est de présenter des méthodes efficaces permettant d’obtenir
les informations pertinentes pour le calcul d’électrogrammes. Afin d’éviter le coût excessif du
modèle bidomaine, on considère ici un modèle monodomaine étendu avec une équation elliptique
supplémentaire qui est résolue sur l’épicarde grâce à une équation algébrique ou une formulation
intégrale.
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How to compute the extracellular potential in
electrocardiology from an extended monodomain

model
Abstract: The objective of this paper is to introduce efficient methods to
compute the relevant information required for electrograms simulations. In order
to avoid the excessive cost of the bidomain model, we consider an extended
monodomain model with an additional elliptic equation which is solved on the
epicardium thanks to an algebraic equation or an integral formulation.
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1 Introduction
The bidomain and monodomain equations are very popular for simulating

the electrical activity of the heart. The former models the evolution of both the
intra- and extra-cellular potentials, φi and φe, while the latter models the evolu-
tion of the transmembrane voltage V = φi− φe [5]. On the one hand, the bido-
main model ensures a quasistatic balance between the intra- and extra-cellular
currents. Hence, it involves solving an ill-conditioned large sparse linear sys-
tem at each time-step and therefore needs large computing resources. Although
it is a favorite choice when an external stimulus is applied (defibrillation), for
heart-torso models (e.g. ECG simulations) and when the extracellular potential
is needed (e.g. electrogram simulations). On the other hand, the monodomain
equations are far simpler to solve but they do not account correctly for any of
these situations. Hence they are a favorite choice when faster simulations are
necessary, for instance in a clinical context or in order to solve inverse problems,
although they lack many important features. Furthermore, in many situations,
the monodomain solutions are accurate approximations of the bidomain ones
[1, 7] and the difference between the models might even be smaller than the
discretization error [3].

The objective of this work is to describe two modeling strategies that will
allow fast computations of the extracellular potential in the monodomain con-
text. Based on the transmembrane voltage given by the monodomain model,
the extracellular potential φe is the solution of a quasistatic electrical balance
equation. Solving this equation requires large computing resources in general.
The first strategy assumes the so-called equal anisotropy ratio which leads to an
explicit expression of φe. Since the values of φe are only needed on the bound-
ary, the second strategy consists in solving an integral equation. The resulting
models should provide a basis for efficient simulations of extracellular surface
potential in terms of accuracy and computational cost.

2 The models
The homogenized bidomain equations form the most complete model cur-

rently available for the simulation of action potential propagation at the macro-
scopic level in an excitable tissue. The tissue is represented by a domain Ω ⊂ IR3

with boundary Σ = ∂Ω. The transmembrane voltage V is the difference between
the intra- and extra-cellular potentials (V = φi−φe), which are solutions to the
degenerate parabolic system of equations on φi and φe

A (C∂tV + Iion(V,w)) = div(Gi∇φi) (1)
A (C∂tV + Iion(V,w)) = −div(Ge∇φe) (2)

coupled to the differential equations ∂tw + g(V,w) = 0 in Ω and for t > 0 and
with the boundary conditions Gi∇φi ·nΣ = Ge∇φe ·nΣ = 0 on Σ and for t > 0.
The parameters A, C, Gi, Ge, Iion and g are, respectively, the ratio of surface of
membrane per unit volume, the membrane capacitance per unit area of surface,
the intra and extra-cellular electrical conductivity tensors of the tissue, the total
ionic current and the function of state of the considered ionic model. Finally, w
is the state variable of the cell membrane.
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It is important to note that the potentials φi and φe are defined up to
a constant, while the transmembrane voltage V is defined uniquely (see [2]).
We are only interested in the extra-cellular potential φe and assume that it is
normalized by

∀t > 0,

∫
Ω

φe(x, t)dx = 0. (3)

Equations (1) and (2) are equivalent to the coupled elliptic/parabolic problem
on V and φe

A (C∂tV + Iion(V,w)) = div(Gi∇(V + φe)) (4)
div((Gi +Ge)∇φe) + div(Gi∇V ) = 0 (5)

still with homogeneous Neumann boundary conditions. The electrostatic bal-
ance of current (5) is uniquely solved thanks to the normalization condition
(3).

3 Model 1: monodomain with elliptic equation
The monodomain model is obtained by assuming the equal anisotropy ratio

Gi(x) = λGe(x), so that equation (5) reads div(Ge∇((1 +λ)φe +λV )) = 0 in Ω
with the boundary condition Ge∇((1 + λ)φe + λV ) ·n = 0 on Σ, which solution
is given by

∀t > 0, a.e. x ∈ Ω, (1 + λ)φe(x, t) + λV (x, t) = f(t). (6)

Under this equal anisotropy ratio assumption, the diffusion operator in the
evolution equation (4) reads div(Gi∇(V + φe)) = div(G∇V ) with

G =
(
G−1

i +G−1
e

)−1
=

1

1 + λ
Gi =

λ

1 + λ
Ge. (7)

Note that Gi∇(φe + V ) · n = 0⇔ G∇V · n = 0 on Σ with Ge∇φe · n = 0. As a
consequence, the monodomain evolution equation is

A (C∂tV + Iion(V,w)) = div(G∇V ) (8)

with the boundary condition G∇V · n = 0 and the extracellular potential can
be computed from equation (6) and the normalization condition (3)

∀t > 0, φe(x, t) =
λ

1 + λ

(
1

|Ω|

∫
Ω

V (x, t)dx− V (x, t)

)
=

λ

1 + λ

1

|Ω|

∫
Ω

(V (y, t)− V (x, t)) dy. (9)

Let us point out that this simple formulation is original since the normalization
condition is generally not taken into account this way.

4 Model 2: extended monodomain model with
an integral representation

The extended monodomain, used in [4, 7], consists in assuming that the
transmembrane voltage is solution to the monodomain equation (8) with the
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boundary condition G∇V · n = 0, but without assuming the equal anisotropy
ratio (see [2]). Again, the extracellular potential φe can be directly retrieved
from the knowledge of V using the balance equation (5) with the normalization
condition (3). As opposed to the previous model, the solution does not express
explicitly anymore.

Fortunately, the variables of interest (e.g. electrograms) only involve val-
ues of the potential φe on the boundary Σ. An additional simplification may
therefore be made for computing φe only on Σ in equation (5). The following
integral formulation gives a value of Φ = φe|Σ

λ(x)Φ(x) +

∫
Σ

Φ(y)∂nΨ(x, y)dy =

∫
H

(
div(G∇V (y))

)
Ψ(x, y)dy, (10)

where λ(x) = lim
ε→0

∫
∂Bε

Ge∇Ψ(x, y).ndy and Ψ is the fundamental solution as-
sociated to the anisotropic Laplace operator div (Ge∇Ψ(x, y)) = δ(x, y). When-
ever Ge is a constant, the explicit form of Ψ is given by (see [8])

Ψ(x, y) =
(

(x− y)>Ge(x− y)
)−1/2

.

The equation (10) can be solved using a classical Boundary Elements Method
(see [6] for instance), leading to the resolution of a way smaller linear system
involving a full matrix.

Let us emphasize that the right hand side of the variational formulation
(10) cannot be reformulated using a divergence theorem since the fundamental
solution Ψ lacks regularity. Numerically it implies that the action potential
V cannot be discretized with P1-Lagrange elements, which second derivatives
vanish. In practice, P3-Hermite elements seem a good choice (gradients are then
exactly computed at each vertex).

Now, the solution Φ of equation (10) is not normalized as specified in (3).
The normalized solution reads Φ + c where c is a constant obtained as follows.
For ϕ ∈ H2(Ω), Green’s formula on (5) gives

−
∫

Ω

φediv((Gi +Ge)∇ϕ) =

∫
Ω

ϕdiv(Gi∇V )−
∫

Σ

Φ(Gi +Ge)∇ϕ · n.

We choose ϕ = 1
6x
>(Gi + Ge)

−1x such that div((Gi + Ge)∇ϕ = 1 in Ω. As a
consequence

c := −
∫

Ω

φediv((Gi +Ge)∇ϕ) =

∫
Ω

ϕdiv(Gi∇V )−
∫

Σ

Φ(Gi +Ge)∇ϕ · n.

Finally, let us point out that the hypothesis of space-independent conduc-
tivity tensor Ge is only required to get a simple analytical expression of the
fundamental solution for the div

(
Ge∇ ·

)
operator. Indeed, the inhomogeneous

case, Ge := Ge(x), leads to an integral expression of the fundamental solution
Ψ (see [8] p 317)

Ψ(x, y) = wy(x, y) +

∫
Ω

wz(x, z)θ(z, y) dz,

where wy(x, y) =
(

(x − y)>Ge(y)(x − y)
)−1/2

and θ is a potential verifying a
Fredholm equation. In general, θ is difficult to compute. Specifically, it requires
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to solve an integral equation for each point of the boundary. However, these
equations only depend on the geometry and their solutions can be precomputed.
It is also possible to neglect θ, especially if the variation of Ge is not stiff.

The assumption that Ge is constant is therefore made to conserve the sim-
plicity of the method. Though not as crude as the monodomain hypothesis
Ge = λGi, its impact has to be determined.
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