
HAL Id: hal-00687073
https://hal.inria.fr/hal-00687073

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Load-Balancing with Variable Number of
Processors based on Graph Repartitioning

Clément Vuchener, Aurélien Esnard

To cite this version:
Clément Vuchener, Aurélien Esnard. Dynamic Load-Balancing with Variable Number of Processors
based on Graph Repartitioning. [Research Report] RR-7926, INRIA. 2012. �hal-00687073�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49905092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00687073
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
9

2
6

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7926
April 2012

Project-Team HiePACS

Dynamic Load-Balancing

with Variable Number of

Processors based on

Graph Repartitioning

Clément Vuchener, Aurélien Esnard

RESEARCH CENTRE

BORDEAUX – SUD-OUEST

351, Cours de la Libération

Bâtiment A 29

33405 Talence Cedex

Dynamic Load-Balancing with Variable
Number of Processors based on Graph

Repartitioning

Clément Vuchener∗, Aurélien Esnard∗

Project-Team HiePACS

Research Report n° 7926 — April 2012 — 14 pages

Abstract: Dynamic load balancing is an important step conditioning the performance of parallel
adaptive codes whose load evolution is difficult to predict. Most of the works which answer this
problem perform well, but are limited to an initially fixed number of processors which is not
modified at runtime. These approaches can be very inefficient, especially in terms of resource
consumption. In this paper, we present a new graph repartitioning algorithm which accepts a
variable number of processors, assuming the load is already balanced. Our algorithm minimizes
both data communication and data migration overheads, while maintaining the computational load
balanced. This algorithm is based on a theoretical result, that constructs optimal communication
matrices with both a minimum migration volume and a minimum number of communications. An
experimental study which compares our work against state-of-the-art approaches is presented.

Key-words: dynamic load-balancing, graph, hypergraph, partitioning, migration, repartitioning

∗ Univ. Bordeaux, LaBRI, UMR 5800, HiePACS Project, INRIA, F-33400 Talence, France.

Équilibrage de Charge Dynamique avec Nombre Variable de
Processeurs basé sur un Repartitionnement de Graphe

Résumé : L’équilibrage de charge dynamique est une étape importante qui conditionne la
performance des codes parallèles adaptatifs, dont l’évolution de la charge est difficile à prédire. La
plupart des travaux qui s’intéressent à ce problème sont aujourd’hui matures, mais se limitent
au cas où le nombre de processeurs initialement fixé ne change pas lors de l’exécution. Ces
approches peuvent être particulièrement inefficaces en termes de consommation des ressources.
Dans ce papier, nous présentons un nouvel algorithme de repartitionnement de graphe, qui
accepte un nombre variable de processeurs, en supposant que la charge est déjà équilibrée. Notre
algorithme minimise conjointement les temps de communication et de migration des données,
tout en maintenant la charge équilibrée. Cet algorithme s’appuie sur un résultat théorique, qui
permet de construire des matrices de communication optimales, minimisant à la fois le volume
de migration et le nombre de messages échangés. Nous validons notre approche par une étude
expérimentale comparative avec les méthodes classiques.

Mots-clés : équilibrage de charge dynamique, graphe, hypergraphe, partitionnement, migra-
tion, repartitionnement

Dynamic Load-Balancing with Variable Number of Processors 3

1 Introduction

In the field of scientific computing, the load-balancing is a crucial issue, which determines the
performance of parallel programs. As a general rule, one applies a static balancing algorithm,
which equilibrates the computational load between processors before running the parallel pro-
gram. For some scientific applications, such as adaptive codes (e.g. adaptive mesh refinement),
the evolution of the load is unpredictable. Therefore, it is required to periodically compute a new
balancing at runtime, using a dynamic load-balancing algorithm. As this step may be performed
frequently, it must use a fast and incremental algorithm with a quality trade-off. As computation
progresses, the global workload may increase drastically, exceeding memory limit for instance. In
such a case, we argue it should be relevant to adjust the number of processors while maintaining
the load balanced. However, this is still an open question that we investigate in this paper.

A very common approach to solve the load-balancing problem (static or dynamic) is based
on graph model. Each vertex of the graph represents a basic computational task and each edge
represents a dependency in the calculation between two tasks. To equilibrate the charge between
M processors, one performs a graph partitioning in M parts, each part being assigned to a given
processor. More precisely, the objective consists of dividing the graph into M parts (or vertex
subsets), such that the parts are disjoint and have equal size, and there are few edges cut between
the parts. Here are the classical partitioning criteria:

• minimize the computation time (Tcomp), which consists of dividing the graph in parts of
equal weight (up to an unbalance factor);

• minimize the communication time (Tcomm), which consists of minimizing the edge cut of
the graph induced by the new partition.

If the load changes at runtime, the current partition becomes unbalanced and it is required
to perform a graph repartitioning. In addition to the classical partitioning criteria, the problem
of repartitioning optimizes the following criteria [2]:

• minimize the migration time (Tmig), which consists of minimizing the vertex weight moving
from the old partition to the new one;

• minimize the repartitioning time (Trepart).

It should be noticed that the repartitioning and migration steps are not performed at each
iteration in the application, but periodically (e.g. every α iterations). As a consequence, the total
time period of the code is written: Ttotal = α.(Tcomp+Tcomm)+Tmig+Trepart. Assuming Trepart

is negligible compared to the other terms, and if we consider that Tcomp is implicitly minimized
by balancing the parts, it follows that to minimize Ttotal, one must minimize α.Tcomm + Tmig.
Finally, it clearly shows there is a trade-off between the optimization of the communication time
(Tcomm) and optimization of the migration time (Tmig). This compromise is controlled by the
parameter α, which depends on the target application.

As we will see in the following section, there are many works around the dynamic load-
balancing and graph repartitioning. However, all these works are limited—as far as we know—to
the case where the number of processors is initially fixed and will not be modified at runtime. This
can be very inefficient, especially in terms of resource consumption [8]. To overcome this issue,
we propose at section 3 a new graph repartitioning algorithm which accepts a variable number
of processors, assuming the load is already balanced. We call this problem the M × N graph
repartitioning problem. Our algorithm minimizes both data communication (i.e. cut size) and
data migration overheads, while maintaining the computational load balance in parallel. This
algorithm is based on a theoretical result, that constructs optimal communication matrices with

RR n° 7926

4 C. Vuchener & A. Esnard

both a minimum migration volume and a minimum number of communications (see Sec. 3.2).
Moreover, it uses recent graph partitioning technique with fixed vertices to take into account
migration constraints. Finally, we validate this algorithm at section 4 with some experimental
results, that compare our approach with state-of-the-art partitioning softwares.

2 Related Work

There are many works in the field of dynamic load-balancing [6, 13]. We briefly review the most
popular methods based on graph (or hypergraph) repartitioning techniques.

The simplest approach is certainly the Scratch-Remap scheme [10], which calculates a new
partitioning from scratch, that is to say, without taking into account the old partition. This
technique obviously minimizes the cut, but does not control the migration at all. To reduce
this latter cost, an additional step of remapping attempts to renumber the new parts in order to
maximize data remaining in place.

Another approach are the diffusive methods. In their simplest form, they are based on the
heat equation to dynamically equilibrate the load [12]. It is an interactive algorithm, where
two neighboring processors exchange at each step an amount of data proportional to their load
difference. After several steps, the convergence of the diffusion scheme reaches a new load
balancing, that defines a new partitioning.

A more recent approach consists in repartitioning graph (or hypergraph) by minimizing both
the cut size and the data movement due to migration (RM-Metis [1] and Zoltan [2]). For each
part, a fixed vertex of zero weight is added. This particular vertex is connected by new edges—
called migration edges—to all regular vertices that corresponds to this part. Then, one performs
a partitioning of this enriched graph, with the constraint that fixed vertices are required to be
assigned to their respective part in the final solution. Other vertices are free to move. Thus, if a
normal vertex changes its part, this involves to cut a migration edge and to pay for an additional
migration cost associated with this edge. As a partitioner attempt to minimize the cut size, it
will also minimize the data movement due to migration. Scotch has recently added a similar
graph repartitioning method based on fixed vertices, using a local diffusive refinement [4].

One can find in the literature many other works on dynamic load-balancing, including geo-
metric methods like Recursive Coordinate Bisection (RCB) [6] or Space-Filling Curve (SFC) [11],
spectral methods [14], or still more exotic approaches such as skewed graph partitioning [7].

All these works are very interesting, but are limited to the case where the number of pro-
cessors is initially fixed and is not modified at runtime. In our knowledge, there is no research
that investigates the problem of graph (or hypergraph) partitioning with a variable number of
processors. However, some recent studies have shown the interest of such an approach, by dy-
namically adjusting the number of processors in an adaptive code (AMR) to optimize both the
parallel runtime and resource consumption [8].

3 Algorithm

This section presents our graph repartitioning algorithm which accepts a variable number of
processors, assuming the load is already balanced. It is based on a theoretical result on optimal
communication matrices, that minimizes both the data volume and the number of communica-
tions during the migration phase. These matrices are conveniently represented by a repartitioning
hypergraph, that captures the optimal communication scheme we will impose. Then, the initial
graph is enriched with fixed vertices, that models our additional migration constraints in a sim-
ilar way to Zoltan [2] or RM-Metis [1]. Thus, the partitioning of this graph will minimize both

Inria

Dynamic Load-Balancing with Variable Number of Processors 5

the regular cut size and the data movement due to migration, while respecting the optimal
communication scheme.

3.1 Communication Matrix and Repartitioning Hypergraph

Let consider a graph G = (V,E), where V is the set of vertices, and E is the set of edges. Let w
be the weight function that maps to a vertex subset of G its weight. We notice W = w(V) the
weight of the whole graph. Let P = (V1, V2, . . . , VM) be the initial partition of V into M parts
and P ′ = (V ′

1 , V
′
2 , . . . , V

′
N) the final partition into N parts.

Let C = (Ci,j) be the M ×N communication matrix associated with the repartitioning of G
from P to P ′. The element Ci,j is the amount of data sent by the processor i to the processor
j. According to the graph model, Ci,j is equal to w(Vi ∩ V ′

j). In this paper, we focus on perfect
communication matrix, which results from two perfectly balanced partitions, P and P ′. Such
matrices satisfy the following constraints: for each row i, w(Vi) =

∑

1≤j≤N Ci,j = W/M (row
constraint) and for each column j, w(V ′

j) =
∑

1≤i≤M Ci,j = W/N (column constraint). As a
consequence, W must be a multiple of both M and N .

We define the number of communications, Z(C), as the number of non-zero terms in C. It
represents the number of messages exchanged between former and newer parts, including “in-
place” communications from a processor to itself. In the case of perfect communication matrix, we
will demonstrate in the following section that this number is minimum for M+N−GCD(M,N)
and obviously maximum for M.N . Then, we define the migration volume, Mig(C), as the amount
of data being sent to a different processor, i.e. Mig(C) =

∑

i 6=j Ci,j .
The matrix C can be interpreted as an hypergraph H, called repartitioning hypergraph. This

hypergraph is composed of M vertices representing the initial parts and N hyperedges represent-
ing the new parts obtained after the repartitioning step. A vertex i of H belongs to an hyperedge
j if data are exchanged between the old part i and the new part j during the migration. The
repartitioning hypergraph allows to model the communication scheme without detailing the vol-
ume of data exchanged as the communication matrix does. We will see how this hypergraph
representation makes easier to solve the correspondence problem we have in section 3.3.

3.2 Optimal Communication Matrices

Our goal in this section is to seek communication matrices with good properties to perform
efficiently the migration step. To simplify our discussion, we will assume in all this section that
the communication matrix C of dimension M ×N is perfect with W = M.N . As the initial and
final partition are perfectly balanced, a source processor sends a data volume of N and a target
processor receives a data volume of M (including “in-place” communications).

Definition 1. In this paper, a perfect communication matrix C is said to be optimal if it mini-
mizes both the migration volume Mig(C) and the number of communications Z(C).

Theorem 1. Let C be a perfect communication matrix of dimension M × N . The minimum
number of communications is M +N −GCD(M,N).

Proof. Let G = ((A,B), E) be the bipartite graph that represents the communication of matrix C
from M = |A| processors to N = |B| processors. Let K be the number of connected components
of G, noted Gi = ((Ai, Bi), Ei) with 1 ≤ i ≤ K. For each component Gi, Mi = |Ai| processors
send a data volume Mi.N to Ni = |Bi| processors that receive a data volume Ni.M . Therefore, Gi

exchange a data volume Vi = Mi.N = Ni.M , with Mi and Ni non null. As Vi is multiple of both
M and N , one can say Vi ≥ LCM(M,N). Consequently, the total volume of communications
M.N =

∑

i∈[1,K] Vi is superior or equal to K.LCM(M,N). As GCD(M,N).LCM(M,N) =

RR n° 7926

6 C. Vuchener & A. Esnard

M.N , one can deduce K ≤ GCD(M,N). As Gi is a connected graph, its number of edges |Ei| is
superior or equal to Mi +Ni − 1. And the total number of edges |E| =

∑

i∈[1,k] |Ei| is superior

or equal to
∑

i∈[1,K] Mi +
∑

i∈[1,K] Ni −K = M +N −K. As a consequence, the total number

of communications |E| is superior or equal to M +N −GCD(M,N), for K ≤ GCD(M,N).

Let us consider the case M < N , where the number of processors increases. We can decompose
the communication matrix C in two blocks (A,B): a left square block A of dimension M ×M
and a right block B of dimension M ×N −M .

Theorem 2. The communication matrix C = (A,B) is optimal if the submatrix A minimizes
the migration volume and if the submatrix B minimizes the number of communication.

Proof. To minimize the migration volume for C, one must take care to maximize the amount of
data remaining in place, i.e. the sum of the terms on the diagonal of A. As a consequence, C
optimizes the migration volume if A is diagonal, such as A = M.IM with IM the identity matrix
of order M . Thus, the minimal migration volume is M.(N − M). In this case, the number of
communications of C is Z(C) = Z(A) +Z(B) with Z(A) = M . As B is assumed to be optimal,
Z(B) = M + (N − M) − GCD(M,N − M) according to theorem 1. As GCD(M,N − M) =
GCD(M,N), then Z(C) = M +N −GCD(M,N) and C is optimal.

In the case where the number of processors decreases (M > N), we obtain a similar result by
transposing the previous matrix. Theses two proofs remain correct for any perfect communica-
tion matrix, i.e. when W is not simply equal to M.N , but is multiple of M and N .

B

A×B

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10

A

Figure 1: Partitioning of a “chain graph” (represented as a one-dimensional array of length
70) in 7 and 10 and the resulting intersection pattern A × B used to construct the stairway
communication matrix.

Let us now consider the examples given on figure 2 in the case 7× 10. The stairway matrix
(Fig. 2a) illustrates how to construct a perfect communication matrix with a minimum number
of communications. This communication scheme is the one obtained by contiguously partitioning
a “chain graph” (i.e. a simple one-dimensional array) in M parts and then in N parts. It is easy
to demonstrate that the intersection pattern of this two partitions gives M +N −GCD(M,N)
communications, which is the optimal (Fig. 1). For the stairway matrix of dimension 7× 10, we
find Z(C) = 16 that is optimal, but the migration volume is not minimal at all (Mig(C) = 58).
The figure 2b gives an example of an optimal matrix, based on a stairway submatrix according to
theorem 2. In this case, both the number of communication and migration volume are minimal
(Z(C) = 16 and Mig(C) = 21). The figure 2c gives another example of optimal communication
matrix, but not based on the stairway matrix.

In the general case where the communication matrix is not perfect (i.e. W is not multiple of
M and N), we can obtain similar results, defined up to an unbalance factor.

Inria

Dynamic Load-Balancing with Variable Number of Processors 7

3.3 Correspondence Problem between the Repartitioning Hypergraph

and Quotient Graph

In order to achieve a good repartitioning, we have to choose where to place the new parts relatively
to the old ones. As the “optimal” communication scheme we want to perform during the migration
phase is modeled by a repartitioning hypergraph (Sec. 3.1), we have to find a correspondence
between vertices of the repartitioning hypergraph with those of the quotient graph associated
to the initial partition (Def. 2). Indeed, vertices belonging to the same hyperedge should be
matched with close vertices in the quotient graph as these parts will send data to the same new
part.

Definition 2. Let P = (V1, V2, . . . , VM) be the initial partition of a graph G into M parts. We
note Q = G/P the quotient graph with respect to the partition P . A vertex i of Q represents the
part Vi (with weight w(Vi)) and there is an edge (i, j) in Q if the parts Vi and Vj are connected.
The weight of edge (i, j) in Q is the edge-cut between parts Vi and Vj.

The closeness of old parts is modeled by a score. This score is computed from the edges of
the quotient graph. To express this score, the repartitioning hypergraph and the quotient graph
are represented by matrices. The hypergraph matrix H is a M ×N matrix and its element Hv,e

is non-zero if the hyperedge e contains the vertex v. The quotient graph is represented by its
adjacency matrix Q whose element Qi,j is the weight of the edge (i, j). A matching is represented
by a M ×M permutation matrix X whose element Xi,j is 1 if the vertex i of H is matched with
the vertex j of Q, and 0 otherwise.

In the equation 1, Xi,i′ , Xj,j′ , Hi,k and Hj,k are binary values, their product is not zero when
the vertices i′ and j′ of Q are respectively matched with the vertices i and j of H which are
in the same hyperedge k. The score is the sum of the edge weights Qi′,j′ whose endpoints are
matched with vertices belonging to the same hyperedge. Consequently, matching hyperedges of
H with strongly connected subgraph of Q will give higher scores.

score(X) =
∑

i,j,i′,j′,k

Xi,i′Xj,j′Hi,kHj,kQi′,j′ (1)

The score equation can be rewritten as follows.

score(X) =
∑

i,i′

Xi,i′

∑

j,j′

Xj,j′(
∑

k

Hi,kHj,k)Qi′,j′ (2)

Let x be the column vector of size M2 such that xk = Xi,i′ with k = iM + i′ and ⊗ be the
Kronecker product1, the score can be rewritten as:

score(x) = xTAx with A = HHT ⊗Q of size M2 ×M2 (3)

According to the previous formulation, it appears that our problem is a binary quadratic
optimization problem, with linear constraints:

{

∀i,
∑

i′ xiM+i′ = 1 (row constraint for X)
∀i′,

∑

i xiM+i′ = 1 (column constraint for X)
(4)

This optimisation problem is NP-hard [5]. This is a well-studied problem especially in the
context of computer vision with a wide variety of applications: segmentation, clustering, graph

1Let A be a matrix of size P ×Q and B be a matrix of size R × S. The Kronecker product A⊗ B is a block
matrix with P ×Q blocks of size R× S whose block (i, j) is Ai,j ·B.

RR n° 7926

8 C. Vuchener & A. Esnard

matching. We can found in literature many heuristics to locate a good approximation to the
global optimum: probabilistic metaheuristic like simulated annealing, spectral relaxation meth-
ods [9, 3], combinatorial methods like branch & bound, etc. In this paper, we use a basic simulated
annealing with good results.

3.4 MxN Repartitioning Algorithm based on Fixed Vertices

Using a partitioning technique with fixed vertices in a similar way to Zoltan [2] or RM-Metis [1],
the graph is repartitioned while respecting the chosen communication scheme. Our algorithm is
composed of the following steps.

1. Given an initial partition P = (Vi)1≤i≤M of the graph G in M parts (Fig. 3a), the quotient
graph Q is built (Fig. 3b).

2. An optimal communication matrices is chosen, giving us an optimal repartitioning hyper-
graph H (Fig. 3c). There are several possible choices as discussed in section 3.2.

3. The repartitioning hypergaph H is matched to the quotient graph Q associated with the
initial partition P , using a simulated annealing algorithm to optimize the score function
described in section 3.3 (Fig. 3d). It give us a permutation matrix X.

4. Fixed vertices are added to graph G. There is one fixed vertex for each new part (or
hyperedge in H). They have no weight since they represent processors, not tasks.

5. Then, we add migration edges, connected to these fixed vertices. Let Kj be the set of
old processor ranks that will communicate with new processor of rank j, i.e. Kj =
{i | ∃k, Xk,i = 1 ∧ Hk,j = 1}. Each fixed vertex j is connected with all the vertices of
G belonging to old parts Vi with i ∈ Kj (Fig. 3e). These new edges are weighted with a
given migration cost.

6. This enriched graph is finally partitioned in N parts, giving us the final partition P ′ of G
(Fig. 3f).

While minimizing the edge cut, the partitioner will try to cut as few migration edges as
possible, if the migration cost is high enough. Indeed, each regular vertex v of G is connected
to one or more fixed vertices, modeling different new processors where v may be assigned. As
exactly one of these migration edges should not be cut, the communication scheme imposed by
the repartitioning hypergraph should be respected.

4 Experimental Results

Our M ×N graph repartitioning method is compared with a Scratch-Remap method, ParMetis
and Scotch (see Sec. 2). These approaches are designed for repartitioning with a constant number
of processors, but can still be used with a different new number of parts. We do not present
comparison with Zoltan because it is tricky to compare graph and hypergraph cut-size, even
if our approach has been generalized for hypergraph. The graph used is a simple 3D grid (of
dimensions 32×32×32) with 32768 vertices and 95232 edges. It is initially partitioned in M = 8
parts and will be repartitioned in different numbers of new parts (N ∈ [2, 24]). The scratch-
remap method is achieved with Scotch. It obviously provides a good cut but a high migration
volume. ParMetis is used with a ratio of inter-processor communication time over redistribution
time of 1000 as recommended in the documentation. Scotch remapping is used with a migration

Inria

Dynamic Load-Balancing with Variable Number of Processors 9

cost of 1. The M × N method uses a migration cost of 10 as high migration cost is needed to
ensure that the communication scheme is respected.

The experiment is repeated 10 times and the charts in figure 4 show the average results. As
expected from the chosen communication matrix, we can see on figure 4a that the migration
for the M × N approach is optimal. For N >> M , the use of complex repartitioning methods
becomes less relevant. The figure 4b shows that this low migration comes at the cost of higher cut,
but not higher than other repartitioning tools. The cut for M×N method is not much higher than
the Scratch-Remap method which gives the better cut that the partitioner can provide with no
other constraints. The number of communications (including “in-place” communications) needed
for the migration is given in the figure 4c. This number is almost always optimal with our
M × N method. It can be further strengthened with an higher migration cost at the expense
of edge-cut. The communication time of the migration step has been experimentally measured
with OpenMPI over an InfiniBand network. The migration is up to 10% faster compared with
other approaches. This confirms that our theoretical optimal communication matrices improve
the migration time.

5 Conclusion and Future Works

We have presented in this paper a graph repartitioning algorithm, which accepts a variable
number of processors, assuming the computational load is already balanced. Our algorithm
minimizes both data communication and data migration overheads, while maintaining the load
balance in parallel.

The preliminary experiments we have presented validate our approach comparing it against
state-of-the-art partitioners. Our repartitioning provides both a minimal migration volume and
a minimal number of communications, while keeping the edge cut low. Thanks to the additional
constraints we provide, the results are much more stable than with other approaches.

We are considering several perspectives to our work. First, we focus on graph repartitioning
in the more general case where both the load and the number of processors vary. We expect
this work to be really suitable for next generation of adaptive codes. Finally, to be useful in
real-life applications, our algorithm needs to work in parallel and should be integrated in the
Scotch partitioning software.

RR n° 7926

10 C. Vuchener & A. Esnard

References

[1] Cevdet Aykanat, B. Barla Cambazoglu, Ferit Findik, and Tahsin Kurc. Adaptive decom-
position and remapping algorithms for object-space-parallel direct volume rendering of un-
structured grids. J. Parallel Distrib. Comput., 67:77–99, January 2007.

[2] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdağ, Robert T. Heaphy,
and Lee Ann Riesen. A repartitioning hypergraph model for dynamic load balancing. J.
Parallel Distrib. Comput., 69(8):711–724, 2009.

[3] Olivier Duchenne, Francis R. Bach, In-So Kweon, and Jean Ponce. A tensor-based algorithm
for high-order graph matching. In CVPR, pages 1980–1987. IEEE, 2009.

[4] S. Fourestier and F. Pellegrini. Adaptation au repartitionnement de graphes d’une méthode
d’optimisation globale par diffusion. In Proc. RenPar’20, Saint-Malo, France, May 2011.

[5] Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[6] Bruce Hendrickson and Karen Devine. Dynamic load balancing in computational mechanics.
In Computer Methods in Applied Mechanics and Engineering, volume 184, pages 485–500,
2000.

[7] Bruce Hendrickson, Robert W. Leland, and Rafael Van Driessche. Skewed graph partition-
ing. In Eighth SIAM Conf. Parallel Processing for Scientific Computing, 1997.

[8] Saeed Iqbal and Graham F. Carey. Performance analysis of dynamic load balancing algo-
rithms with variable number of processors. Journal of Parallel and Distributed Computing,
65(8):934 – 948, 2005.

[9] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems
using pairwise constraints. In Proceedings of the Tenth IEEE International Conference on
Computer Vision - Volume 2, ICCV ’05, pages 1482–1489, Washington, DC, USA, 2005.
IEEE Computer Society.

[10] Leonid Oliker and Rupak Biswas. Plum: parallel load balancing for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 52:150–177, August 1998.

[11] J.R. Pilkington and S.B. Baden. Dynamic partitioning of non-uniform structured workloads
with spacefilling curves. Parallel and Distributed Systems, IEEE Transactions on, 7(3):288
–300, March 1996.

[12] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for repar-
titioning of adaptive meshes. Journal of Parallel and Distributed Computing, 47(2):109 –
124, 1997.

[13] James D. Teresco, Karen D. Devine, and Joseph E. Flaherty. Partitioning and dynamic
load balancing for the numerical solution of partial differential equations. In Timothy J.
Barth, Michael Griebel, David E. Keyes, Risto M. Nieminen, Dirk Roose, Tamar Schlick,
Are Magnus Bruaset, and Aslak Tveito, editors, Numerical Solution of Partial Differential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science and
Engineering, pages 55–88. Springer Berlin Heidelberg, 2006.

Inria

Dynamic Load-Balancing with Variable Number of Processors 11

[14] Rafael Van Driessche and Dirk Roose. Dynamic load balancing with a spectral bisection
algorithm for the constrained graph partitioning problem. In Bob Hertzberger and Giuseppe
Serazzi, editors, High-Performance Computing and Networking, volume 919 of Lecture Notes
in Computer Science, pages 392–397. Springer Berlin / Heidelberg, 1995.

RR n° 7926

12 C. Vuchener & A. Esnard

7 3
4 6

1 7 2
5 5

2 7 1
6 4

3 7

(a) Stairway matrix.

7 3
7 3

7 1 2
7 3

7 2 1
7 3

7 3

(b) Optimal matrix based on stairway subma-
trix.

7 3
7 3

7 3
7 3

7 3
7 3

7 1 1 1

(c) Another optimal matrix.

Figure 2: Three communication matrices in the case 7 × 10 and their representation as repar-
titioning hypergraph. Zero elements in matrices are not shown. The elements in red are those
who remain in place during communications, others will migrate.

Inria

Dynamic Load-Balancing with Variable Number of Processors 13

(a) Initial partition in 5 parts. (b) Quotient graph of the initial partition.

(c) An optimal repartitioning hypergraph for the
case 5× 7.

(d) Matching between the quotient graph and the
repartitioning hypergraph.

(e) Graph with fixed vertices added according to
the matching.

(f) Final partition in 7 parts.

Figure 3: Repartitioning from 5 to 7 parts.

RR n° 7926

14 C. Vuchener & A. Esnard

 0

 5000

 10000

 15000

 20000

 25000

 2 4 8 16

M
ig

ra
ti
o

n
 v

o
lu

m
e

Number of new parts

Scratch-Remap
ParMetis

Scotch
Optimal

MxN

(a) Migration volume.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 8 16

C
u

t

Number of new parts

Scratch-Remap
ParMetis

Scotch
MxN

(b) Edge cut.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 16

N
u

m
b

e
r

o
f

c
o

m
m

u
n

ic
a

ti
o

n
s

Number of new parts

Scratch−Remap
ParMetis

Scotch
Optimal

MxN

(c) Number of communications.

Figure 4: Experimental results for the graph repartitioning of a 32 × 32 × 32 grid from M = 8
processors to N ∈ [2, 24].

Inria

RESEARCH CENTRE

BORDEAUX – SUD-OUEST

351, Cours de la Libération

Bâtiment A 29

33405 Talence Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Algorithm
	Communication Matrix and Repartitioning Hypergraph
	Optimal Communication Matrices
	Correspondence Problem between the Repartitioning Hypergraph and Quotient Graph
	MxN Repartitioning Algorithm based on Fixed Vertices

	Experimental Results
	Conclusion and Future Works

