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Abstract

This paper gives an abstract description of decision procedures for
Satisfiability Modulo Theory (SMT) as proof search procedures in a sequent
calculus with polarities and focusing. In particular, we show how to
simulate the execution of standard techniques based on the Davis-Putnam-
Logemann-Loveland (DPLL) procedure modulo theory as the gradual
construction of a proof tree in sequent calculus.

The construction mimicking a run of DPLL-modulo-Theory can be
obtained by a meta-logical control on the proof-search in sequent calculus.
This control is provided by polarities and focusing features, which there-
fore narrow the corresponding search space in a sense we discuss. This
simulation can also account for backjumping and learning steps, which
correspond to the use of general cuts in sequent calculus.

1 Introduction

Satisfiability Modulo Theories (SMT) is a family of problems that generalises
SAT-problems: instead of considering the satisfiability of conjunctive normal
forms (CNF) over propositional variables, SMT problems are concerned with
the satisfiability of CNF over atomic propositions from a theory such as linear
arithmetic or bit vectors.

Given a procedure deciding the consistency -with respect to such a theory- of
a conjunction of atoms or negated atoms, SMT-solving organises a cooperation
between this procedure and SAT-solving techniques, thus providing a decision
procedure for SMT-problems.

This smart extension of the successful SAT-solving techniques opened a
prolific area of research and led to the implementation of ever-improving tools,
called SMT-solvers, now crucial to a number of applications in software ver-
ification. The architecture of SMT-solvers is based on the extension of the
Davis, Putnam, Logemann and Loveland (DPLL) procedure [DP60, DLL62]
for solving SAT-problems to a procedure called DPLL(T ) [NOT06] addressing
SMT-problems.

This paper describes how to transpose DPLL(T ) into a proof-theoretical
framework, namely a sequent calculus, where the SAT-solving techniques within
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DPLL(T ) are transposed as the application of a standard proof-search process,
i.e. the incremental construction of a proof-tree.

The motivation for doing this is threefold:

• Firstly, provide an abstract understanding of DPLL(T ) implementations
in proof-theoretical terms (offering e.g. a new angle to the questions of
soundness and completeness of the procedure).

• Secondly, offer a new starting point for the incorporation of SMT-solving
into proof assistant software based on proof theory. We aim here at
relying on the direct application of the standard proof-search mechanisms
(pertaining to the logic on which the software is based), rather than relying
on specific implementations of DPLL(T ): For instance with the proof-
assistant Coq [Coq], recent literature provides an internal but specific
implementation using boolean reflection [LC09], as well as a technique
that calls an external SMT-solver as a blackbox and re-interprets its
trace [AFG+11].

• Thirdly, offer new leads on how to generalise SMT-techniques to a wider
class of problems, or combine them with other techniques from automated
reasoning: the proof-theoretical framework to which we transpose DPLL(T )
supports much more expressive logics than the class of SMT-problems
(e.g. with quantifiers) and, as we aim at transposing into it other techniques
(e.g. strong and weak connection tableaux, superposition calculi, etc), we
hope to turn this framework into a useful platform for combining them.

To be clear, we do not claim, until the third point above is successfully achieved,
that the present paper improves in any way SMT-solving techniques or imple-
mentations. However we do aim at formalising this bridge between different
computer science areas.

The description of DPLL(T ) in an abstract framework has been studied
by [NOT05] in order to formally reason about the non-trivial properties of
the algorithms implemented by the SMT tools. For that purpose, a tran-
sition system based on rewrite rules emerged as the most appropriate ap-
proach [NOT05, NOT06]. Attempts based on sequent calculus showed that
important methodological features of DPLL(T ) like backjumping or lemma learn-
ing were more difficult to capture in the somehow more rigid setting of root-first
decomposition of formulae and derivation trees.

However, the proof-theoretic framework that we use in this paper to simulate
DPLL(T ) is a sequent calculus. Sequent calculus represents proofs using inference
steps that decompose the connectives present in the goal to be proved. While
Gentzen’s original rules offer a lot of non-determinism in the proof-search-space,
a tighter control on proof-search is provided by more recent features: polarities
and focusing. These arose from Linear Logic [Gir87, And92], but also make sense
in classical logic [Gir91, Lau03, LM09]. In brief, the inference rules decomposing
the connectives of the same polarity can be chained without loosing completeness
- this considerably narrows the search space (see e.g. [MNPS91, And92]).

In this paper we show how a sequent calculus with polarities, focusing and
cut rules allows for a precise simulation of the basic and advanced versions of
DPLL(T ) described in [NOT06], including some features that previous work
(e.g. [Tin02]) eluded or left implicit. This sequent calculus is a variant of the
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system LKF of [LM09] for propositional polarised classical logic. LKp(T ) differs
from LKF in three ways:

• System LKF assumes that all atoms come with a pre-determined polarity:
positive or negative. LKp(T ) allows the polarisation of atoms on-the-fly:
the root of a proof-tree might have none of its atoms polarised, but atoms
may become positive or negative in sub-trees, closer to the leaves.

• We allow an analytic cut-rule, despite the fact that proof-search in sequent
calculus is usually done in a cut-free system, as the cut-rule usually unrea-
sonably widens the search-space. Analytic cuts only concern atomic cut-
formulae among the finitely many atoms present in the rest of the sequent.
Allowing them does widen the search space (which might be narrowed in
other ways) but this sometimes permits to draw quicker conclusions, in
a way similar to DPLL(T )’s Decide rule. Miller and Nigam [MN07] have
already shown how to use analytic cuts to incorporate tables into proofs,
i.e. make sure that, once an atom is proved or known to be true (from a
table of lemmas), the subsequent proof-search never tries to re-prove it.
This is achieved by giving, to the atom that is cut, two opposite polarities
in the two premisses of the cut. The simulation of DPLL(T )’s Decide rule
in LKp(T ) will use the same trick.

• Finally, LKp(T ) represents proofs modulo a theory, which means that some
of the syntactic checks that are traditionally needed to show some inference
steps as valid instances of inference rules, are replaced by semantical
conditions possibly checked by an external procedure (i.e. the same as for
DPLL(T )).

For instance, when proving that Γ ⊢ p(1 + 1) is an axiom, instead of
requring p(1 + 1) to be in Γ, we also accept to find only p(2) in Γ. This of
course requires a theory where 1 + 1 and 2 are identified.

Non-deterministic features of DPLL(T ) like decision/backtracking or learn-
ing/backjumping are related to different flavours of cut rules. The control of the
proof-search space in this sequent presentation is ensured by the polarisation
features of the calculus which capture the efficiency of the DPLL(T ) procedure.

The paper is organised as follows: Section 2 introduces the focused sequent
calculus with polarities, Section 3 reviews the basic DPLL(T ) procedure [NOT05,
BNOT06], Section 4 presents the simulation of DPLL(T ) in sequent calculus
and Section 5 presents the extension of DPLL(T ) with Backjump and Lemma
learning rules and its simulation.

2 The LK
p(T ) sequent calculus with analytic cuts

In this section we introduce a focused sequent calculus called LKp(T ), designed
for propositional polarised classical logic modulo a theory, as described in the
introduction.

This sequent calculus (and this logic) involve a notion of literals and a notion
of theory. The reader can safely see behind this terminology the standard notions
from proof theory and automated reasoning; we will use them later on. However
at this point, very little is required from or assumed about those two notions:
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Definition 2.1 (Literals) Let L be a set of elements called literals, equipped
with an involutive function called negation from L to L. In the rest of this paper,
a possibly primed or indexed lowercase l always denotes a literal, and l⊥ its
negation.

The second ingredient of LKp(T ) is a theory, or more precisely a notion of
(in)consistency modulo a theory:

Definition 2.2 (Inconsistency predicate, syntactical inconsistency)
An inconsistency predicate is a predicate over sets of literals

• that is upward closed (if a subset of a set satisfies the predicate, so does
the set)

• satisfied by the set {l, l⊥} for every literal l.

The smallest inconsistency predicate is called the syntactical inconsistency pred-
icate. If a set P of literals satisfies the syntactically inconsistency predicate,
we say that P is syntactically inconsistent, denoted P |=. Otherwise P is
syntactically consistent.

Besides syntactical inconsistency, we now consider an(other) inconsistency pred-
icate called semantical inconsistency or inconsistency modulo theory. In this
abstract setting, this is the description of the backend theory we require and
rely on.

Definition 2.3 (Semantical inconsistency) If a set P of literals satisfies the
semantical inconsistency predicate, we say that P is semantically inconsistent
or inconsistant modulo theory, denoted by P |=T . Otherwise P is semantically
consistent or consistant modulo theory.

Definition 2.4 (Formulae, negation) The formulae of propositional po-
larised classical logic are given by the following grammar:

Formulae A, B, . . . ::= l | A∧+B | A∨+B | A∧−B | A∨−B

where l ranges over literals.
The size of a formula A, denoted ♯(A), is its size as a tree (number of nodes).
Let P ⊆ L be syntactically consistent.
We define P-positive formulae and P-negative formulae as the formulae

generated by the following grammars:

P-positive formulae P, . . . ::= p | A∧+B | A∨+B

P-negative formulae N, . . . ::= p⊥ | A∧−B | A∨−B

where p ranges over P.
Negation is recursively extended into a involutive map from formulae to

formulae as follows:

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

Remark 2.1 Note that, given a syntactically consistent set P of literals, nega-
tions of P-positive formulae are P-negative and vice versa.

In the rest of this paper, a possibly primed or indexed Γ always denotes a set of
formulae. By lit_ctxt(Γ) we denote the subset of elements of Γ that are literals.
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Definition 2.5 (System LK
p(T )) The sequent calculus LKp(T ) has two kinds

of sequents:
Γ ⊢ [P ] where P is in the focus of the sequent
Γ ⊢ Γ′

Its rules, given in Figure 1, fall in three categories: synchronous rules,
asynchronous rules and structural rules.

Γ ⊢P [A] Γ ⊢P [B]

Γ ⊢P [A∧+B]

Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

lit_ctxt(Γ), p⊥ |=T
Γ ⊢P,p [p]

Γ ⊢P N
N is P-negative

Γ ⊢P [N ]

Γ ⊢P A, Γ′ Γ ⊢P B, Γ′

Γ ⊢P A∧−B, Γ′

Γ ⊢P A1, A2, Γ′

Γ ⊢P A1∨−A2, Γ′

Γ, A⊥ ⊢P Γ′

A is P-positive or literal
Γ ⊢P A, Γ′

Γ ⊢P,l

Γ ⊢P

Γ, P ⊥ ⊢P [P ]
P is P-positive

Γ, P ⊥ ⊢P
lit_ctxt(Γ) |=T

Γ ⊢P

Figure 1: System LKp(T )

Asynchronous rules are invertible and can always be applied eagerly while
trying to construct the proof tree of a given sequent. When no more negative rule
applies, a clever choice must be made to put a positive formula in focus before
applying the corresponding synchronous rule. Each such rule has the focused
formula in the positive sequent as the principal formula, and if the operands of
the principal connective are also positive then the focus is maintained on them
in their corresponding premises.

Besides these standard features, two rules of the LKp(T ) calculus can call for
a decision procedure associated with the background theory T , under the form of
its semantical inconsistency check |=T . First, we can use this decision procedure
to close a branch in which the context Γ is semantically inconsistant. Second,
we can also close the current branch if a positive literal currently under focus is
semantically inconsistent with the literals lit_ctxt(Γ) of the current context.

As discussed in the introduction, we also consider the following analytic
cut-rule:

Γ, l ⊢P Γ, l⊥ ⊢P

Γ ⊢P

with the condition that l or l⊥ appears as a subformula of Γ.

Definition 2.6 (Size of proof-trees in LK
p(T )) The size of a proof-tree in

LKp(T ) is its number of nodes, i.e. the number of rule applications its construction
necessitates.

3 The basic DPLL(T ) algorithm

In this section we review the basic DPLL(T ) algorithm.
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Intuitively, DPLL(T ) aims at proving the inconsistency of a set of clauses
with respect to a theory. We therefore retain from the previous section the
notions of literals and the notions of inconsistencies, and introduce clauses:

Definition 3.1 (Clause) A clause is a finite disjunction of literals, considered
up to permutation.

In the rest of the paper, a possibly indexed upper cased C always denotes a
clause. The empty clause is denoted by ⊥. The number of literals in a clause
C is denoted ♯(C). The possibly indexed symbol φ always denotes finite sets of
clauses {C1, . . . , Cn}, which can also be seen as a Conjunctive Normal Form
(CNF). We use ♯(φ) to denote the sum of the sizes of the clauses in φ. Finally
lit(φ) denotes the set of literals that appear in φ.

Definition 3.2 (Decision literals and sequences)

We consider an isomorphic copy Ld of the set L of literals, whose elements
are called decision literals, i.e. a tagged version of the literals in L. Decision
literals are denoted by ld.

We use the possibly indexed symbol ∆ to denote a finite sequence of possiblity
tagged literals, with ∅ denoting the empty sequence. We also use ∆1, ∆2 and
∆1, l, ∆2 to denote the suggested concatenation of sequences.

For such a sequence ∆, we write |∆| for the subset of L containing all the
literals in ∆ with their potential tags removed. By construction, the sequences
we consider will always be duplicate-free, so the difference between ∆ and |∆| is
just a matter of tags and ordering.

Definition 3.3 (Syntactic entailment) Let ∆ be a set of literals (or a se-
quence seen as its corresponding set |∆|) and C a clause. We say that ∆
syntactically entails ¬C , denoted ∆ |= ¬C, if for all l ∈ lit(C) we have l⊥ ∈ ∆.

Definition 3.4 (Semantic entailment) For every set ∆ of literals (or a se-
quence seen as its corresponding set |∆|), the set of untagged literals that are
semantically entailed by ∆ is Sat(∆) := {l | ∆, l⊥ |=T }. For any set of clauses
φ, the set of literals occuring in φ that are semantically entailed by ∆ is denoted
by Satφ(∆) := Sat(∆) ∩ lit(φ).

Remark 3.1 Semantical consequences are the analogous of the consequences of
a partial boolean assignment in the context of a DPPL procedure for propositional
logic without theory. Obviously, if l ∈ ∆, then l ∈ Sat(∆). If φ1 ⊆ φ2, then for
any ∆, Satφ1

(∆) ⊆ Satφ2
(∆).

We are now ready to describe the basic DPLL(T ) procedure as a transition
binary relation between states. We purposely follow closely the presentation
given in [NOT06].

Definition 3.5 (Basic DPLL(T )) A state of the DPLL(T ) procedure is either
the state UNSAT, or a pair denoted ∆‖φ, where φ is a set of clauses and ∆
is a sequence of possibly tagged literals. The transition rules of the DPLL(T )
procedure are:

• Fail:
∆‖φ, C ⇒ UNSAT, with ∆ |= ¬C and there is no decision literal in ∆.
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• Decide:
∆‖φ ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

• Backtrack:
∆1, ld, ∆2‖φ, C ⇒ ∆1, l⊥‖φ, C if ∆1, l, ∆2 |= ¬C and no decision literal is
in ∆2.

• Unit propagation:
∆‖φ, C ∨ l ⇒ ∆, l‖φ, C ∨ l where ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

• Theory Propagate:
∆‖φ ⇒ ∆, l‖φ where l ∈ Satφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.

4 Simulation of the basic DPLL(T ) algorithm in
sequent calculus

The aim of this section is to describe how the basic DPLL(T ) procedure can be
transposed into a proof-search process for sequents of the LKp(T ) calculus. A
complete and successful run of the DPLL(T ) procedure is a sequence of transitions
∅‖φ ⇒∗ UNSAT, which ensures that the set of clauses φ is inconsistent modulo
theory. Hence, we are devising a proof-search process aiming at building an
LKp(T ) proof-tree for sequents of the form φ′ ⊢, where φ′ represents the set of
clauses φ as a sequent calculus structure, in the following sense:

Definition 4.1 (Representation of clauses as formulae) An LKp(T ) for-
mula C ′ represents a DPLL(T ) clause C if C ′ = l1∨− . . . ∨−lp with {lj}j=1...p =
lit(C).

A set of formulae φ′ represents a set of clauses φ if the formulae in φ′ pairwise
represent the clauses in φ.

Remark 4.1 If C ′ represents C, then ♯(C ′) ≤ 2♯(C) (there are fewer symbols
∨− than there are literals in lit(C)).

Note here that we carefully use the negative disjunction connective to translate
DPLL(T ) clauses. This plays a central role in controlling the proof-search process,
not only to mimic DPLL(T ) without duplicating formulae but more generally to
control the search space.

Now, in order to construct a proof of φ′ ⊢ from a run ∅‖φ ⇒∗ UNSAT, we
proceed incrementally by considering the intermediate steps of the DPLL(T ) run:

∅‖φ ⇒∗ ∆‖φ ⇒∗ UNSAT

In the intermediate DPLL(T ) state ∆‖φ, the sequence ∆ is a log of both the
search space explored so far (in ∅‖φ ⇒∗ ∆‖φ) and the search space that remains
to be explored (in ∆‖φ ⇒∗ UNSAT). In this log, a tagged decision literal ld

indicates a point where the procedure has made an exploratory choice (the case
where l is true has been/is being explored, the case where l⊥ is true remains to
be explored), while untagged literals in ∆ are predictable consequences of the
decisions made so far and of the set of clauses φ to be falsified.

If we are to express the DPLL(T ) precedure as the incremental construction
of a LKp(T ) proof-tree, we should get from ∅‖φ ⇒∗ ∆‖φ a proof-tree that is not
yet complete and get from ∆‖φ ⇒∗ UNSAT some (complete) proof-tree(s) that
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can be “plugged into the holes” of the incomplete tree. We should read in ∆
the “interface” between the incomplete tree that has been constructed and the
complete sub-trees to be constructed.

We use the plural here since there can be more than one sub-tree left to
construct: ∆‖φ ⇒∗ UNSAT contains the information to build not only a proof
of |∆|, φ′ ⊢, but also proofs of the sequents corresponding to the other parts of
the search space to be explored, characterised by the tagged literals in ∆.

For instance, a run from 1, 2d, 3, 4d‖φ ⇒∗ UNSAT contains the information
to build a proof of 1, 2, 3, 4, φ′ ⊢ but also the proofs of 1, 2, 3, 4⊥, φ′ ⊢ and
1, 2⊥, φ′ ⊢ .

Those extra sequents are obtained by collecting from a sequence ∆ its
“backtrack points” as follows:

Definition 4.2 (Backtrack points) The backtrack points J∆K of a sequence
∆ of possibly tagged literals is the set of sets of untagged literals recursively
defined by the rules of Fig 2, where again |∆| denotes the set of untagged literals
obtained by erasing the tags in the sequence ∆.

J()K := ∅
J∆, lK := J∆K
J∆, ldK := J∆, l⊥K ∪ {|∆, l⊥|}

Figure 2: Collecting backtrack points

Remark 4.2 If ∆ features n decision literals, then J∆K contains n elements.
Each element of J∆K can in fact be associated with a decision literal ld in
∆ = ∆1, ld, ∆2 and consists of the prefix of ∆ which subsists after a backtrack
transition.

Now, coming back to the DPLL(T ) transition sequence ∅‖φ ⇒∗ ∆‖φ and
its intuitive counterpart in sequent calculus, we have to formalise the notion of
incomplete, or partial, proof-tree together with the notion of “filling its holes”:

Definition 4.3 (Partial proof-tree, extension of a partial proof-tree) A
partial proof-tree in LKp(T ) is a tree labelled with sequents without focus or
right-hand side, whose leaves are tagged as either open or closed, and such that
every node that is not an open leaf, together with its children, form an instance
of the LKp(T ) rules. The size of a partial proof-tree is its number of nodes.

A partial proof-tree π′ is an n-extension of π if π′ is obtained from π by
replacing one of its open leaves labelled with a sequent s by a partial proof-tree
of size at most n and whose conclusion is s.

Remark 4.3 A partial proof-tree that has no open leaf is (isomorphic to) a
well-formed complete LKp(T ) proof of the sequent labelling its root. In that case,
we say the proof-tree is complete.

The intuition that an intermediate DPLL(T ) state describes an “interface”
between a partial proof-tree and the complete proof-trees that should be plugged
into its holes, is formalised as follows:

Definition 4.4 (Correspondence between DPLL(T ) states and LK
p(T ) partial proof-trees)

A partial proof-tree π corresponds to a DPLL(T ) state ∆‖φ if:
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• there is a one-to-one correspondence between the open leaves of π and the
elements of J∆K ∪ {|∆|};

• the sequent label of the open leaf corresponding to a set ∆0 ∈ J∆K ∪ {|∆|}
is of the form ∆′, φ′ ⊢∆0 , where:

– φ′ represents φ in the sense of definition 4.1;

– Satφ(∆0) = Satφ(∆′).

A partial proof-tree π corresponds to the state UNSAT if it has no open leaf.

Remark 4.4 In the general case, different partial proof-trees might correspond
to a same DPLL(T ) state (just like different DPLL(T ) runs may reach that state
from the initial one).

Note that we do not require anything from the conclusion of a partial proof-
tree corresponding to ∆‖φ: just as our correspondence says nothing about the
DPLL(T ) transitions taking place after ∆‖φ (nor about the trees to be plugged
into the open leaves), it says nothing about the transitions taking place before
∆‖φ (nor about the incomplete proof-tree, except for its open leaves).

If a partial proof-tree π corresponds to a DPLL(T ) state ∆‖φ where there
is no decision literals in ∆, then there is exactly one open leaf in π, and it
is labelled by a sequent of the form ∆′, φ′ ⊢|∆| , where φ′ represents φ and
Satφ(∆) = Satφ(∆′).

To the initial state ∅‖φ of a run of the DPLL(T ) procedure corresponds the
partial proof-tree consisting of one node (both root and open leaf) labelled with
the sequent φ′ ⊢ , where φ′ represents φ.

The simulation theorem below provides a systematic way to interpret any
DPLL(T ) transition as a transformation on partial-proof trees which preserves
the correspondences given in Definition 4.4 and controls the growth of the proof
trees.

Theorem 4.1 (Simulation of DPLL(T ) in LK
p(T )) Let ∆‖φ ⇒ S2 be a valid

DPLL(T ) transition, and π1 be a partial proof tree in LKp(T ) corresponding to
∆‖φ.

There is, in LKp(T ), a partial proof tree π2 corresponding to S2 such that π2

is a (2♯(φ) + 3)-extension of π1.

Proof. By case analysis on the nature of the transition:

• Fail: ∆‖φ, C ⇒ UNSAT with ∆ |= ¬C and there is no decision literal in ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ, C. Since there
are no decision literals in ∆, π1 has exactly one open leaf, and it is
labelled by ∆′, φ′, C ′ ⊢|∆| where φ′ represents φ, C ′ represents C and
Satφ,C(∆) = Satφ,C(∆′). Let C = l1 ∨ . . . ∨ ln.

From ∆ |= ¬C we get ∀i, l⊥
i ∈ |∆| ⊆ Satφ,C(∆) = Satφ,C(∆′).

We extend π1 into π2 by replacing the open leaf by the following (complete)
proof-tree:
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(

∆′, φ′, C ′ ⊢|∆| [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′ ⊢|∆| [C ′⊥]

∆′, φ′, C ′ ⊢|∆|

The top rules can be applied since l⊥
i ∈ |∆| and lit_ctxt(∆′, φ′, C ′), li |=T .

All the leaves are closed. π2 is a ♯(C ′) + 1-extension of π1 that is complete
and therefore corresponds to the UNSAT state of the DPLL(T ) run (and
note that ♯(C ′) ≤ 2♯(φ)).

• Decide: ∆‖φ ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

Let π1 be a partial proof-tree corresponding to ∆‖φ. The open leaf

corresponding to |∆| is of the form ∆′, φ′ ⊢|∆| where φ′ represents φ and
Satφ(|∆|) = Satφ(∆′).

We extend π1 into π2 by replacing this leaf by the following (partial)
proof-tree:

∆′, l⊥, φ′ ⊢|∆|,l⊥

∆′, l⊥, φ′ ⊢|∆|

∆′, l⊥, φ′ ⊢|∆|,l

∆′, l, φ′ ⊢|∆|

∆′, φ′ ⊢|∆|

Note that we use here the analytic cut rule of LKp(T ). π2 is a 3-extension of
π1 that corresponds to ∆, ld‖φ. Indeed, we have J∆, ldK∪ {|∆, ld|} = J∆K∪
{(|∆|, l⊥)} ∪ {(|∆|, l)} and Satφ(|∆|, l) = Satφ(∆′, l) and Satφ(|∆|, l⊥) =
Satφ(∆′, l⊥). The two new leaves are tagged as open.

• Backtrack: ∆1, ld, ∆2‖φ, C ⇒ ∆1, l⊥‖φ, C

if ∆1, l, ∆2 |= ¬C and no decision literal is in ∆2.

Let π1 be a partial proof-tree corresponding to ∆1, ld, ∆2‖φ, C. The open

leaf corresponding to |∆1, ld, ∆2| is of the form ∆′, φ′, C ′ ⊢|∆1|,l,|∆2| where
φ′ represents φ, C ′ represents C and Satφ(∆1, l, ∆2) = Satφ(∆′). Let
C = l1 ∨ . . . ∨ ln.

From |∆1|, l, |∆2| |= ¬C we get ∀i, l⊥
i ∈ |∆1|, l, |∆2| ⊆ Satφ,C(|∆1|, l, |∆2|) =

Satφ,C(∆′).

We extend π1 into π2 by replacing this leaf by the following (complete)
proof-tree:

(

∆′, φ′, C ′ ⊢|∆1|,l,|∆2| [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′ ⊢|∆1|,l,|∆2| [C ′⊥]

∆′, φ′, C ′ ⊢|∆1|,l,|∆2|

10



The top rules can be applied since l⊥
i ∈ |∆1|, l, |∆2| and lit_ctxt(∆′, φ′, C ′), li |=T .

Noticing that J∆1, ld, ∆2K = J∆1K∪{(|∆1|, l⊥)}, the open leaves of π2 are in
1-to-1 correspondence with J∆1K∪{(|∆1|, l⊥)}, so π2 is a ♯(C ′)+1-extension
of π1 that corresponds to ∆1, l⊥‖φ, C (and note that ♯(C ′) ≤ 2♯(φ)).

• Unit propagation : ∆‖φ, C ∨ l ⇒ ∆, l‖φ, C ∨ l where ∆ |= ¬C, l 6∈ ∆,
l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ, C ∨ l. The open leaf

corresponding to |∆| is of the form ∆′, φ′, C ′ ⊢|∆| where φ′ represents φ,
C ′ represents C ∨ l and Satφ,C∨l(|∆|) = Satφ,C∨l(∆

′). Let C = l1 ∨ . . . ∨ ln.
From ∆ |= ¬C we get ∀i, l⊥

i ∈ |∆| ⊆ Satφ,C∨l(|∆|) = Satφ,C∨l(∆
′).

We extend π1 into π2 by replacing this leaf by the following (partial)
proof-tree:

∆′, l, φ′, C ′ ⊢|∆|,l

∆′, φ′, C ′ ⊢|∆|,l l⊥

∆′, φ′, C ′ ⊢|∆|,l [l⊥]

(

∆′, φ′, C ′ ⊢|∆|,l [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′ ⊢|∆|,l [C ′⊥]

∆′, φ′, C ′ ⊢|∆|,l

∆′, φ′, C ′ ⊢|∆|

The top-right rules can be applied since l⊥
i ∈ |∆| and lit_ctxt(∆′, φ′, C ′), li |=T

and the new leaves are closed. The top-left leaf is tagged as open.

Noticing that J∆, lK ∪ {|∆, l|} = J∆K ∪ {(|∆|, l)}, the open leaves of π2 are
in 1-to-1 correspondence with J∆, lK∪{|∆, l|}, so π2 is a ♯(C ′)+3-extension
of π1 that corresponds to ∆, l‖φ, C ∨ l (and note that ♯(C ′) ≤ 2♯(φ)).

• Theory Propagate: ∆‖φ ⇒ ∆, l‖φ where l ∈ Satφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ. The open leaf

corresponding to |∆| is of the form ∆′, φ′ ⊢|∆| where φ′ represents φ and
Satφ(∆) = Satφ(∆′). We extend π1 into π2 by replacing this leaf by the
following (partial) proof-tree:

∆′, φ′ ⊢|∆|,l

∆′, φ′ ⊢|∆|

Noticing that Satφ(∆) = Satφ(∆, l), π2 is a 1-extension of π1 that corre-
sponds to ∆, l‖φ.

Now, we have said that the aim of DPLL(T ) was to prove the inconsistency
of a set of clauses φ with respect to a theory. Strictly speaking, we have not
defined what that meant yet, because the notions of literal and inconsistency
modulo theory have been taken as abstract notions (and inconsistency is a notion
pertaining to sets of literals, not clauses).
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In order to say that DPLL(T ), and then by simulation LKp(T ), fulfil their
aim, we need to refer to an actual instance of those abstract notions:

Definition 4.5 (Concrete literals and concrete inconsistency modulo theory)
We fix a signature (a collection of function symbols and predicate symbols together
with their arities) and we consider a theory T on this signature, given as a set
of closed first formulas on this signature.

Literals are closed atoms or negations of closed atoms on this signature, with
the obvious notion of involutive negation.

The property that a set P of atoms is inconsistent modulo theory (P |=T ) is
a particular case of the property that a set φ of clauses is inconsistent modulo
theory, denoted φ |=T : there is no (first-order) model of T that is a model of
every clause in φ (seen as a disjunction).

This itself is a particular case of the property that φ semantically entails a
clause C (which can be taken to be the empty clause ⊥), denoted φ |=T C: every
(first-order) model of T that is a model of every clause in φ, is also a model of
C. Similarly when A is a formula of polarised classical logic, we write φ |=T A

when every model of T that is a model of every clause in φ, is also a model
of A (positive and negative conjunctions are identified, positive and negative
disjunctions are identified).

Remark 4.5 Notice that, for such a concrete inconsistency predicate, if ∆, l |=T

and ∆, l⊥ |=T then ∆ |=T (we will use this later).

Corollary 4.2 (Completeness) If φ |=T and φ′ represents φ then there is a
complete derivation in LKp(T ) of φ′ ⊢ .

Proof. By completeness of basic DPLL(T ) [NOT05, NOT06] and Theorem 4.1.

Now the point of having mentioned quantitative information in Theorem 4.1,
via the notion of n-extension, is to motivate the idea that performing proof-search
directly in LKp(T ) is not less efficient than running DPLL(T ): in the above
Corollary, the final size of the proof-tree is bounded by a linear function of
the length of the DPLL(T ) run (and the proportionality ratio is itself an affine
function of the size of the original problem).

Now we also need to make sure that this final proof-tree is indeed found as
efficiently as running DPLL(T ), which would not be the case if the proof-search
mechanisms of sequent calculus offered a search-space that is much wider than
in DPLL(T ). For this we identify a proof-search strategy, by looking at the proof
of Theorem 4.1. The strategy imposes that proof-search follow those rules:

• In order to place a formula in focus, all of its literals must be polarised
and at most one of them has a negative polarity; if such a literal exists it
must have been polarised in the rule just under the focusing rule.

• Only polarise literals positively when they are semantically entailed by the
left-hand side of the sequent.

• Always follow an analytic cut by polarising the cut-literal above each
premiss.

Those conditions identify the complete proof-trees that are the images of DPLL(T )
runs via the simulation.
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5 Extending DPLL(T ) with Backjump and Lemma
learning

5.1 Presentation of Backjump and Lemma learning in DPLL(T )

We now consider DPLLbj(T ), a more advanced version of DPLL(T ), which
involves backjumping and lemma learning features. The DPLLbj(T ) transition
system extends basic DPLL(T ) with the rules known as T -Backjump, T -Learn,
T -Forget, and Restart. The implementation of these rules drastically increase
the efficiency of SMT-solvers. Here again we closely follow the presentation
of [NOT06].

Definition 5.1 (DPLLbj(T )) The states of the DPLLbj(T ) transition system
are the same as the ones of DPLLbj(T ) and its rules extend the ones of DPLL(T ) (see
Definition 3.5) with the following ones:

• T -Backjump: ∆1, ld, ∆2‖φ, C ⇒ ∆1, lbj‖φ, C when

1. ∆1, ld, ∆2 |= ¬C.

2. ∆1 |= ¬C0

3. φ, C |=T C0 ∨ lbj

4. lbj 6∈ ∆1, l⊥
bj 6∈ ∆1 and lbj ∈ lit(φ, ∆1, ld, ∆2).

for some clause C0 such that lit(C0) ⊆ lit(φ, C).

• T -Learn: ∆‖φ ⇒ ∆‖φ, C if lit(C) ⊆ lit(φ) and φ |=T C.

• T -Forget: ∆‖φ, C ⇒ ∆‖φ if φ |=T C.

• Restart: ∆‖φ ⇒ ∅‖φ.

In rule T -Backjump, C0 ∨ lbj is called the backjump clause.

5.2 Extension of LK
p(T ) with cuts

In the rules T -Backjump and T -Learn, we see that a new clause is used (e.g. in
the side-conditions) that we had not seen before (respectively: C0 ∨ lbj and C).
In order to simulate those extra rules in LKp(T ), we need to extend the calculus
with a general cut rule, so that the production of the new clause corresponds to
the choice of the cut-formula.

Definition 5.2 (LK
p(T ) with cut) System LKp

c
(T ) is obtained by extending

system LKp(T ) with the following cut-rule:

Γ, l1, . . . , ln ⊢P Γ, (l⊥
1 ∨− . . . ∨−l⊥

n ) ⊢P

cut
Γ ⊢P

We define the size of proof-trees in LKp
c
(T ) as we did for LKp(T ) but ignoring

the left-branch of the cut-rules. As we shall see in the simulation theorem, this
definition mimicks the fact that the length of DPLL(T ) sequences is a complexity
measure that ignores the cost of checking the side-conditions.
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5.3 Simulation

As opposed to what happens in a basic DPLL(T ) run, the extra rules of DPLLbj(T )
can add or remove objects from a state (clauses to falsify, literals). On the
contrary, once such an object is introduced in a LKp(T ) sequent by the proof-
search process, this data persists in the entire subtree proving the sequent. This
phenomenon is described in [NOT05] who conclude that an abstract presentation
of DPLL(T ) based on sequent calculus is necessarily too rigid to model the rules
that practical implementations of DPLL(T ) rely on. The simulation theorem we
propose in this section shows that a combination of tags and polarisation can
actually overcome this discrepancy. Such a simulation theorem for DPLLbj(T )
however requires to slightly relax the notion of correspondance between states
and partial proof-trees in LKp(T ): we should allow the sequent label of an open
leaf to contain some objects that have disappeared from the corresponding state.

Definition 5.3 (Correspondence between states and LK
p
c (T ) partial proof-trees)

A partial proof-tree π corresponds to a state ∆‖φ if

• there is a mapping from the open leaves of π to the elements of J∆K∪{|∆|};

• the sequent label of an open leaf mapped to a set ∆0 ∈ J∆K ∪ {|∆|} is of
the form ∆′, φ′, Γ ⊢P , where:

– ∆0 ⊆ P ⊆ Sat(∆′).

– φ′ represents φ,

– ∀A ∈ Γ, φ |= A

A partial proof-tree π corresponds to the state UNSAT if it has no open leaf.

The difference with the previous notion of correspondence is that the open
leaves are no longer in 1-to-1 correspondence with the elements of J∆K ∪ {|∆|}:
for any ∆0 ∈ J∆K ∪ {|∆|}, zero, one, or several open leaves may correspond to it.

Furthermore, the sequent ∆′, φ′, Γ ⊢P labelling such a leaf correspnding to
∆0 may

• declare more positive literals than ∆0

• have ∆′ entail more literals than ∆0

• contain extra formulae Γ in its antecedent, that are not representing clauses
in the DPLL(T ) state ∆‖φ.

As sometimes several leaves correspond to the same ∆0 ∈ J∆K ∪ {|∆|}, we
need to simultaneously replace those leaves in our process of extending partial
proof-trees. This notion is formalised as follows:

Definition 5.4 (Parallel n-extension of partial proof-trees)

• Let F = (sa)a∈A be a family of sequents. An n-action over F is a family
(πa)a∈A of partial proof-trees in LKp

c
(T ) such that

– the conclusion (root) of πa is sa for all a ∈ A;

14



– the family (πa)a∈A can be generated by some partial proof-trees whose
total size is less than n.

• π2 is a parallel n-extension of π1 according to (πa)a∈A if

– (πa)a∈A is an n-action over the family of sequents labelling the open
leaves of π1

– π2 is obtained from π1 by replacing every open leaf of π1 whose label
is sa, by πa.

We can now formulate and prove the equivalent of Theorem 4.1 for DPLLbj(T ).
Since DPLLbj(T ) extends DPLL(T ), we still have to simulate Fail, Decide, Unit
Propagation, Theory Propagation and we could argue that we have already
dealt with those transitions in the proof of Theorem 4.1. However that theorem
involves a different notion of correspondence between states and partial proof-
trees and, while this notion is stronger, Theorem 4.1 does not strictly speaking
entail what we need here, i.e. :

Theorem 5.1 (Simulation of DPLL(T ) in LK
p
c (T )) If ∆‖φ ⇒

DPLL(T ) S2

and π1 corresponds to ∆‖φ, there is a parallel (4♯(φ) + 6)-extension π2 of π1

such that π2 corresponds to the state S2.

Proof. The proof can easily be adapted from that of Theorem 4.1; see Ap-
pendix A.

Corollary 5.2 If φ |=T , then there is a complete derivation in LKp
c
(T ) of

∆′, φ′, Γ ⊢P , provided φ′ corresponds to φ, P ⊆ Sat(∆′), and φ |=T Γ.

Proof. By completeness of basic DPLL(T ) and Theorem 5.1.

Theorem 5.3 (Simulation of DPLLbj(T ) in LK
p
c (T )) If ∆‖φ ⇒

DPLLbj(T )
S2 and π1 corresponds to ∆‖φ, there is a parallel (4♯(φ) + 6)-extension π2 of π1

such that π2 corresponds to the state S2.

Proof. Now we can concentrate on simulating (in LKp
c
(T )) the new rules:

T -Backjump ∆1, ld, ∆2‖φ, C ⇒ ∆1, lbj‖φ, C with

1. ∆1, ld, ∆2 |= ¬C.

2. ∆1 |= ¬C0

3. φ, C |=T C0 ∨ lbj

4. lbj 6∈ ∆1, l⊥
bj 6∈ ∆1 and lbj ∈ lit(φ, ∆1, ld, ∆2).

for some clause C0 = l1 ∨ . . . ∨ ln such that lit(C0) ⊆ lit(φ, C).

Let π1 be a partial proof-tree corresponding to ∆1, ld, ∆2‖φ, C. We have
to build a π2 that corresponds to ∆1, lbj‖φ, C.

Notice that if ∆0 ∈ J∆1, ld, ∆2K ∪ {|∆1, ld, ∆2|}, then either ∆0 ∈ J∆1K or
|∆1| ⊆ ∆0.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:
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– for a sequent sa labelling an open leaf mapped to ∆0 ∈ J∆1K, we
define πa as a 1-node tree labelled with sa

– for a sequent sa = ∆′, φ′, C ′, Γ ⊢P labelling an open leaf mapped
to ∆0 containing |∆1| as a subset, then

∗ If lbj 6∈ P and l⊥
bj 6∈ P, we define πa as

∆′, φ′, C ′
0

⊥
, C ′, Γ ⊢P,lbj

∆′, lbj , φ′, C ′
0, C ′, Γ ⊢P,lbj

∆′, φ′, C ′
0, C ′, Γ ⊢P,lbj l⊥

bj

∆′, φ′, C ′
0, C ′, Γ ⊢P,lbj [l⊥

bj ]

(

∆′, φ′, C ′
0, C ′, Γ ⊢P,lbj [l⊥

i ]

)

li∈lit(C0)
·
·
·
·

∧+.

∆′, φ′, C ′
0, C ′, Γ ⊢P,lbj [C ′

0
⊥

]

∆′, φ′, C ′
0, C ′, Γ ⊢P,lbj

cut on C ′
0

∆′, φ′, C ′, Γ ⊢P,lbj

∆′, φ′, C ′, Γ ⊢P

where the cut-formula C ′
0 represents C0 ∨ lbj .

The left premiss is closed by applying Corollary 5.2 on the
hypothesis φ, C |=T C0 ∨ lbj , i.e. φ, C, C⊥

0 , l⊥
bj |=T : we get a

complete proof-tree of ∆′, φ′, C ′
0

⊥
, C ′, Γ ⊢P,lbj . For the top-

right branches, hypothesis |∆1| |= ¬C0 entails that for all li ∈
lit(C0), l⊥

i ∈ |∆1| ⊆ ∆0 ⊆ P, and then the leaves are closed as
lit_ctxt(∆′, φ′, C ′

0, C ′, Γ) |=T l⊥
i .

∗ If lbj ∈ P, we define πa as a 1-node tree labelled with sa, but the
leaf is now mapped to |∆1, lbj |.

∗ If l⊥
bj ∈ P, we close the whole branch altogether by defining πa

as the following complete proof-tree:

∆′, φ′, C ′
0

⊥
, C ′, Γ ⊢P

∆′, φ′, C ′
0, C ′, Γ ⊢P [l⊥

bj ]

(

∆′, φ′, C ′
0, C ′, Γ ⊢P [l⊥

i ]

)

li∈lit(C0)
·
·
·
·

∧+.

∆′, φ′, C ′
0, C ′, Γ ⊢P [C ′

0
⊥

]

∆′, φ′, C ′
0, C ′, Γ ⊢P

cut on C ′
0

∆′, φ′, C ′, Γ ⊢P

We argue that (πa)a∈A is a (4♯(φ) + 6)-action: the family can be described
by the two trees above; now remember that ♯(C ′

o) is less than 2♯(φ), and
therefore the two decomposition phases above have at most 2♯(φ) steps
each; finally there are 6 other steps (remember we are not counting the
left-premisses of cuts).1

T -Learn ∆‖φ ⇒ ∆‖φ, C if lit(C) ⊆ lit(φ, ∆) and φ |=T C.

1We cannot anticipate the size of the proof-tree closing the left premiss, and we therefore
ignore left premisses of cuts to compute the size of trees. Notice that, similarly, the length of
the DPLLbj(T ) run ignores the cost of checking the side-condition as well.
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Let π1 be a partial proof-tree corresponding to ∆‖φ. We have to build π2

that corresponds to ∆‖φ, C.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:

Let sa be a sequent labelling an open leaf; it is of the form ∆′, φ′, Γ ⊢P ;
let C ′ represent C and let πa be

∆′, φ′, C ′⊥, Γ ⊢P ∆′, φ′, C ′, Γ ⊢P

cut on C ′

∆′, φ′, Γ ⊢P

Again, the left-premiss is closed by applying Corollary 5.2 on the hypothesis
φ |=T C, i.e. φ, C⊥ |=T : we get a complete proof-tree of ∆′, φ′, C ′⊥, Γ ⊢P .

We argue that (πa)a∈A is a 1-action.

T -Forget ∆‖φ, C ⇒ ∆‖φ if φ |=T C.

Let π1 be a partial proof-tree corresponding to ∆‖φ. We take π2 :=
π1 (a parallel 0-extension). It corresponds to ∆‖φ since, in a sequent
∆′, φ′, C ′, Γ ⊢P labelling an open leaf, we can consider C ′, Γ as the new Γ
(knowing that φ |=T C).

Restart: ∆‖φ ⇒ ∅‖φ

Similarly, take π2 := π1.

Again, we have mentioned quantitative information in the simulation just
to emphasize that the size of the proof-trees produced are proportional to the
length of the advanced DPLL(T ) runs, and the proportionality ratio is the size
needed to describe actions. We argued that this ratio is therefore an affine
function of the size of the original problem, at least if actions are described with
some sharing (unnecessary for basic DPLL(T )) since one action may transform
many leaves in parallel (but in very similar ways).

At this point, we should also look into defining a proof-search strategy
identifying those complete proof-trees that are the images of advanced DPLL(T )
runs, just as we did with basic DPLL(T ). This is left for a future paper.

6 Conclusion and Further work

In this paper we have shown how to express the DPLL(T ) procedure as the
incremental construction of proof-trees in sequent calculus. For this we used the
focused sequent calculus LKp(T ) for polarised classical logic, which is able to
restrict the search space compared to Gentzen’s sequent calculus.

We simulated both the basic DPLL(T ) procedure and the advanced DPLL(T )
procedure with backjump, lemma learning, etc, Our simulations revealed that
the former needs analytic cuts while the latter needs general cuts. Moreover
in backjump, the backjump clause corresponds to the cut-formula in sequent
calculus, so the cleverness that goes into finding a backjump clause translates as
the cleverness that goes into picking a good cut-formula: neither task is described
by the procedures.
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Our work relates to the inference systems described in e.g. [Tin02]. Our
point here is to avoid designing an inference system taylored to the simulation
of DPLL(T ), but rather to stick to traditional presentations of sequent calculus
(notwithstanding the use of polarisation, focusing, and calls to a decision pro-
cedure specific to the theory): for instance, we still take formulae to be trees
and inference rules to organise the root-first decomposition of their connectives,
rather than using DPLL(T )’s more flexible structures. Our hope by sticking to
traditional presentations of sequent calculus is that the same framework can be
reused to import other techniques from automated reasoning, which is our next
programme of research.

In fact, we also used polarities and focusing to simulate the system of [Tin02],
and we plan to investigate this line of research further hoping to incorporate
the recent work extending DPLL(T ) with e.g. full first-order logic and/or equal-
ity [Bau00, BT08, BT11]. The full version of LKp(T ) is indeed designed for
handling quantifiers and equalities, so we hope to relate it to other techniques
such as unification, paramodulation and superposition, etc.
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A Full proofs

Theorem 5.1 (Simulation of DPLL(T ) in LK
p
c (T )) If ∆‖φ ⇒

DPLL(T ) S2

and π1 corresponds to ∆‖φ, there is a parallel (4♯(φ) + 6)-extension π2 of π1

such that π2 corresponds to the state S2.

Proof. By case analysis on the nature of the transition:

• Fail: ∆‖φ, C ⇒ UNSAT with ∆ |= ¬C and there is no decision literal in ∆.

• Backtrack: ∆1, ld, ∆2‖φ, C ⇒ ∆1, l⊥‖φ, C

with ∆1, l, ∆2 |= ¬C and there is no decision literal in ∆2.

We treat Fail and Backtrack at the same time, taking ∆ := ∆1, l, ∆2 in
the case of Backtrack.

Let π1 be a partial proof-tree corresponding to ∆‖φ, C.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:

– for a sequent sa labelling an open leaf mapped to ∆0 ∈ J∆K, we define
πa as a 1-node tree labelled with sa

– for a sequent sa = ∆′, φ′, C ′, Γ ⊢P labelling an open leaf mapped
to |∆|, we define πa as

(

∆′, φ′, C ′, Γ ⊢P [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′, Γ ⊢P [C ′⊥]

∆′, φ′, C ′, Γ ⊢P

For the top rules, hypothesis ∆ |= ¬C entails that for all li ∈ lit(C),
l⊥
i ∈ |∆| ⊆ P ⊆ Satφ,C(∆′), so l⊥

i is P-positive and lit_ctxt(∆′, φ′, C ′, Γ, li) |=T .

π2 is a (♯(C ′) + 1)-extension of π1 (and note that ♯(C ′) ≤ 2♯(φ)).

Moreover in the case of Fail, since there are no decision literals in ∆
(J∆K = ∅), the open leaves of π1 are all mapped to |∆| and therefore π2

is complete and corresponds to the UNSAT state of the DPLL(T ) run. In
the case of Backtrack, the open leaves remaining in π2 are those open
leaves of π1 mapped to J∆1, ld, ∆2K = J∆1K ∪ {|∆1, l⊥|}, and therefore π2

corresponds to the state ∆1, l⊥‖φ, C.

• Decide: ∆‖φ ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ lit(φ).

Let π1 be a partial proof-tree corresponding to ∆‖φ.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:
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– for a sequent sa labelling an open leaf mapped to ∆0 ∈ J∆K, we define
πa as a 1-node tree labelled with sa

– for a sequent sa = ∆′, φ′, C ′, Γ ⊢P labelling an open leaf mapped
to |∆|, then:

∗ If neither l ∈ P nor l⊥ ∈ P, we define πa as

∆′, l⊥, φ′, Γ ⊢P,l⊥

∆′, l⊥, φ′, Γ ⊢P

∆′, l⊥, φ′, Γ ⊢P,l

∆′, l, φ′, Γ ⊢P

∆′, φ′, Γ ⊢P

Note that we use here the analytic cut rule of LKp(T ).

∗ If l ∈ P (resp. l⊥ ∈ P) then we define πa as a 1-node tree
labelled with sa, and the open leaf is now mapped to |∆, l| ∈
J∆, ldK ∪ {|∆, ld|} (resp. (|∆, l⊥| ∈ J∆, ldK ∪ {|∆, ld|}).

π2 is a 3-extension of π1 that corresponds to ∆, ld‖φ.

• Unit propagation : ∆‖φ, C ∨l ⇒ ∆, l‖φ, C ∨l with ∆ |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ, C ∨ l.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:

– for a sequent sa labelling an open leaf mapped to ∆0 ∈ J∆K, we define
πa as a 1-node tree labelled with sa

– for a sequent sa = ∆′, φ′, C ′, Γ ⊢P labelling an open leaf mapped
to |∆| (C ′ now represents C ∨ l), then:

∗ If neither l ∈ P nor l⊥ ∈ P, we define πa as

∆′, l, φ′, C ′, Γ ⊢P,l

∆′, φ′, C ′, Γ ⊢P,l l⊥

∆′, φ′, C ′, Γ ⊢P,l [l⊥]

(

∆′, φ′, C ′, Γ ⊢P,l [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′, Γ ⊢P,l [C ′⊥]

∆′, φ′, C ′, Γ ⊢P,l

∆′, φ′, C ′, Γ ⊢P

For the top-right rules, hypothesis ∆ |= ¬C entails that for all
li ∈ lit(C), l⊥

i ∈ |∆| ⊆ P ⊆ Satφ,C(∆′), so l⊥
i is P-positive and

lit_ctxt(∆′, φ′, C ′, Γ, li) |=T . The top-left leaf is tagged as open.

∗ If l ∈ P then we define πa as a 1-node tree labelled with sa, and
the open leaf is now mapped to |∆, l|.

∗ If l⊥ ∈ P then we close the branch altogether by defining πa as:

21



∆′, φ′, C ′, Γ ⊢P [l⊥]

(

∆′, φ′, C ′, Γ ⊢P [l⊥
i ]

)

li∈lit(C)
·
·
·
·

∧+.

∆′, φ′, C ′, Γ ⊢P [C ′⊥]

∆′, φ′, C ′, Γ ⊢P

We argue that π2 is a (2♯(C ′) + 4)-extension of π1 that corresponds to
∆, l‖φ, C ∨ l (and note that ♯(C ′) ≤ 2♯(φ)).

• Theory Propagate: ∆‖φ ⇒ ∆, l‖φ where l ∈ Satφ(∆) and l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ.

We define π2 as the parallel extension of π1 according to an action (πa)a∈A

over the family of sequents labelling the open leaves of π1, defined as
follows:

– for a sequent sa labelling an open leaf mapped to ∆0 ∈ J∆K, we define
πa as a 1-node tree labelled with sa

– for a sequent sa = ∆′, φ′, Γ ⊢P labelling an open leaf mapped to
|∆|, then:

∗ If neither l ∈ P nor l⊥ ∈ P, we define πa as

∆′, φ′, Γ ⊢P,l

∆′, φ′, Γ ⊢P

∗ If l ∈ P then we define πa as a 1-node tree labelled with sa, and
the open leaf is now mapped to |∆, l|.

∗ If l⊥ ∈ P then we close the branch altogether by defining πa as:

∆′, φ′, Γ ⊢P

as indeed l⊥ ∈ P ⊆ Satφ(∆′) and l ∈ Satφ(∆) ⊆ Satφ(∆′) entails
∆′ |=T .

We argue that π2 is a 2-extension of π1 that corresponds to ∆, l‖φ.
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