
HAL Id: hal-00691235
https://hal.inria.fr/hal-00691235

Submitted on 26 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPARQL query answering with bitmap indexes
Julien Leblay

To cite this version:
Julien Leblay. SPARQL query answering with bitmap indexes. SWIM - 4th International Workshop
on Semantic Web Information Management - 2012, May 2012, Scottsdale, AZ, United States. �hal-
00691235�

https://hal.inria.fr/hal-00691235
https://hal.archives-ouvertes.fr

SPARQL query answering with bitmap indexes ∗

Julien Leblay
Inria Saclay & LRI, Université Paris-Sud
Bât. 650, 91405 Orsay Cedex, France

julien.leblay@inria.fr

ABSTRACT
When querying RDF data, one may use reasoning to reach in-
tensional data, i.e., data defined by sets of rules. This is usually
achieved through forward chaining, with space and maintenance
overheads, or backward chaining, with high query evaluation and
optimization costs. Recent approaches rely on pre-computing the
terminological closure of the data rather than the full saturation. In
this setting, one can even query the data without resorting to back-
ward chaining, using a so-called semantic index. However, these
techniques are limited in the type of queries they can support.
In this paper, we introduce a data storage technique which mitigates
the space issues of forward-chaining. We show that it can also be
used with a semantic index. We propose a new structure for the
index that relies on bitmaps making it resilient to updates. Our ex-
perimental results demonstrate that our storage model significantly
reduces the space required to store the data. We show that the in-
dexes can be computed quickly and fit well in memory even for
very large ontologies. Finally, we analyze how query answering is
affected by the data layout.

Categories and Subject Descriptors
H.2.2 [Database management]: Physical design; H.2.4 [Database
management]: Systems—Query Processing

General Terms
Languages, Performance, Experimentation

Keywords
SPARQL, storage model, query answering

1. INTRODUCTION
The RDF data model is now a well-established standard for rep-

resenting data on the web. Its flexibility makes it both easy to un-
derstand and powerful enough to express and integrate complex
data. An RDF dataset can be seen either (i) as a graph where

∗This work has been partially funded by ANR-11-EITS-003 and
the EIT ICT Labs “DataBridges” activity.

c© 2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the national government of France. As such, the government
of France retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
SWIM 2012, May 20, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1446-6/20/05 ...$10.00.

nodes are resources or values and edges are relationships between
them, or (ii) as sets of statements of the form (subject, property,
object). A subject takes its values from U ∪ B, where U is the
set of URIs and B is the set of blank nodes (i.e., resources of un-
known URIs). A property takes its values from U and an object
takes its values from U ∪ B ∪ L, where L is the set of all lit-
erals (i.e., constant values). SPARQL is the standard query lan-
guage for accessing RDF data. The evaluation of a SPARQL query
against a graph is defined through graph matching. At the core of
a SPARQL query is the notion of triple pattern, a triple made of
constants and variables. In this work, we focus on the conjunc-
tive fragment of SPARQL, i.e., queries containing a conjunction of
triple patterns, possibly with shared variables to express joins (BGP
queries). For instance, the following query retrieves the names of
artists, by matching the first triple pattern with all statements with
a “:name” property, the second triple pattern with all statements
typing the subject as an “:Artist”, and joining them by their sub-
jects:

SELECT ?x ?y
WHERE { ?x :name ?y. ?x rdf:type :Artist}

The upcoming SPARQL 1.1 specification defines the notion of
entailment regimes, whereby the DBMS may override the seman-
tics of the triple pattern matching, typically to retrieve triples that
are entailed by a set of rules and the extensional data. In the sequel,
we concentrate on the RDFS entailment rules [11], and queries on
the assertional facts, i.e., facts that are not part of the terminology.

Finding all the triples entailed w.r.t. a dataset and a set of rules is
generally done through forward or backward chaining. The former
works in an offline fashion, the latter is used upon query evalua-
tion. Forward chaining consists in applying the rules on the data
instance until a fixpoint is reached and materializing the derived
triples along with the extensional data. The closure of the data in-
stance contains both extensional and intensional data. When evalu-
ating queries on the data closure, no entailment-specific processing
needs to take place. However, materializing the closure comes at
a price. First, it requires additional storage space. As we show in
Section 4, commonly used ontologies can lead to significant space
overheads. Second, if the data is subject to updates, maintaining
consistency can be expensive. In the worst case, i.e., when the
schema itself is affected by a change, one may have to recompute
the closure of the entire dataset.

Backward chaining approaches do not require any pre-processing
of the data. Instead, rules are used at evaluation time to rewrite an
incoming conjunctive query into a union of conjunctive queries. As
rewritings grow exponentially in the size of queries, they are hard
to optimize and evaluate in practice.

Recent works [8, 9] have shown there are other viable options be-
tween these approaches. In this paper, we present a storage model

ha
l-0

06
91

23
5,

 v
er

si
on

 1
 -

11
 M

ay
 2

01
2

Author manuscript, published in "SWIM - 4th International Workshop on Semantic Web Information Management - 2012 (2012)"

http://hal.inria.fr/hal-00691235
http://hal.archives-ouvertes.fr

that can be used in conjunction with a forward chaining approach or
with a variant of semantic indexes introduced in [8]. The basic idea
is to store as sets all classes a resource belongs to, and all proper-
ties that exist between a pair of RDF nodes. These sets are stored in
bitmap indexes. Single synthetic facts that represent all classes of
a resource (resp. all properties between two nodes) are stored in a
relational table. When a query is evaluated, the bitmap indexes are
consulted to modify an execution plan such that it remains optimiz-
able with off-the-shelf algorithms. We redefine semantic indexes
as bitmap indexes and explain how to further modify an execution
plan to rely on them, e.g., in a context where using forward chain-
ing is not an option.

In Section 2, we detail how data is organized under our model.
In Section 3, we discuss how semantic indexes can be adapted to
avoid storing the closure of a data instance. Section 4 shows how
our technique affects storage space and query evaluation time for
commonly used datasets. Section 5 covers the related works. We
conclude this paper by discussing future work in Section 6.

2. GENERAL APPROACH
2.1 Data storage

Several storage models have been proposed for RDF [1, 6, 7], the
most popular one being the triple table. A triple table is a relational
table T with three attributes s, p and o (for subject, property and
object) containing a record for each fact of the data instance. Facts
are often stored as triples of integers, where each integer is a key to
a dictionary table containing all distinct strings of the instance. Dic-
tionary encoding is a simple yet effective way to reduce the amount
of space consumed by the data. RDF facts fall into two categories:
(i) statements of the form (:Alice rdf:type :Person), which assign a
type to a resource, (ii) statements of the form (:Alice :knows :Bob),
which define a relationship between two resources, or between a
resource and a value. In practice, the triple table can be partitioned
along these two categories to reduce the time required to retrieve
triples of either type, but for simplicity, we will only refer to T
hereafter.

Facts are atomic in nature, therefore, a resource “:Alice” belong-
ing to n classes will be stored as n records. Similarly, if resources
“:Alice” and “:Bob” are linked with m properties, there will be m
records to represent those facts. This type of redundancy is rela-
tively common in real-world datasets and the process of materializ-
ing the closure of the data typically makes it worse. However, it is
possible to mitigate this by storing a single synthetic fact all classes
a resource belongs to (resp. all property between two nodes). Let
D be an RDF data instance containing extensional and intensional
facts w.r.t. to RDFS entailment rules.

DEFINITION 2.1 (CONCISE CLASS). LetC be an ordered set
of all classes inD, and x a resource inD. C[i] denotes the class at
position i in C. The concise class of x is a bitmap where every bit
at position i is set to 1 if (x rdf:type C[i]) ∈ D and to 0 otherwise.

DEFINITION 2.2 (CONCISE PROPERTY). LetP be an ordered
set of all properties in D, x a resource in D and y a resource or
a literal in D. P [i] denotes the property at position i in P . The
concise property of the pair (x, y) is a bitmap where every bit at
position i is set to 1 if (x P [i] y) ∈ D and to 0 otherwise.

Note that the orders of C and P are arbitrary and fixed over
time. We compute concise classes for all resources in D and con-
cise properties for all pairs of nodes in D, and assign a unique ID
number to each distinct concise class and property. We define a
special concise property representing the set {rdf:type} to which

we assign the ID 0. We store concise classes (resp. concise proper-
ties) and their IDs in a bitmap index, called CLIDX (resp. PRIDX).
Henceforth, we will write CLIDX[i] (resp. PRIDX[i]) to denote the
concise class (resp. property) obtained by looking up CLIDX (resp.
PRIDX) for the ID i. Finally, we create a dictionary-encoded triple
table containing for each resource r with a non-empty concise class
c, the triple (Key(r), 0, Id(c)), where Key(r) is the key of r in
the dictionary and Id(c) is the ID of c in CLIDX. Similarly, for
each pair of nodes (x, y) such that there exists a non-empty concise
property p between x and y, we store the triple (x, Id(p), y), where
Id(p) is the ID of p in PRIDX. We call such records concise facts.

Advantages of using bitmaps. Each concise class (resp. con-
cise property) represents a subset of C (resp. P). Bitmaps are
commonly used in databases for representing subsets as they can
be efficiently compressed and set operations translate to simple bit-
wise operations. Many compression schemes are now available, in-
cluding schemes that allow for bitwise operations without decom-
pression [3, 4]. The best compression ratios are usually obtained
on sparse or dense bitmaps, as long chains of zeros or ones can be
drastically summarized. The sizes of C and P are generally small
compared with the size of the data instance. Moreover, concise
classes and properties represent small subsets of C and P , making
for sparse bitmaps that easily fit in memory once compressed, even
when one considers the closure of the data instance. Since trailing
zeros are not stored at all, compression rates can be further im-
proved by ordering C and P by decreasing frequencies of classes
and properties in the instance.

2.2 Query answering
In a relational setting, a typical execution plan for a conjunctive

query is a tree made of selection (σ), projection (π) and join (./)
operators. The leaves of the tree are scans over the tables. Eval-
uating a conjunctive query over the triple table works in a similar
fashion where each leaf is a scan over the same relation T and cor-
responds to a triple pattern in the query. For example, the query
given in Section 1 can be translated into a plan such as:

π1,6(σp=rdf:type∧o=:Artist(T) ./ σp=:name(T))

We now define a new scan operator, called T ′, that traverses the
triple table and reconstructs the actual facts from the concise classes
and properties read. For each record t of the form (s, p, o) in the
triple table:

1. If p = 0, i.e., t is a typing statement, then for each class
k ∈ CLIDX[o], the triple (s, rdf:type, k) is returned instead
of t.

2. If p 6= 0, then for each property k ∈ PRIDX[p], the triple
(s, k, o) is returned instead of t.

Observe that executing T ′ over a concise triple table produces
the same result as the conventional scan T over a plain triple table.

Next, we explain how to produce a plan to execute over the con-
cise triple table, by modifying a trivial plan as it would have been
created on a triple table. Let q be a conjunctive SPARQL query
and q′ a plan for evaluating q, where each scan T in q′ correspond
to a triple patterns in q. For each triple pattern in q, we make the
following modifications to q′, depending of the pattern type:

1. For a pattern (?x ?y ?z) or (?x rdf:type ?z), the correspond-
ing scan operator T in q′ is replaced with T ′.

2. For a pattern (?x k ?z), where k 6= rdf:type, there is a selec-
tion operator in q′ featuring the predicate p = k.
This predicate is replaced by p ∈ S, where S is the set of
IDs of concise properties to which the property k belongs,
formally S = {Id(i) | ∃i PRIDX[i] ∩ {k} 6= ∅}.

ha
l-0

06
91

23
5,

 v
er

si
on

 1
 -

11
 M

ay
 2

01
2

3. For a pattern (?x rdf:type k), selection operators with pred-
icates p = rdf:type and o = k are present in q′.
The former is replaced by p = 0, the latter by o ∈ S, where
S contains IDs of concise classes to which the class k be-
longs, more formally S = {Id(i) | ∃i CLIDX[i]∩{k} 6= ∅}.

All other patterns, e.g., patterns where the subject is bound, are
sub-cases of the above and thus, processed in a similar way. The
construction of S is achieved by a single traversal of CLIDX or
PRIDX. The intersection operation translates to a bitwise AND
between compressed bitmaps. Overall, these sets are inexpensive
to build and they can easily be cached.

3. SEMANTIC INDEX-BASED APPROACH
3.1 Data storage

A semantic index, as presented in [8], is a table encoding the hi-
erarchies in an ontology using a DAG labeling scheme. At query
evaluation time, the index is used to rewrite each atom to a SQL
range query retrieving all the classes (or properties) that are sub-
sumed by a given class (or property).

In our setting, semantic indexes are redefined as bitmap indexes.
The procedure to build the concise triple table, CLIDX and PRIDX
is the same as the one described in Section 2 except that D now
only contains extensional facts. The semantic indexes are built by
computing the terminological closure, i.e., the closure on the facts
that belong to the schema. More precisely, we compute for each
class, the sets of its sub-classes, its super-classes, the properties of
which the class is in the domain and the properties of which it is
in the range. The four sets associated with each class are encoded
into bitmaps using the procedure described in Section 2.

We store these sets in four new indexes, named SUBCL, SUPCL,
DOMCL and RNGCL. We proceed similarly for each property to
obtain the sets of its sub-properties, super-properties, domains and
ranges, which we store in indexes SUBPR, SUPPR, DOMPR and
RNGPR. We use the same notation as for CLIDX and PRIDX to
refer to the sets contained in these indexes. For example, SUBCL[c]
is the set of sub-classes of c.

3.2 Query answering
First, we define two new scan operators T ′′ and Tc, where c is

a constant. T ′′ works as follows. For each triple t of the form
(s, p, o) in the triple table:

1. If p = 0, i.e., t is a typing statement, then for each k ∈ S
where S =

⋃
i∈CLIDX[o] SUPCL[i], the triple (s, rdf:type, k)

is returned.
S is the union of super-classes of the classes encoded in o.

2. If p 6= 0, then

• for each k ∈ S1, where S1 =
⋃

i∈PRIDX[p] SUPPR[i],
the triple (s, k, o) is returned,
• for each k ∈ S2, where S2 =

⋃
i∈PRIDX[p] DOMPR[i],

the triple (s, rdf:type, k) is returned,
• for each k ∈ S3, where S3 =

⋃
i∈PRIDX[p] RNGPR[i],

the triple (o, rdf:type, k) is returned.
The scan operator Tc behaves essentially like T with the following
exceptions. For each triple t of the form (s, p, o):
• if p = 0∧o ∈ SUBCL[c], it returns the triple (s, rdf:type, c),

• if p ∈ DOMCL[c], it returns the triple (s, rdf:type, c),

• if p ∈ RNGCL[c], it returns the triple (o, rdf:type, c),

• otherwise, t is ignored.

Experimental Results

1

Barton DBpedia YAGO2

Core

Closure

Schema

Size
(# statement)

33.9M 33.9M 33.0M

37.4M

303 500.8K 4.3M

41.5M 63.9M

0

200

400

600

800

Barton DBpedia YAGO2 Barton DBpedia YAGO2

Sp
ac

e
us

ag
e

(M
B) Plain Concise

Core Closure overhead

Figure 1: Space usage (in MB) of the triple table for 3 datasets
with plain facts (left) and concise facts (right)

Both T ′′ and Tc may produce duplicates. These can be avoided
using simple caching techniques.

Next, as we did in Section 2.2, we explain how to modify a con-
ventional plan to evaluate a query in the presence of semantic in-
dexes. Let q be conjunctive SPARQL query and q′′ a plan for evalu-
ating q on a plain triple table, where each scan T in q′′ corresponds
to a triple pattern in q. For each triple pattern in q, we modify q′′,
as follows:

1. For a pattern (?x ?y ?z) or (?x rdf:type ?z), the correspond-
ing scan operator T is replaced with T ′′.

2. For a pattern (?x k ?z), where k 6= rdf:type, there is a selec-
tion operator in q′′ featuring the predicate p = k.
The predicate is replaced by p ∈ S, where S contains the IDs
of concise properties to which a sub-property of k belongs,
i.e., S = {Id(i) | ∃i PRIDX[i]∩SUBPR[k] 6= ∅}.

3. For a pattern (?x rdf:type k), the two selection predicates
p = rdf:type and o = k must be removed from q′′ and the
operator T associated with the pattern is replaced with Tk.

4. IMPLEMENTATION & EXPERIMENTS
We implemented the storage model and the plan operators in Java

1.6.0_29 (64bits). All our tests were performed on a single machine
with 8 Intel Xeon CPUs running at 2.13GHz with 4096 KB of cache
each. We allocated 2GB of RAM to the virtual machine.

4.1 Tables and indexes space requirement
We first compare the space required to store the triple table with

three widely used datasets: Barton, DBpedia and YAGO2. We
chose these datasets for two main reasons. First, they come with
very different schemas. The terminological closure of the schema
used with Barton counts 201 statements, while the schemas of DB-
pedia and YAGO2 contain 7,745 and 3,983,638 statements respec-
tively. Second, after cleaning the data and computing the core,
i.e., the set of facts that cannot be derived through entailments,
each dataset featured approximately 33M facts. This allows to
compared how materializing the closure affects space usage. Fig-
ure 1 shows the amount of space (in MB) occupied by the plain
triple table (left), against the concise triple table along with CLIDX
and PRIDX (right)1. The blue (dark solid) bars represent the core
data, while the overhead incurred by the materialization is shown in
(light hatched) green. The size of the schema has a clear impact on
storage space with a conventional approach. For instance, YAGO2
almost doubles in size as a result of materialization, jumping from
33M to 64M triples. On the other hand, the concise approach re-
duces this overhead to nearly 33% for YAGO2. The core also occu-
pies less space with a concise approach because groups of facts are
summarized into single ones. The space occupied by the closure of
1The dictionary tables are not included on the figure.

ha
l-0

06
91

23
5,

 v
er

si
on

 1
 -

11
 M

ay
 2

01
2

Schema
size

Space
(KB)

Time
(sec.)

Barton
Wordnet
Uniprot
Dbpedia
Sumo
Galen
Gene Onto.
YAGO 2

201 17 0.07
524 11 9.56

1,283 39 0.13
7,745 329 0.54

52,909 1,505 7.11
217,724 2,565 2.18
532,118 4,465 6.91

3,983,638 44,868 72.82

1E-02
1E-01
1E+00
1E+01
1E+02
1E+03
1E+04
1E+05

1E
+02

1E
+03

1E
+04

1E
+05

1E
+06

1E
+07

Schema size

Space Schema size Time
geonames
barton
lubm
wordnet
uniprot
dbpedia
sumo
galen
gene ontology
yago 2

6.0 205 0.101
16.8 201 0.071
11.5 201 0.063
11.4 524 9.563
39.1 1283 0.134

329.0 7745 0.538
1505.4 52909 7.105
2564.8 217724 2.178
4465.4 532118 6.907

44868.2 3983638 72.815

geonames barton lubm wordnet uniprot dbpedia sumo galen gene
ontology

yago 2

Schema size
Space
Time

205 201 201 524 1283 7745 52909 217724 532118 3983638
6.0 16.8 11.5 11.4 39.1 329.0 1505.4 2564.8 4465.4 44868.2

0.101 0.071 0.063 9.563 0.134 0.538 7.105 2.178 6.907 72.815

Space (KB)
Time (sec.)

Figure 2: Time (in seconds) and space (in KB) required to build
and store indexes for ontologies of various sizes in memory.

DBpedia is thus comparable to that occupied by the core dataset in
a conventional triple store.

4.2 Semantic indexes construction
Next, we take a look at the space and time required to build the

bitmap semantic indexes. For this, we used a set of freely avail-
able ontologies of various sizes. The table in Figure 2 shows their
sizes (first column), as the number of triples in the terminologi-
cal closure. The second and third columns detail the total space
occupied by the compressed indexes in memory (in KB) and the
time to compute them (in seconds), respectively. The graph on the
right displays the same figures on a scatter plot. Notice the log
scale on both axes. The data clearly shows that the time and space
requirements grow sub-linearly in the size of the schema and re-
main very reasonable for nowadays systems. YAGO2, the largest
schema, loads in 72 seconds and fits in 45MB of memory only.

4.3 Impact on query evaluation
To assess how query evaluation performs in this model, we ran

four queries on the three datasets mentioned before. Each query
comprised one of the triple patterns described in Sections 2.2 and
3.2. Q1 and Q2 are of the form (?x ?y ?z) and (?x rdf:type ?z) re-
spectively. Q3 corresponds to (?x rdf:type k), andQ4 to (?x k ?y),
where k is the class (resp. property) that belongs to the most con-
cise classes (resp. properties), i.e., the most adverse cases for eval-
uation. Figure 3 reports evalution times (in seconds) averaged over
5 runs. Plain refers to the evaluation on a conventional triple ta-
ble, Concise-1 refers to the concise triple table with materialized
closure, Concise-2 to the semantic index approach. Tables were
partitioned across typing and relationship statements. For most
queries and datasets, Concise-1 performs better than a conventional
approach, as the size of the scanned tables dominates the process-
ing cost of the new operators overall. With Concise-2, Q2 and Q3

are penalized as they need to scan both partitions to collect all pos-
sible results. However, this is amortized forQ3 with YAGO2 as the
plain triple table becomes prohibitively expensive to scan. We plan
to explore optimizations in the presence of B+tree indexes and with
parallelization in future work.

5. RELATED WORKS
In [9], Urbani et al. observed that by computing the terminolog-

ical closure, one can reduce the backward-chaining phase at query
evaluation time. Semantic indexes, presented in [8], go a step fur-
ther by storing the terminological closure in indexes and the asser-
tional facts in relational tables. The indexes map each class (resp.
property) to pairs of integers obtained through a traversal of the
schema hierarchies. Rewritings of all possible triple patterns to
SQL range queries are cached, by-passing the need for backward-
chaining. This method is the closest to ours.

Bitmaps have been used in other storage models. In [2], they are

barton-plain
barton 1 2 3 size

Q001
Q002
Q003
Q004

18,060 16,862 16,362 39,071,822 17,095
3,817 2,833 2,991 6,659,608 3,214
2,956 3,013 2,833 1,688,646 2,934
13,452 13,398 13,717 1,377,085 13,522

dbpedia-plain
dbpedia 1 2 3 size

Q001
Q002
Q003
Q004

17509 17406 18239 17718.00
4352 4329 4359 4347
5647 5589 5885 5707.00
13994 19920 13272 15729

barton-concise-closure
barton 1 2 3 size

Q001
Q002
Q003
Q004

26100 29661 24080 39,071,822 26613.67
3044 3523 3194 6,659,608 3254
1812 1860 2265 1,688,646 1979.00
19593 19632 13676 1,377,085 17634

dbpedia-concise-closure
dbpedia 1 2 3 size

Q001
Q002
Q003
Q004

24410 25663 24961 25011.33
3253 3794 3372 3473
1447 1507 1426 1460.00
12787 19173 12890 14950

plain concise-
closure

concise-
schema

Concise w/
closure

Concise w/
indexes

barton Q1barton
Q2

barton

Q3

barton

Q4
concise-
closure

Q1concise-
closure Q2
concise-
closure

Q3

concise-
closure

Q4
concise-
schema

Q1concise-
schema Q2
concise-
schema

Q3

concise-
schema

Q4

17.0946667 26.6136667 28.3986667 -55.684034 -66.1258872 1.55684034 1.66125887 0.64232662 0.60195314
3.21366667 3.25366667 28.9306667 -1.24468416 -800.238564 1.01244684 9.00238564 0.98770618 0.11108167

2.934 1.979 18.743 32.5494206 -538.820723 0.67450579 6.38820723 1.48256695 0.15653844
13.5223333 17.6336667 15.799 -30.404023 -16.8363448 1.30404023 1.16836345 0.76684751 0.85589805

17.718 25.0113333 31.097 -41.163412 -75.51078 1.41163412 1.7551078 0.70839886 0.56976557
4.34666667 3.473 31.451 20.0996933 -623.565951 0.79900307 7.23565951 1.25155965 0.1382044

5.707 1.46 20.2766667 74.4173822 -255.294667 0.25582618 3.55294667 3.90890411 0.28145652
15.7286667 14.95 19.6636667 4.95062095 -25.0180138 0.95049379 1.25018014 1.05208473 0.79988473

27.003 23.2135 28.9075 14.0336259 -7.05292005 0.85966374 1.0705292 1.16324553 0.93411744
16.22 9.327 29.052 42.4969174 -79.1122072 0.57503083 1.79112207 1.7390372 0.55830924

15.9755 1.6685 9.547 89.5558824 40.2397421 0.10444118 0.59760258 9.57476776 1.67335289
10.7935 11.0325 8.23 -2.21429564 23.7504053 1.02214296 0.76249595 0.97833673 1.31148238

0

10

20

30

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Ev
al

ua
tio

n
tim

e
(s

ec
)

Plain Concise-1 Concise-2

yago2-plain
yago2 1 2 3 size

Q001
Q002
Q003
Q004

26958 27048 27003.00
16097 16343 16220
15940 16011 15975.50
10740 10847 10794

yago2-concise-closure
yago2 1 2 3 size

Q001
Q002
Q003
Q004

23712 22715 23213.50
9160 9494 9327
1732 1605 1668.50
9774 12291 11033

barton-concise-core
barton 1 2 3 size

Q001
Q002
Q003
Q004

27,640 28,932 28,624 36,765,156 28,399
29,213 29,314 28,265 4,352,942 28,931
14,354 20,706 21,169 1,639,985 18,743
13,308 14,278 19,811 1,377,085 15,799

dbpedia-concise-core
dbpedia 1 2 3 size

Q001
Q002
Q003
Q004

30289 31875 31127 31097.00
30862 31061 32430 31451
20436 20481 19913 20276.67
20436 18906 19649 19664

Barton DBpedia YAGO2

yago2-concise-core
yago2 1 2 3 size

Q001
Q002
Q003
Q004

27786 30029 28907.50
29052 29052
9547 9547.00
8230 8230

Figure 3: Query run times (in seconds) for 4 simple queries.

used to store an RDF dataset as a cube and process joins with the
objective of avoiding large intermediate results. Zou at al. [12] used
bitmaps in gStore to model an in-memory graph database. Fernán-
dez et al. [5] rely on bitmaps to compress RDF for data exchange
over networks. In [10], Orri Erling explains how the commercial
system Virtuoso makes uses of bitmap indexes to speed up triples
loading time, and reduce space usage.

6. CONCLUSION & OUTLOOK
In this paper, we introduced a storage model that (i) reduces the

storage space required for an RDF data instance, (ii) suffers little
space overhead when the closure is materialized in the instance,
(iii) improves query evaluation time in the general case, (iv) can be
used in conjunction with semantic indexes when forward-chaining
must be avoided. Although we presented the model as a variant of
a triple table setting, it could also be applied to other storage types
such as property tables [6] or RDF cubes [2].
Our next focus will be on query optimization, e.g., in the presence
of indexes, as described in [7]. The method will be extended to
support other entailment regimes such as the OWL 2 EL Profile and
queries on the terminology itself. We think our approach would be
particularly well suited to answer queries on RDF data streams and
for analytical query processing.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable

semantic web data management using vertical partitioning. In VLDB,
2007.

[2] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix Bit loaded:
a scalable lightweight join query processor for RDF data. In WWW,
2010.

[3] A. Colantonio and R. Di Pietro. Concise: Compressed ’n’
composable integer set. Information Processing Letter, 2010.

[4] F. Deliège and T. B. Pedersen. Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps. In
EDBT, 2010.

[5] J. Fernández, M. Martínez-Prieto, and C. Gutierrez. Compact
representation of large RDF data sets for publishing and exchange. In
ISWC. 2010.

[6] The Jena Framework. At http://jena.sourceforge.net/.
[7] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for

RDF. Proc. of VLDB, 2008.
[8] M. Rodríguez-Muro and D. Calvanese. Semantic index: Scalable

query answering without forward chaining or exponential rewritings.
In ISWC, 2011.

[9] J. Urbani, F. van Harmelen, S. Schlobach, and H. Bal. QueryPIE:
Backward reasoning for OWL Horst over very large knowledge
bases. In ISWC. 2011.

[10] Advances in Virtuoso RDF triple storage.
[11] RDF Semantics. At http://www.w3.org/TR/rdf-mt/, 2004.
[12] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: answering

SPARQL queries via subgraph matching. Proc. of VLDB, 2011.

ha
l-0

06
91

23
5,

 v
er

si
on

 1
 -

11
 M

ay
 2

01
2

