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QUASI-OPTIMAL MULTIPLICATION OF
LINEAR DIFFERENTIAL OPERATORS

(EXTENDED ABSTRACT)

ALEXANDRE BENOIT, ALIN BOSTAN†, AND JORIS VAN DER HOEVEN‡

Abstract. We show that linear differential operators with polynomial
coefficients can be multiplied in quasi-optimal time. This answers an
open question raised by van der Hoeven.

1. Introduction

The product of polynomials and the product of matrices are two of the
most basic operations in mathematics; the study of their computational
complexity is central in computer science. In this paper, we will be inter-
ested in the computational complexity of multiplying two linear differential
operators. These algebraic objects encode linear differential equations, and
form a non-commutative ring that shares many properties with the commu-
tative ring of usual polynomials [21, 22]. The structural analogy between
polynomials and linear differential equations was discovered long ago by
Libri and Brassinne [18, 7, 13]. Yet, the algorithmic study of linear differen-
tial operators is currently much less advanced than in the polynomial case:
the complexity of multiplication has been addressed only recently [16, 6],
but not completely solved. The aim of the present work is to make a step
towards filling this gap, and to solve an open question raised in [16].

Let K be an effective field. That is, we assume data structures for repre-
senting the elements of K and algorithms for performing the field operations.
The aim of algebraic complexity theory is to study the cost of basic or more
complex algebraic operations over K (such as the cost of computing the
greatest common divisor of two polynomials of degrees less than d in K[x],
or the cost of Gaussian elimination on an r× r matrix in Kr×r) in terms of
the number of operations in K. The algebraic complexity usually does not
coincide with the bit complexity, which also takes into account the poten-
tial growth of the actual coefficients in K. Nevertheless, understanding the
algebraic complexity usually constitutes a first useful step towards under-
standing the bit complexity. Of course, in the special, very important, case
when the field K is finite, both complexities coincide up to a constant factor.
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The complexities of operations in the rings K[x] and Kr×r have been
intensively studied during the last decades. It is well established that poly-
nomial multiplication is a commutative complexity yardstick, while matrix
multiplication is a non-commutative complexity yardstick, in the sense that
the complexity of operations in K[x] (resp. in Kr×r) can generally be ex-
pressed in terms of the cost of multiplication in K[x] (resp. in Kr×r), and
for most of them, in a quasi-linear way [2, 4, 8, 24, 14].

Therefore, understanding the algebraic complexity of multiplication in
K[x] and Kr×r is a fundamental question. It is well known that two poly-
nomials of degrees < d can be multiplied in time M(d) = O(d log d log log d)
using algorithms based on the Fast Fourier Transform (FFT) [11, 25, 9],
and two r × r matrices in Kr×r can be multiplied in time O(rω), with
2 6 ω 6 3 [27, 23, 12]. The current tightest upper bound, due to Vas-
silevska Williams [28], is ω < 2.3727, following work of Coppersmith and
Winograd [12] and Stothers [26]. Finding the best upper bound on ω is one
of the most important open problems in algebraic complexity theory.

In a similar vein, our thesis is that understanding the algebraic complexity
of multiplication of linear differential operators is a very important question,
since the complexity of more involved, higher-level, operations on linear
differential operators can be reduced to that of multiplication [17].

Let K[x, ∂] denote the associative algebra K〈x, ∂; ∂x = x∂ + 1〉 of linear
differential operators in ∂ = d

dx with polynomial coefficients in x. Any
element L of K[x, ∂] can be written as a finite sum

∑
i Li(x)∂i for uniquely

determined polynomials Li in K[x]. We say that L has bidegree less than
(d, r) in (x, ∂) if L has degree less than r in ∂, and if all Li’s have degrees less
than d in x. The degree in ∂ of L is usually called the order of L.

The main difference with the commutative ring K[x, y] of bivariate poly-
nomials is the commutation rule ∂x = x∂ + 1 that simply encodes, in op-
erator notation, Leibniz’s differentiation rule d

dx(xf) = x d
dx(f) + f . This

slight difference between K[x, ∂] and K[x, y] has a considerable impact on
the complexity level. On the one hand, it is classical that multiplication in
K[x, y] can be reduced to that of polynomials in K[x], due to a technique
commonly called Kronecker’s trick [19, 14]. As a consequence, any two poly-
nomials of degrees less than d in x, and less than r in y, can be multiplied
in quasi-optimal time O(M(dr)). On the other hand, it was shown by van
der Hoeven [16] that, if the base field K has characteristic zero, then the
product of two elements from K[x, ∂] of bidegree less than (n, n) can be com-
puted in time O(nω). Moreover, it has been proved in [6] that conversely,
multiplication in Kn×n can be reduced to a constant number of multiplica-
tions in K[x, ∂], in bidegree less than (n, n). In other words, multiplying
operators of well-balanced bidegree is computationally equivalent to matrix
multiplication.

However, contrary to the commutative case, higher-level operations in
K[x, ∂], such as left common least multiple (LCLM) and greatest common
right divisor (GCRD), do not preserve well-balanced bidegrees [15, 5]. For
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instance, the LCLM of two operators of bidegrees less than (n, n) is of bide-
gree less than (2n(n + 1), 2n) = O(n2, n), and this bound is generically
reached. This is a typical phenomenon: operators obtained from computa-
tions in K[x, ∂] tend to have much larger degrees in x than in ∂.

In the general case of operators with possibly unbalanced degrees d in x
and r in ∂, the naive algorithm has cost O(d2r2 min(d, r)); a better algo-
rithm, commonly attributed to Takayama, has complexity Õ(drmin(d, r)).
We refer to [6, §2] for a review of these algorithms. When r 6 d 6 r4−ω

in ∂, the best current upper bound for multiplication is O(rω−2d2) [16, 17].
It was asked by van der Hoeven [16, §6] whether this complexity could be
lowered to Õ(rω−1d). Here, and hereafter, the soft-O notation Õ( ) indicates
that polylogarithmic factors in d and in r are neglected. The purpose of the
present work is to provide a positive answer to this open question. Our main
result is encapsulated in the following theorem.

Theorem 1. Let K be an effective field of characteristic zero. Operators in
K[x, ∂] of bidegree less than (d, r) in (x, ∂) can be multiplied using

Õ(drmin(d, r)ω−2)
operations in K.

In the important case d > r, this complexity reads Õ(drω−1). This is
quasi-linear (thus quasi-optimal) with respect to d. Moreover, by the equiv-
alence result from [6, §3], the exponent of r is also the best possible. Besides,
under the (plausible, still conjectural) assumption that ω = 2, the complex-
ity in Theorem 1 is almost linear with respect to the output size. For r = 1
we retrieve the fact that multiplication in K[x] in degree < d can be done in
quasi-linear time Õ(d); from this perspective, the result of Theorem 1 can
be seen as a generalization of the fast multiplication for usual polynomials.

In an expanded version [3] of this extended abstract, we will show that
analogues of Theorem 1 also hold for other types of skew polynomials. More
precisely, we will deal with the cases when the skew indeterminate ∂ : f(x) 7→
f ′(x) is replaced by the Euler derivative δ : f(x) 7→ xf ′(x), or a shift
operator σc : f(x) 7→ f(x + c), or a dilatation χq : f(x) 7→ f(qx). In [3],
we will also prove refined versions of Theorem 1 and complexity bounds for
several other interesting operations on skew polynomials.
Main ideas. The fastest known algorithms for multiplication of usual poly-
nomials in K[x] rely on an evaluation-interpolation strategy at special points
in the base field K [11, 25, 9]. This reduces polynomial multiplication to the
“inner product” in K. We adapt this strategy to the case of linear differential
operators in K[x, ∂]: the evaluation “points” are exponential polynomials of
the form xneαx on which differential operators act nicely. With this choice,
the evaluation and interpolation of operators is encoded by Hermite eval-
uation and interpolation for usual polynomials (generalizing the classical
Lagrange interpolation), for which quasi-optimal algorithms exist. For op-
erators of bidegree less than (d, r) in (x, ∂), with r > d, we use p = O(r/d)
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evaluation points, and encode the inner multiplication step by p matrix
multiplications in size r. All in all, this gives an FFT-type multiplication
algorithm for differential operators of complexity Õ(dω−1r). Finally, we re-
duce the case r 6 d to the case r > d. To do this efficiently, we design a
fast algorithm for the computation of the so-called reflection of a differential
operator, a useful ring morphism that swaps the indeterminates x and ∂,
and whose effect is exchanging orders and degrees.

2. Preliminaries

Throughout the paper, K[x]d will denote the set of polynomials of degree
less than d with coefficients in the field K, and K[x, ∂]d,r will denote the set
of linear differential operators in K[x, ∂] with degree less than r in ∂, and
polynomial coefficients in K[x]d.

The cost of our algorithms will be measured by the number of field oper-
ations in K they use. We recall that polynomials in K[x]d can be multiplied
within M(d) = O(d log(d) log log(d)) = Õ(d) operations in K, using the
FFT-based algorithms in [25, 9], and that ω denotes a feasible exponent for
matrix multiplication over K, that is, a real constant 2 6 ω 6 3, such that
two r × r matrices with coefficients in K can be multiplied in time O(rω).

Most basic polynomial operations in K[x]d (division, Taylor shift, ex-
tended gcd, multipoint evaluation, interpolation, etc.) have cost Õ(d) [2, 4,
8, 24, 14]. Our algorithms will make a crucial use of the following result due
to Chin [10], see also [20] for a formulation in terms of structured matrices.

Theorem 2 (Fast Hermite evaluation and interpolation). Let c0, . . . , ck−1
be k integers, d =

∑
i ci, and let K be an effective field of characteristic

zero. Given k mutually distinct points α0, . . . , αk−1 in K and a polynomial
P ∈ K[x]d, one can compute the vector of d values

H = (P (α0), P ′(α0), . . . , P (c0−1)(α0), . . . . . . ,
P (αk−1), P ′(αk−1), . . . , P (ck−1−1)(αk−1))

in O(M(d) log(k)) = Õ(d) arithmetic operations in K. Conversely, P is
uniquely determined by H, and its coefficients can be recovered from H in
O(M(d) log(k)) = Õ(d) arithmetic operations in K.

3. The new algorithm in the case r > d

3.1. Multiplication by evaluation and interpolation. Most fast al-
gorithms for multiplying two polynomials P,Q ∈ K[x]d are based on the
evaluation-interpolation strategy. The idea is to pick 2d distinct points
α0, . . . , α2d−1 in K, and to perform the following three steps:

Evaluation: Evaluate P and Q at α0, . . . , α2d−1.
Inner multiplication: Compute (PQ)(αi) = P (αi)Q(αi) for i < 2d.
Interpolation: Recover PQ from (PQ)(α0), . . . , (PQ)(α2d−1).
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The inner multiplication step requires only O(d) operations. Consequently,
if both the evaluation and interpolation steps can be performed fast, then we
obtain a fast algorithm for multiplying P and Q. For instance, if K contains
a 2p-th primitive root of unity with 2p 6 2d 6 2p+1, then both evaluation
and interpolation can be performed in time O(d log d) using the Fast Fourier
Transform [11].

For a linear differential operator L ∈ K[x, ∂]d,r, it is natural to consider
evaluations at powers of x instead of roots of unity. It is also natural to
represent the evaluation of L at a suitable number of such powers by a
matrix. More precisely, given k ∈ N, we may regard L as an operator from
K[x]k into K[x]k+d. We may also regard elements of K[x]k and K[x]k+d as
column vectors, written in the canonical bases with powers of x. We will
denote by

Φk+d,k
L =

 L(1)0 · · · L(xk−1)0
...

...
L(1)k+d−1 · · · L(xk−1)k+d−1

 ∈ K(k+d)×k

the matrix of the K-linear map L : K[x]k → K[x]k+d with respect to these
bases. Given two operators K,L in K[x, ∂]d,r, we clearly have

Φk+2d,k
KL = Φk+2d,k+d

K Φk+d,k
L , for all k > 0.

For k = 2r (or larger), the operator KL can be recovered from the matrix
Φ2r+2d,2r
KL , whence the formula

Φ2r+2d,2r
KL = Φ2r+2d,2r+d

K Φ2r+d,2r
L(1)

yields a way to multiply K and L. For the complexity analysis, we thus
have to consider the three steps:

Evaluation: Computation of Φ2r+2d,2r+d
K and Φ2r+d,2r

L from K and L.
Inner multiplication: Computation of the matrix product (1).
Interpolation: Recovery of KL from Φ2r+2d,2r

KL .
In [16, 6], this multiplication method was applied with success to the case
when d = r. In this “square case”, the following result was proved in [6,
§4.2].

Lemma 1. Let L ∈ K[x, ∂]d,d. Then
(1) We may compute Φ2d,d

L as a function of L in time O(dM(d)).
(2) We may recover L from Φ2d,d

L in time O(dM(d)).

3.2. Evaluation and interpolation at exponential polynomials. As-
sume now that r > d. Then a straightforward application of the above
evaluation-interpolation strategy yields an algorithm of suboptimal com-
plexity. Indeed, the matrix Φ2r+2d,2r

KL contains a lot of redundant information
and since its mere size exceeds r2, one cannot expect a direct multiplication
algorithm of quasi-optimial complexity Õ(rdω−1).
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In order to maintain quasi-optimal complexity in this case as well, the
idea is to evaluate at so called exponential polynomials instead of ordinary
polynomials. More specifically, given L ∈ K[x, ∂]d,r and α ∈ K, we will use
the fact that L also operates nicely on the vector space K[x]eαx. Moreover,
for any P ∈ K[x], we have

L(P eαx) = Lnα(P )eαx,
where

Lnα =
∑
i

Li(x)(∂ + α)i

is the operator obtained by substituting ∂ + α for ∂ in L =
∑
i Li(x)∂i.

Indeed, this is a consequence of the fact that, by Leibniz’s rule:

∂i(P eαx) =

∑
j6i

(
i

j

)
αj∂i−jP

 eαx = (∂ + α)i(P )eαx.

Now let p = dr/de and let α0, . . . , αp−1 be p pairwise distinct points in K.
For each k, we define the vector space

Vk = K[x]keα0x ⊕ · · · ⊕K[x]keαp−1x

with canonical basis
(eα0x, . . . , xk−1eα0x, . . . . . ., eαp−1x, . . . , xk−1eαp−1x).

Then we may regard L as an operator from Vk into Vk+d and we will denote
by Φ[k+d,k]

L the matrix of this operator with respect to the canonical bases.
By what precedes, this matrix is block diagonal, with p blocks of size d:

Φ[k+d,k]
L =


Φk+d,k
Lnα0

. . .
Φk+d,k
Lnαp−1

 .
Let us now show that the operator L is uniquely determined by the matrix
Φ[2d,d]
L , and that this gives rise to an efficient algorithm for multiplying two

operators in K[x, ∂]d,r.

Lemma 2. Let L ∈ K[x, ∂]d,r with r > d and let p = dr/de. Then

(1) We may compute Φ[2d,d]
L as a function of L in time O(dM(r) log r).

(2) We may recover L from Φ[2d,d]
L in time O(dM(r) log r).

Proof. For any operator L =
∑
i<d,j<r Li,jx

i∂j in K[x, ∂]d,r, we define its
truncation L∗ at order O(∂d) by

L∗ =
∑

i<d,j<d

Li,jx
i∂j .

Since L− L∗ vanishes on K[x]d, we notice that Φ2d,d
L = Φ2d,d

L∗ .
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If L ∈ K[∂]r, then L∗ can be regarded as the power series expansion of L
at ∂ = 0 and order d. More generally, for any i ∈ {0, . . . , p−1}, the operator
L∗nαi coincides with the Taylor series expansion at ∂ = αi and order d:

L∗nαi(∂) = L(∂ + αi)∗

= L(αi) + L′(αi)∂ + · · ·+ 1
(d−1)!L

(d−1)(αi)∂d−1.

In other words, the computation of the truncated operators L∗nα0 , . . . , L
∗
nαp−1

as a function of L corresponds to a Hermite evaluation at the points αi, with
multiplicity ci = d at each point αi. By Theorem 2, this computation can
be performed in time O(M(pd) log(pd)) = O(M(r) log r). Furthermore, Her-
mite interpolation allows us to recover L from L∗nα0 , . . . , L

∗
nαp−1 with the

same time complexity O(M(r) log r).
Now let L ∈ K[x, ∂]d,r and consider the expansion of L in x

L(x, ∂) = L0(∂) + · · ·+ xd−1Ld−1(∂).
For each i, one Hermite evaluation of Li allows us to compute the L∗nαj ,i with
j < p in time O(M(r) log r). The operators L∗nαj with j < p can therefore
be computed in time O(dM(r) log r). By Lemma 1, we need O(rM(d)) =
O(dM(r)) additional operations in order to obtain Φ[2d,d]

L . Similarly, given
Φ[2d,d]
L , Lemma 1 allows us to recover the operators L∗nαj with j < p in time
O(dM(r)). Using d Hermite interpolations, we also recover the coefficients
Li of L in time O(dM(r) log r). �

Theorem 3. Let K,L ∈ K[x, ∂]d,r with r > d. Then we may compute the
product KL in time O(dω−1r + dM(r) log r).
Proof. Considering K and L as operators in K[x, ∂]3d,3r, Lemma 2 implies
that the computation of Φ[4d,3d]

K and Φ[3d,2d]
L as a function of K and L can

be done in time O(dM(r) log r). The multiplication

Φ[4d,2d]
KL = Φ[4d,3d]

K Φ[3d,2d]
L

can be done in time O(pdω) = O(dω−1r). Lemma 2 finally implies that we
may recover KL from Φ[4d,2d]

KL in time O(dM(r) log r). �

4. The new algorithm in the case d > r

Any differential operator L ∈ K[x, ∂]d,r can be written in a unique form

L =
∑

i<r,j<d

Li,jx
j∂i, for some scalars Li,j ∈ K.

This representation, with x on the left and ∂ on the right, is called the
canonical form of L.

Let ϕ : K[x, ∂]→ K[x, ∂] denote the map defined by

ϕ

 ∑
i<r,j<d

Li,jx
j∂i

 =
∑

i<r,j<d

Li,j∂
j(−x)i.
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In other words, ϕ is the unique K-algebra automorphism of K[x, ∂] that
keeps the elements of K fixed, and is defined on the generators of K[x, ∂]
by ϕ(x) = ∂ and ϕ(∂) = −x. We will call ϕ the reflection morphism of
K[x, ∂]. The map ϕ enjoys the nice property that it sends K[x, ∂]d,r onto
K[x, ∂]r,d. In particular, to an operator whose order is higher than its degree,
ϕ associates a “mirror operator” whose degree is higher than its order.

4.1. Main idea of the algorithm in the case d > r. If d > r, then
the reflection morphism ϕ is the key to our fast multiplication algorithm of
operators in K[x, ∂]d,r, since it allows us to reduce this case to the previous
case when r > d. More precisely, given K,L in K[x, ∂]d,r with d > r, the
main steps of the algorithm are:

(S1) compute the canonical forms of ϕ(K) and ϕ(L),
(S2) compute the product M = ϕ(K)ϕ(L) of operators ϕ(K) ∈ K[x, ∂]r,d

and ϕ(L) ∈ K[x, ∂]r,d, using the algorithm described in the previous
section, and

(S3) return the (canonical form of the) operator KL = ϕ−1(M).
Since d > r, step (S2) can be performed in complexity Õ(rω−1d) using

the results of Section 3. In the next subsection, we will prove that both
steps (S1) and (S3) can be performed in Õ(rd) operations in K. This will
enable us to conclude the proof of Theorem 1.

4.2. Quasi-optimal computation of reflections. We now show that the
reflection and the inverse reflection of a differential operator can be com-
puted quasi-optimally. The idea is that performing reflections can be inter-
preted in terms of Taylor shifts for polynomials, which can be computed in
quasi-linear time using the algorithm from [1].

A first observation is that the composition ϕ◦ϕ is equal to the involution
ψ : K[x, ∂]→ K[x, ∂] defined by

ψ

 ∑
i<r,j<d

Li,jx
j∂i

 =
∑

i<r,j<d

(−1)i+jLi,jxj∂i.

As a direct consequence of this fact, it follows that the map ϕ−1 is equal
to ϕ ◦ ψ. Since ψ(L) is already in canonical form, computing ψ(L) only
consists of sign changes, which can be done in linear time O(dr). Therefore,
computing the inverse reflection ϕ−1(L) can be performed within the same
cost as computing the direct reflection ϕ(L), up to a linear overhead O(rd).

In the remainder of this section, we focus on the fast computation of
direct reflections. The key observation is encapsulated in the next lemma.
Here, and in what follows, we use the convention that the entries of a matrix
corresponding to indices beyond the matrix sizes are all zero.

Lemma 3. Assume that (pi,j) and (qi,j) are two matrices in Kr×d such that∑
i,j

qi,jx
i∂j =

∑
i,j

pi,j∂
jxi.
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Then

i! qi,j =
∑
k>0

(
j + k

k

)
(i+ k)! pi+k,j+k

and where we use the convention that pi,j = 0 as soon as i > r or j > d.

Proof. Leibniz’s differentiation rule implies the commutation rule

∂j
xi

i! =
j∑

k=0

(
j

k

)
xi−k

(i− k)!∂
j−k.

Together with the hypothesis, this implies the equality

∑
i,j

(i! qi,j)
xi

i! ∂
j =

∑
i,j

(i! pi,j)∂j
xi

i! =
∑
k>0

∑
i,j

(i! pi,j)
(
j

k

)
xi−k

(i− k)!∂
j−k

 .
We conclude by extraction of coefficients. �

Theorem 4. Let L ∈ K[x, ∂]d,r. Then we may compute ϕ(L) and ϕ−1(L)
using O(min(dM(r), rM(d))) = Õ(rd) operations in K.

Proof. We first study the case r > d. If L =
∑
i<r,j<d pi,jx

j∂i, then by the
first equality of Lemma 3, the reflection ϕ(L) is equal to

ϕ(L) =
∑

i<r,j<d

pi,j∂
j(−x)i =

∑
i<r,j<d

qi,j(−x)j∂i,

where

i! qi,j =
∑
`>0

(
j + `

j

)
(i+ `)! pi+`,j+`.(2)

For any fixed k with 1− r 6 k 6 d−1, let us introduce Gk =
∑
i i!qi,i+kxi+k

and Fk =
∑
i i!pi,i+kxi+k. These polynomials belong to K[x]d, since pi,j =

qi,j = 0 for j > d. If k 6 0, then Equation (2) translates into

Gk(x) = Fk(x+ 1).

Indeed, Equation (2) with j = i+ k implies that Gk(x) is equal to∑
i,`

(
i+ k + `

i+ k

)
(i+ `)! pi+`,i+k+` x

i+k =
∑
j,s

j!pj,j+k

(
j + k

s

)
xs = Fk(x+ 1).

Similarly, if k > 0, then the coefficients of xi in Gk(x) and Fk(x+ 1) still
coincide for all i > k. In particular, we may compute G1−r, . . . , Gd−1 from
F1−r, . . . , Fd−1 by means of d+ r 6 2r Taylor shifts of polynomials in K[x]d.
Using the fast algorithm for Taylor shift in [1], this can be done in time
O(rM(d)).

Once the coefficients of the Gk’s are available, the computation of the
coefficients of ϕ(L) requires O(dr) additional operations.
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If d > r, then we notice that the equality (2) is equivalent to

j! qi,j =
∑
`>0

(
i+ `

i

)
(j + `)! pi+`,j+`,

as can be seen by expanding the binomial coefficients. Redefining Gk :=∑
i qi+k,ix

i+k and Fk :=
∑
i i!pi+k,ixi+k, similar arguments as above show

that ϕ(P ) can be computed using O(dM(r)) operations in K.
By what has been said at the beginning of this section, we finally conclude

that the inverse reflection ϕ−1(L) = ϕ(ψ(L)) can be computed for the same
cost as the direct reflection ϕ(L). �

4.3. Proof of Theorem 1 in the case d > r. We will prove a slightly
better result:

Theorem 5. Let K,L ∈ K[x, ∂]d,r with d > r. Then we may compute the
product KL using O(rω−1d+ rM(d) log d) operations in K.

Proof. Assume that K and L are two operators in K[x, ∂]d,r with d > r.
Then ϕ(K) and ϕ(L) belong to K[x, ∂]r,d, and their canonical forms can be
computed in O(dM(r)) operations by Theorem 4. Using the algorithm from
section 3, we may compute M = ϕ(L)ϕ(K) in O(rω−1d + rM(d) log d) op-
erations. Finally, LK = ϕ−1(M) can be computed in O(rM(d)) operations
by Theorem 4. We conclude by adding up the costs of these three steps. �
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