
HAL Id: hal-00688707
https://hal.inria.fr/hal-00688707

Submitted on 18 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Dissemination of reconfiguration policies on mesh
networks

François Fouquet, Erwan Daubert, Noël Plouzeau, Olivier Barais, Johann
Bourcier, Jean-Marc Jézéquel

To cite this version:
François Fouquet, Erwan Daubert, Noël Plouzeau, Olivier Barais, Johann Bourcier, et al.. Dissemina-
tion of reconfiguration policies on mesh networks. 12th International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS), Jun 2012, Stockholm, Sweden. pp.16-30, �10.1007/978-
3-642-30823-9_2�. �hal-00688707�

https://hal.inria.fr/hal-00688707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dissemination of reconfiguration policies on
mesh networks

François Fouquet, Erwan Daubert, Noël Plouzeau,
Olivier Barais, Johann Bourcier, and Jean-Marc Jézéquel

University of Rennes 1, IRISA, INRIA Centre Rennes
Campus de Beaulieu, 35042 Rennes, France

{Firstname.Name}@inria.fr

Abstract. Component-based platforms are widely used to develop and
deploy distributed pervasive system that exhibit a high degree of dynam-
icity, concurrency, distribution, heterogeneity, and volatility. This paper
deals with the problem of ensuring safe yet efficient dynamic adaptation
in a distributed and volatile environment. Most current platforms pro-
vide capabilities for dynamic local adaptation to adapt these systems to
their evolving execution context, but are still limited in their ability to
handle distributed adaptations. Thus, a remaining challenge is to safely
propagate reconfiguration policies of component-based systems to ensure
consistency of the architecture configuration models over a dynamic and
distributed system. In this paper we implement a specific algorithm rely-
ing on the models at runtime paradigm to manage platform independent
models of the current system architecture and its deployed configuration,
and to propagate reconfiguration policies. We evaluate a combination of
gossip-based algorithms and vector clock techniques that are able to
propagate these policies safely in order to preserve consistency of archi-
tecture configuration models among all computation nodes of the system.
This evaluation is done with a test-bed system running on a large size
grid network.

1 Introduction

Nowadays, the increasing use of Internet of Things devices for computer sup-
ported cooperative work leads to large systems. As these devices use multiple
mobile networks, these systems must deal with concurrency, distribution, and
volatility issues. This volatility requires dynamic auto-adaptation of the system
architecture, in order to provide domain specific services continuously. Tactical
information and decision support systems for on field emergency management
are perfect examples of such highly dynamic systems. Indeed, these multi-user
interactive systems built on mobile devices need frequent changes of architec-
ture to deal with rapid system evolution (e.g. scale up or scale down of team,
download of new software modules by the device user) or to cope with network
disconnections. For such systems, the traditional design process “design, code,
compile, test, deploy, use, iterate” does not work.

Dynamic adaptation, pursuing IBM’s vision of autonomic computing, is a
very active area since the late 1990’s - early 2000’s [9]. Modern component-
based systems [15,4] provide a reflection and intercession layer to dynamically
reconfigure a running system. But the reconfiguration process remains complex,
unreliable and often irreversible in a volatile and distributed context. The use

of model-driven techniques for managing such run-time behavior (named mod-
els@runtime [3]) helps to handle software reconfiguration. Models@runtime basi-
cally pushes the idea of reflection [14] one step further by considering the reflec-
tion layer as a real model that can be uncoupled from the running architecture
(e.g. for reasoning, validation, and simulation purposes) and later automatically
resynchronized with its running instance to trigger reconfigurations. Kevoree is
our open-source dynamic component model1, which relies on models at run-
time to properly support the dynamic reconfiguration of distributed systems.
The model used at runtime reflects the global running architecture and the dis-
tributed topology. In Kevoree, when a distributed node receives a model update
that reflects the target running architecture, the node extracts the reconfigu-
rations that affect it and transform them into a set of platform reconfiguration
primitives. Finally, it executes them and propagates the reflection model to other
nodes as a new consistent architecture model.

In a highly distributed and volatile environment, one of the challenges is the
propagation of reconfiguration policies. Handling concurrent updates of shared
data is a second challenge to be solved, as two nodes can trigger concurrent
reconfigurations. Consistent dissemination of models at runtime in distributed
systems requires a synchronization layer that solves these two challenges: in-
formation dissemination and concurrent update. Research in the field of peer-
to-peer communication has produced many algorithms to deal with information
dissemination in a volatile context [6]. Many paradigms are available to deal with
this concurrent data exchange problems (e.g. vector clocks [7]). In this paper,
we adapt a combination of gossip-based algorithms and vector clocks techniques
to safely propagate reconfiguration policies by preserving architecture models
consistency between all computation nodes of a distributed system. We have
implemented a specific algorithm, which propagates configuration changes in a
consistent manner in spite of frequent node link failures, relying on its payload
of configuration data to improve its efficiency. We provide qualitative and quan-
titative evaluations of this algorithm, to help answering the following questions:
(i) What is the influence of communication strategy on the propagation delay of
models? (ii) Does a high rate of node link failure prevent the propagation of mod-
els and what is the impact of link failures on propagation delays? (iii) Does the
algorithm detect concurrent updates of models and does it handle reconciliation
correctly?

The remainder of this paper is organized as follows. Section 2 presents the
background of this work. Section 3 details the combination of a gossip-based
algorithm and the vector clock techniques used to preserve architecture models
consistency between all computation nodes of the system. Section 4 details our
experiments to evaluate this combination. Section 5 discusses articles, ideas and
experimental results related to our work. Finally, Section 6 concludes this paper
and presents ongoing work.

2 Background

Kevoree is an open-source dynamic component model1, which relies on models
at runtime [3] to properly support the dynamic adaptation of distributed sys-

1
http://kevoree.org

http://kevoree.org

Node

Current Model

Target Model

Check
Compare

Running platform

Model@Runtime layer

Adaptation Engine

A1 An

consistency

(1)

SaveModel

(2)

(2)
(3)

(4)

Fig. 1. Models@Runtime overview

Groupe
Instance

A1

node n

A1

node 1

g1

channel1

Architecture model

node 1 node n

Fig. 2. Distributed reconfigurations

tems. Figure 1 presents a general overview of models@runtime. When changes
appear as a new model (a target model) to apply on the system, it is checked and
validated to ensure a well-formed system configuration. Then it will be compared
with the current model that represents the running system. This comparison
generates an adaptation model that contains the set of abstract primitives to go
from the current model to the target one. Finally, the adaptation engine exe-
cutes configuration actions to apply these abstract primitives. If an action fails,
the adaptation engine rollbacks the configuration to ensure system consistency.
Kevoree has been influenced by previous work that we carried out in the DiVA
project [14]. With Kevoree we push our vision of models@runtime [14] farther.
In particular, Kevoree supports distributed models@runtime properly. To this
aim we introduce the Node concept in the model to represent the infrastruc-
ture topology. Kevoree includes a Channel concept to allow for multiple com-
munication semantics between remote Components deployed on heterogeneous
nodes. All Kevoree concepts (Component, Channel, Node) obey the Type Ob-
ject pattern [8] to separate deployment artifacts from running artifacts. Kevoree
supports multiple kinds of execution node technology (e.g. Java, Android, Mini-
Cloud, FreeBSD, Arduino, . . .).

Kevoree also introduces a dedicated concept named Group, to encapsulate
platform synchronization algorithms. Group allows to define communication
channels between nodes to propagate reconfiguration policies (i.e. new target
model). This Group concept also encapsulates a dedicated protocol to ensure
specific synchronization policies (e.g. Paxos derived algorithms for total order
synchronization, Gossip derived algorithms for partial order and opportunistic
synchronization). Groups can be bound to several nodes (named members), al-
lowing them to explicitly define different synchronization strategies for the over-
all distributed system. This architecture organization is illustrated in Figure 2.
In addition, a Group also defines a scope of synchronization, i.e. it defines which
elements of the global model must be synchronized for the group’s members.
This avoids to globally share model@runtime models.

P2P algorithm and mesh network Schollmeier [16] defines a peer-to-peer
network as “a distributed network architecture, where participants of the net-
work share a part of their resources, which are accessible by the other peers
directly, without passing intermediary entities”. He also provides the following

distinction: hybrid peer-to-peer networks use a central entity, while pure peer-
to-peer networks have no such entity. According to Wikipedia, a mesh network
is “a type of network where each node must not only capture and disseminate its
own data, but also serve as a relay for other nodes, that is, it must collaborate
to propagate the data in the network”. In these network topologies, gossip-like
algorithms are good solutions to disseminate data.

Concurency data management for distributed message passing appli-
cations Distributed systems consist of a set of processes that cooperate to
achieve a common goal. Processes communicate with data exchanges over the
network, with no shared global memory. This leads to well known and difficult
problems of causality and ordering of data exchanges. Solutions are known to
cope with this problem: Lamport [10] defines an event order using logical clocks
by adding a logical time on each message sent. Another solution was coinvented
by Fidge [7] and Mattern [13], using a vector of logical clocks. In many cases
the vector clock technique is the most appropriate solution to manage a partial
order and concurrency between events[2], e.g. in distributed hash table systems
such as Voldemort2).

Synthesis In our vision of distributed environments, system management is de-
centralized, allowing each peer to build, maintain and alter the overall archi-
tecture and platform models at runtime. Because of nodes volatility, ensuring
consistency during reconfiguration is a critical task. We use Kevoree and the
notion of Group to encapsulate platform synchronization algorithms with gossip
and vector clock techniques.

3 An algorithm to disseminate reconfiguration policies

Each node holds a copy of the model that describes the overall system config-
uration. This system model contains a description of the nodes that currently
compose the system, of components that are installed on each node and of net-
work links between nodes. It also contains all information about groups. A group
is the unit of model consistency for the models at runtime technique. Each node
involved in model consistency includes several named group instances, which
participates in the distributed model management for the local node. Part 1 of
the algorithm provides the data definition for one node.

In addition to the information given by the model, each group instance main-
tains specific information (see algorithm’s Part 2): a group id, a local copy of
the model and the local node id. It also stores its current vector clock, a score
for each of its neighbors and a boolean attribute to record whether the model
has changed since the last time another node requested the local node’s vector
clock. The score of the neighbors is used to select the more interesting one when
the local node looks for new reconfigurations.
2
http://project-voldemort.com

http://project-voldemort.com

Algorithm Part 1 DEFINITIONS
Message ASK VECTORCLOCK, ASK MODEL, NOTIFICATION
Type VectorClockEntry := <id: String, version ∈ N>
Type Node // represents a node on the system
Type Model // represents a configuration of the system
Set Group:= {node: Node}
Set IDS(g: Group):= {id: String | ∃ node: Node, node ∈ g & node.name = id}
Set Neighbors(originator: Node, g:Group):= {node: Node | node ∈ g & originator ∈ g}
Set VectorClock(originator: Node, g: Group):= {entry: VectorClockEntry | entry.id == origina-

tor.name}⋃
{entry1: VectorClockEntry |∃ node: Node, node != originator & entry1.id ∈ IDS(g) & node ∈

g}
Set VectorClocks(originator: Node, g: Group):= {vectorClock: VectorClock(originator, g)}

Main algorithm (see algorithm’s Part 3). When a change appears on the model
stored in a node, the corresponding group instance is notified. The group instance
then sends notification to all its neighbors. These neighbors in turn may send a
message to the current node, to ask for model update information. As the under-
lying communication network is volatile and unreliable, some notifications can
be lost and not received by some members of a group. To deal with these losses,
each member of a group asks periodically a chosen group member for changes.
Since a model is a rather large data, group instances ask for the vector clock of
the remote instance first, in order to decide if a model transfer is needed. More
precisely, after comparing the vector clock received with its own vector clock, a
group instance will request a model if both vector clocks are concurrent or if the
vector clock received is more recent than its local one. Here concurrency means
that each local and remote model have different changes which dot not appear
on the other. A vector clock is more recent than another if some changes appear
on it but not on the other. Upon reception of a model, the group instance com-
pares the model’s vector clock and the local clock again. If the local vector clock
is older, the local node updates its local clock and also updates the local copy
of the model using the model just received. If the vector clocks are concurrent
then the group must resolve this concurrency at the model level to compute the
correct model and then update the vector clock accordingly.

Functions SelectPeer (see Algorithm Part 4) In addition to this mechanism, each
node pulls periodically one of its neighbors, in order to cope for lost notifications.
The selection of the neighbor to pull is controlled by a score mechanism: a score
is assigned to each peer by the group instance and the selection of the peer is
done according to the smaller score. The score of the node grows when it is
selected or when the network link to access this node seems to be down. The

Algorithm Part 2 STATE
g: Group ; changed: Boolean
currentModel: Model // local version of system configuration
localNode: Node // representation of local node
currentVectorClock ∈ VectorClocks(localNode, g)
scores := {<node: Node, score>, node ∈ Neighbors(localNode, g) && score ∈ N}
nbFailure := {<node: Node, nbFail>, node ∈ Neighbors(localNode, g) && nbFail ∈ N}

Algorithm Part 3 ALGORITHM
On init():

vectorClock ← (localNode.name, 1)
scores ← {Neighbors(localNode, g) × {0}}
changed ← false

On change (currentModel):
∀ n, n ∈ Neighbors(localNode, g) → send (n, NOTIFICATION)
changed ← true

Periodically do():
node ← selectPeerUsingScore()
send (node,ASK VECTORCLOCK)

On receive (neighbor ∈ Neighbors(localNode, g), NOTIFICATION):
send (neighbor, ASK VECTORCLOCK)

On receive (neighbor ∈ Neighbors(localNode,g), remoteVectorClock ∈ VectorClocks(neightbor, g)):

result ← compareWithLocalVectorClock (remoteVectorClock)
if result == BEFORE || result == CONCURRENTLY then

send (neighbor, ASK MODEL)
end if

On receive (neightbor ∈ Neighbors(localNode,g),vectorClock ∈ Vectorclocks(neighbor, g), model)):

result ← compareWithLocalVectorClock (targetVectorClock)
if result == BEFORE then

updateModel(model)
mergeWithLocalVectorClock(vectorClock)

else if result == CONCURRENTLY then
resolveConcurrently(vectorClock, model)

end if
On receive (neighbor ∈ Neighbors(localNode,g), request):

if request == ASK VECTORCLOCK then
checkOrIncrementVectorClock()
send (neighbor, currentVectorClock)

end if
if request == ASK MODEL then

checkOrIncrementVectorClock()
send (neighbor, <currentVectorClock,currentmodel>)

end if

down link detection relies on a synchronization layer. This layer uses model
information to check for all available peers periodically and then to notify the
group instance of unreachable nodes. A peer score takes into account the duration
of unavailability of the peer. When the peer becomes available, this number is
reset to 0: restored availability clears the failure record. Indeed, as the system
uses a sporadic and volatile network, peers often appear and disappear and most
of the time disappearance events are not causally connected.

Functions about vector clocks (see Algorithm Part 5) Our algorithm relies on
vector clocks to detect changes in remote configuration models. When a local
update of the model appears, a boolean called changed is set to true to ensure
that upon a vector clock request from another node the group instance will
increment by one its version id in its local vector clock before sending it to
the requesting peer. In case of concurrent updates of models we rely on the
use of the reflexivity provided by the model at runtime to solve the conflict.
Priority is given to information about the nodes already reached and affected
by the update. Any node detecting a conflict will merge these models and their
associated vector clocks to store it as its current state. A reasoning upper layer

Algorithm Part 4 SelectPeer
Function selectPeerUsingScore()

minScore := ∞ ; potentialPeers := {}
for node → Neighbor(localNode, g) do

if node ! = localNode && getScore(node) < minScore then
minScore := getScore(node)

end if
end for
for node → Neighbor(localNode, g) do

if node ! = localNode && getScore(node) == minScore then
potentialPeers := potentialPeers

⋃
{node}

end if
end for
node := select randomly a node from potentialPeers
updateScore(node)
return node

Function getScore(node ∈ Neighbors(localNode, g))
return scores(node)

Function updateScore(node ∈ Neighbors(localNode, g))
oldScore := getScore(node)
scores := scores

⋃
{node, oldScore + 2 * (nbFailure + 1)} \ {node, oldScore}

will then compute an update from this merged model by reading the model and
correcting it. Description of this reasoning layer is beyond the scope of this paper
and vector clocks merge and comparison is already defined on previous works on
vector clocks [7] and [13].

Algorithm Part 5 FUNCTIONS
Function checkOrIncrementVectorClock()

if changed == true then
∀ entry, entry ∈ currentVectorClock & entry.id == localNode.name ⇒ entry.v ← entry.v + 1
changed ← false

end if
Function compareWithLocalVectorClock(targetVectorClock∈VectorClocks(n ∈ neigh-

bors(localNode, g), g)) // for details, please look at http://goo.gl/0tdEc
Function mergeWithLocalVectorClock(targetVectorClock ∈ VectorClocks(n ∈ neigh-

bors(localNode, g), g)) // for details, please look at http://goo.gl/axbJN
Function resolveConcurrency(targetVectorClock ∈ VectorClocks(n ∈ neighbors(localNode, g), g))

// for details, please look at http://goo.gl/bFTeH
Function updateModel(model ∈ Models)

currentModel ← model

4 Evaluation

We have performed qualitative and quantitative evaluations of our algorithm,
aiming at measuring the following indicators: (1) model propagation delay;
(2) resilience to node link failure; (3) ability to detect concurrent models and to
handle reconciliation. For each indicator we have set up an experimental pro-
tocol, using the firefighter tactical information case study metrics to simulate
the system behaviour on a grid in different configurations. Although target plat-
forms will be pervasive embedded systems, we have chosen a large scale grid as
an evaluation testbed. The use of a grid allows us to stress the algorithm by
setting up a large number of nodes but it also brings us more control over the
parameters of the experiment e.g. network failure simulations. In this way ex-
periments are reproducible, and reproducibility is essential to our experimental
protocol. On-field validation is an ongoing work.

http://goo.gl/0tdEc
http://goo.gl/axbJN
http://goo.gl/bFTeH

4.1 Common experimental protocol
Validation experiments share a common experimental protocol. Each experi-
ment uses a set of logical Kevoree node deployed on physical nodes within a
computer grid. Each Kevoree logical node is instantiated in a separate Java Vir-
tual Machine and use the reference Kevoree implementation for JavaSE. The
experimental grid is an heterogeneous grid that contains nodes of mixed com-
putational power and type. Each node is connected to a local area network at
100 MB/s.

Topology model All our experiments take a bootstrap model as input, which
describes the current abstract architecture (i.e. in its platform independent
form). This abstract model contains information on node representations, node
logical links and node communication group instances and relationships. This
node set and these relationships describe a topology of the system, which is
used by our synchronization algorithm. In order to improve the simulation of a
firefighter tactical information case study, we use a random generator to create
topology models that are organized in a cluster of clusters. In this way it is easier
to simulate non-direct communication (i.e. node A cannot communicate directly
with node B but must pass through node C).

Global time axis traces In order to track the propagation of new config-
urations in this distributed system, we decorate the algorithm with a logger.
This logger sends a trace for each internal state change (i.e. new configuration
or configuration reconciliation). These traces describe the current state of the
group, namely the new vector clock, the identification of the peer originator
of change and the network metrics used. In order to exploit temporal data on
these traces without ensuring a global grid time synchronization we use a logger
with a global time axis based on Java Greg Logger3. More precisely, this type
of logger is based on a client server architecture. The server clock manages the
global time reference. All clients periodically synchronize with the server, allow-
ing it to store client latencies by taking into account clocks shift and network
time transfer observed. Traces are emitted asynchronously by the client to the
server, which then makes time reconciliation by adding the last value of latency
observed for this client. All traces emitted by the server are therefore all time
stamped accurately with the clock of the server. Finally, traces are chained by
an algorithm to meet the following heuristic: a trace follows another one if it
is the first occurrence that contains in its vector clock the originator node with
its precise version number. Thus the final result for each experiment is a linked
trace list on which we can precisely compute temporal results.

Communication modes We reuse mainly two classical exchange patterns to
build our algorithm.
Pooling period term is associated with the time elapsed between two active
synchronizations, and is initiated by a group member to another. In this syn-
chronization step a vector clock and/or a model is sent back to the initiator.

3 http://code.google.com/p/greg/

http://code.google.com/p/greg/

!111111

!111222 !111000

!222111

iii222111

ddd111111

ppp111111

aaa000111

ggg111111

aaa222111

ggg222111
ddd222111

ccc000111

!222222

!222000

iii222222
iii222000

ddd111222

ddd111000

ppp111222

ppp111000

aaa000222

aaa000000
aaa111111

ggg000111

ggg111222

ggg111000

aaa222222

aaa222000

ggg222222

ggg222000 ddd222222

ddd222000

ccc000222

ccc000000

ccc111111

iii000111

ccc222111

ddd000111

aaa111222

aaa111000

ggg000222

ggg000000

ccc111222
ccc111000

iii000222
iii000000

ccc222222

ccc222000
!000111

iii111111

ddd000222

ddd000000ppp000111

ppp222111

!000222
!000000

iii111222

iii111000

ppp000222ppp000000

ppp222222 ppp222000

Fig. 3. Topology model of exp 1

0
50

0
10

00
15

00
20

00
25

00
30

00

pull pushPull

●

●

pull : synch=1000ms,notif=false

pushpull : synch=15000ms,notif=true

Fig. 4. Delay/hop(ms)

The Push/Pull technique is an association of the pooling active synchroniza-
tion and an event-driven notification mechanism. This operation adds to the
pooling mode a sending step to every reachable group member.

4.2 Experimental studies

Propagation delay versus network usage This first experiment aims at
performing precise measurements of the capacity to disseminate model configu-
rations. These measures will take care of the propagation delay and the network
usage properties.

Experimental protocol As described in the common protocol subsection, mea-
surements are performed on a computer grid. The probes injected in the Java
implementation collect propagation delay and network occupation. After a boot-
strap step on a topology model, a node chosen at random reconfigures its local
model with a simple modification. In practice this reconfiguration step com-
putes a new model, moving a component instance from one node to another
chosen randomly. This new model is stored in the node, and the reconfiguration
awaits propagation by the algorithm. This new configuration is tagged with the
identification of reconfiguration originator. Figure 3 shows the topology model
used for multi hop communication in the 66 nodes of this configuration. In this
experiment, the network topology is static. No node joins or leaves the system.

The experiment is driven by the following parameters:(1) delay before start-
ing an active check of the peers update (model synchronization);(2) activation
of sending of change notification messages. To evaluate the impact of the sec-
ond parameter, the experiment is run twice. In the first run, notifications are
not used and the active synchronization delay is set to 1000 ms. In the sec-
ond run, notifications are used and active synchronization delay is 15 s. In both
cases, a reconfiguration is triggered every 20 seconds and each reconfiguration
run takes 240 seconds, resulting in 12 reconfiguration steps.

Analysis The observed per hop propagations delays are presented as a percentile
distribution (see Graph 4). The values displayed are the raw values of absolute

●

●

●

●

pull pushpull

15
0

20
0

25
0

30
0

35
0

40
0

45
0

Network consumption per reconfiguration per node (in kbytes)

Fig. 5. Network usage/node(in kbytes)

!222111
!222222

iii000111
iii000222

ggg222222

ttt111222

ccc222222

ttt222222

aaa000222

aaa222222

!111000
!222000

!111111
!111222

ooo000000

iii000000

ooo000111ooo000222

ggg222000

ggg222111
ttt111000

ttt111111

ccc222000

ccc222111

ddd000222

ggg000222

ttt222000

ttt222111

ggg111222 ttt000222

!000222

iii111222

iii222222

ddd111222

aaa000000

aaa000111

ddd222222

ccc000222

aaa222000 aaa222111

ccc111222

aaa111222

ddd000000

ddd000111

ggg000000
ggg000111

ggg111000

ggg111111

ttt000000

ttt000111

!000000
!000111

iii111000iii111111

iii222000

iii222111

ddd111000
ddd111111

ddd222000

ddd222111

ccc000000

ccc000111

ccc111000

ccc111111

aaa111000

aaa111111

Fig. 6. Topology of exp 2

time logged divided by the minimum number of hops between the target and
originator of the reconfiguration (the minimum being computed using a Bellman-
Ford algorithm [5]). The traffic volume from protocol messages is shown in Fig-
ure 5 in KB per node per reconfiguration; the volume does not include payload.
Absolute values of network consumption depends highly of implementation. Re-
sults presented here are from the Java version and can be vastly improved when
targeting embedded devices like microcontrollers.

The use of notification reduces the propagation delay significantly: the av-
erage value decreases from 1510 ms/hop to 215 ms/hop. In addition, percentile
distribution shows that the standard deviations of propagations are lower with
in the version with notification. Thus this version of the algorithm has better
scalability for large graph diameters.

However, in comparing the push pull and the push algorithm, the use of
notification on network usage is not as significant. Analysis shows that these
results are affected by cycles in the topology. When using notification of change,
nodes in cycles will create parallel branches configuration diffusion. This in turn
will increase the number of conflict resolution to be done, and these resolutions
increase network consumption unnecessarily, by exchanging the same model ver-
sion. When notifications are not used, pooling delays are large enough to avoid
this concurrent configuration “flood”. As the payload is a model with topology
information, the notification algorithm could use this information to prevent
flood. This solution will be studied in future work.

Failures impact on propagation delay A mobile mesh network such as the
one used in a firefighter tactical information system is characterized by a large
number of nodes that are often unreachable. We designed our algorithm to cope
with these network problems. The second experiment described below tests the
ability of the algorithm to disseminate new models in a mesh network with
different failure rates.

Experiment protocol The experiment protocol is similar to the first experiment’s
one. The topology model is enhanced to provide a mesh network with many

0 10 20 30 40 50

0
20

40
60

80

N
od

e
lin

k
fa

ilu
re

pe
rc

en
ta

ge

0
20

0
40

0
60

0
80

0
pr

op
ag

at
io

n
de

la
y

experiment run #

Fig. 7. Failure results

c1 c2

c3

o00

o01

o02

p00

p01

p02

p10

p11

p12

p20

p21

p22

0 2000 4000 6000 8000

Absolute time (ms)

N
od
es

na
m
e

p00 update 3

p00 update 4

o00 update 3

Failure Recovery

Fig. 8. Concurrent update

different routes between nodes (see Figure 6). At each run a modified model is
pushed on a random node. The reconfiguration is similar to the previous ex-
periment. During each run, additional failures are simulated on links between
two nodes, according to a Poisson distribution. The failure rate is increased at
each run, thus the number of reachable nodes decreases. To perform this fail-
ure simulation we inject probes, which also monitor synchronization events. At
each run, the list of theoretically reachable nodes is computed and the initiator
node waits for synchronization events from theses nodes. When all events have
been received we compute the average propagation delay. In short, this experi-
ment aims at checking that every theoretically reachable node receives the new
configuration.

Analysis Figure 7 shows results of experiment #2. The histogram shows the rate
of network failure for each run. The red curve displays the average propagation
delay to reachable nodes (in milliseconds). Above a network failure of 85% the
node originator of the reconfiguration is isolated from the network and therefore
we stop the execution. With a failure rate under 85% every node receives the
new configuration and we can compute the propagation delay.

Concurrency reconfiguration reconciliation Our third experiment addresses
the problem of reconciliation and conflict detection between concurrent model
updates. This problem occurs often in the firefighter tactical information case
study architecture because of the sporadic communication capabilities of our net-
work of nodes. As a node can stay isolated for some time, reconfiguration data
no longer reaches it. Furthermore, local reconfigurations can also occur in its
subnetwork. Connection restoration may produce conflicting concurrent model
updates. We rely on vector clocks to detect these conflicts and on the conflicting
model updates themselves. Experiment #3 aims at checking the behaviour of
our algorithm in this conflicting updates situation.

Experiment protocol The experiment protocol is based on experiment #2. We use
a similar grid architecture but with only 12 nodes. An initial reconfiguration (c1)

is launched on the p00 node just after the bootstrap phase. All network links are
up. Then a fault is simulated on the link between nodes p00 and o00. Nodes o00,
o01, o02 are then isolated. A new model is then pushed on node p00 (c2) and a
different one on node o00 (c3). A delay of 1000 ms separates each reconfiguration
and the algorithm is configured with a notification and a pooling period of
2000 ms.

Analysis Figure 8 shows results of experiment #3, which are derived from our
branching algorithm traces. Three reconfigurations are represented as a succes-
sion of segments that show the propagation of updates. The first reconfigura-
tion on the healthy network is represented in black (at time 0). Reconfiguration
pushed on o00 (at time 2500) is represented in blue and the second reconfigu-
ration pushed on p00 (time 2000) in red. The first reconfiguration propagates
seamlessly to all nodes. At time 1500 a network failure is simulated. The second
model given to p00 is propagated to all nodes except nodes reachable through o00
only. Similarly, the second model pushed on node o00 is not propagated to nodes
after p00. At time 8000 we cancel the network failure simulated at time 1500.
After a synchronization delay (380ms) we observe the branching of the two con-
current models as well as propagation of the merged version (purple line).

5 Discussion and related work

Our approach is dedicated to model at runtime synchronization, and combines
commonly used paradigms in distributed computing like vector clocks (e.g. used
in distributed hash table frameworks) and gossiping (e.g. used in social net-
work graph dissemination). This section discusses our experimental results and
compare them to other related work.

Vector clock size. Our first experiment measures the size of data exchanged
during the reconfiguration step, as well as the time required to perform this re-
configuration. Figure 5 shows that the model@runtime synchronization overhead
is significant, and this is mostly due to vector clock size. Many studies aim at
reducing the data size of vector clocks, especially when synchronizing an un-
bounded number of peers. Sergio and al [1] proposed the Interval Tree Clocks to
optimize the mapping between the node identifier and its version. Our algorithm
takes advantage of the model payload to allocate dynamic identifiers to nodes.
Data such as node names or network identifications are stored in the payload
itself and with this information we can already improve vector clocks. However,
we plan to implement the interval tree clocks’ fork and join model in the future.
The size of exchanged data depends on the number of nodes and therefore mod-
ularization techniques are needed to maintain scalability and manage large mesh
networks. Our approach addresses this need by exploiting the group structure of
Kevoree. Each group instance synchronizes with a subset of nodes only, to keep
the size of the vector clock under control.

Distributed reconfiguration capability. Concurrency management is a
key problem in distributed systems. Many peer to peer systems solve it by hav-
ing a single point of update for a given piece of data, limiting concurrent ac-
cess to a one writer/many readers situation for that data. Realistic distributed
configuration management is a many writers/many readers situation, because
reconfigurations often involve more than one node. The simplest solution to this
problem would use a single point for new configuration computation and dis-
semination start. As it avoids concurrency, such a system has a central point

of failure incompatible with our use case. More advanced approaches such as
the one proposed in [17] use distributed coordination techniques such as con-
sensus to build the new configuration. They proposed an approach that allows
the distributed nodes to collaborate to build the new configuration. Each node
is responsible for building its local configuration. Configuration propagation is
then done using a gossip algorithm without the need of concurrency manage-
ment, since new configurations can be disseminated from a single originator node
only. This approach based on a single source is unusable in our use case, because
the sporadic nature of the nodes prevent their participation in a global consen-
sus. On the contrary, our technique presented in this paper lets the distributed
configuration evolve freely, even for nodes are isolated in unreachable groups.
Every node can then compute a new global model that can be issued concur-
rently. Some approaches in distributed hash table implementations also rely on
fully distributed data dissemination, e.g. Voldemort, where table modifications
can occur in several nodes. This allows for service operation in degraded mode
in the case of node disconnections. However, concurrency management must be
managed separately. GossipKit [12] proposes a generic framework to evaluate and
simulate gossip-derived algorithms. The project contains a minimal extensible
event-based runtime with a set of components to define dedicated gossip proto-
cols. We plan to integrate the GossipKit API in order to evaluate our algorithm
on a GossipKit simulator.

Inverted communication and propagation delay. In our approach we
reverse the traditional communication strategy of a gossip algorithm (push ap-
proach). New configurations are not directly pushed to the neighbours but they
are stored instead, waiting for an active synchronisation by the neighbour (pull
approach). This strategy lessens the impact of down network links on propaga-
tion delay, as shown by our experiment results on Figure 7. In addition, this
enables message replay because a configuration is stored until neighbor connec-
tivity is reestablished. These two properties are particularly useful for unreliable
mesh networks. However, pull approaches have higher propagation time, but
when combined with an observer pattern (a lazy push/pull approach) our re-
sults show that the gains are significant while keeping the interesting properties
of pull. This experimental result is consistent with Leitao et al [11], which details
several communication strategy for gossip algorithms.

6 Conclusion

In this paper we proposed a peer to peer and distributed dissemination algorithm
to manage dynamic architectures based on the models at runtime paradigm. This
algorithm is part of a larger framework that manages the continuous adaptation
of pervasive systems. Using experimental results we have shown how our ap-
proach enhances reliability and guarantee of information delivery, by mixing
and specializing different distributed algorithms. Our propagation algorithm re-
lies on its payload (a model of the system) to overcome limits of vector clocks
and to handle peer to peer concurrency conflicts. Thanks to the protocol layer
based on vector clocks, a system architecture model propagated by the algorithm
is always consistent, even on complex mesh network topologies. When concur-
rent updates are detected, the model at runtime layer is able to reconcile these
updates to provide a valid architecture. By allowing each node to compute a new

configuration, our approach supports dynamic adaptation on peer to peer net-
works without any central point of failure. This experimental demonstration of
resilience on sporadic networks allows integration of our approach into adaptive
architectures such as a firefighters tactical information system. In this direction,
we are currently designing a dynamically scalable tactical information system
in collaboration with a department of firefighters of Brittany; this system is a
multi-user, real time decision system for incident management.4.

Acknowledgment The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube).

References

1. P.S. Almeida, C. Baquero, and V. Fonte. Interval tree clocks: A logical clock for
dynamic systems. Principles of Distributed Systems, page 259274.

2. R. Baldoni, M. Raynal, and U..R.L.S. DIS. Fundamentals of distributed computing.
IEEE Distributed Systems Online, 3(2):1–18, 2002.

3. Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@runtime. IEEE
Computer, 42(10):22–27, 2009.

4. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

5. C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A loop-
free extended bellman-ford routing protocol without bouncing effect. SIGCOMM
Comput. Commun. Rev., 19:224–236, August 1989.

6. P.T. Eugster, R. Guerraoui, A.M. Kermarrec, and L. Massoulié. From epidemics
to distributed computing. IEEE computer, 37(5):60–67, 2004.

7. C.J. Fidge. Timestamps in message-passing systems that preserve the partial or-
dering. In Proceedings of the 11th ACSC, volume 10, pages 56–66, 1988.

8. Ralph Johnson and Bobby Woolf. The Type Object Pattern, 1997.
9. Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.

Computer, 36(1):41–50, 2003.
10. L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.
11. J. Leitão, J. Pereira, and L. Rodrigues. Gossip-based broadcast. Handbook of

Peer-to-Peer Networking, pages 831–860, 2010.
12. S. Lin, F. Täıani, and G. S. Blair. Facilitating gossip programming with the gos-

sipkit framework. In DAIS, 2008.
13. F. Mattern. Virtual time and global states of distributed systems. Parallel and

Distributed Algorithms, pages 215–226, 1989.
14. B. Morin, O. Barais, J-M. Jézéquel, F. Fleurey, and A. Solberg. Models@ run.time

to support dynamic adaptation. Computer, 42(10):44–51, 2009.
15. G.S. Raj, PG Binod, K. Babo, and R. Palkovic. Implementing service-oriented

architecture (soa) with the java ee 5 sdk. Sun Microsystems, revision, 3, 2006.
16. R. Schollmeier. A definition of peer-to-peer networking for the classification of

peer-to-peer architectures and applications. In Peer-to-Peer Computing, 2001.
Proceedings. First International Conference on, pages 101–102. IEEE, 2001.

17. D. Sykes, J. Magee, and J. Kramer. Flashmob: distributed adaptive self-assembly.
In Proceeding of the 6th SEAMS, pages 100–109. ACM, 2011.

4 More details on this project can be found in http://kevoree.org/related_projects

http://kevoree.org/related_projects

	Dissemination of reconfiguration policies on mesh networks -0.5cm

