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ABSTRACT

We propose a system for accelerating the mixing phase in

a recording production, by making use of audio alignment

techniques to automatically align multiple takes of excerpts

of a music piece against a performance of the whole work.

We extend the approach of our previous work, based on se-

quential Montecarlo inference techniques, that was targeted

at real-time alignment for score/audio following. The pro-

posed approach is capable of producing partial alignments

as well as identifying relevant regions in the partial results

with regards to the reference, for better integration within

a studio mix workflow. The approach is evaluated using

data obtained from two recording sessions of classical music

pieces, and we discuss its effectiveness for reducing manual

work in a production chain.

1. INTRODUCTION

The common practice in productions of studio recordings

consists of several phases. At first the raw audio material

is captured and stored on a support. This material is sub-

sequently combined and edited in order to produce a mix,

which is finalized in the mastering phase for commercial

release. Nowadays, the whole process revolves around a

computer Digital Audio Workstation (DAW).

In the case of instrumental recording, the initial task in-

volves capturing a complete reference run-through of the en-

tire piece, after which additional takes of specific sections

are recorded to allow the mixing engineer to mask perfor-

mance mistakes or reduce eventual environmental noises.

The role of a mixing engineer is to integrate these takes

within the global reference in order to achieve a seamless

final mix [2]. The first step in preparing a mix session con-

sists in arranging the takes with regards to the global ref-
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erence. Figure 1 shows a typical DAW session prepared

out of a reference run-through (the top track) and additional

takes aligned appropriately. Those takes usually require fur-

ther cleanup as they commonly include noise or conversa-

tion that are not useful for the final mix. This means that,

in addition to alignment, the mixing engineer identifies cut-

points for each take that correspond to relevant regions in

the reference. The additional takes are finally blended with

the reference by crossfading short overlapping audio regions

to avoid perceptual discontinuities.

Figure 1. A typical DAW mixing session.

The purpose of this work is to facilitate the process of

mixing by integrating automatic (audio to audio) alignment

techniques into the production chain. Special care is taken to

consider existing practices within the workflow, such as au-

tomatic identification of interest points. In contrast to most

literature on audio alignment, we are concerned with two

essential aspects: the ability to identify a partial alignment

with an unknown starting position and the detection of re-

gions of interest inside the alignment. Moreover our ap-

proach permits to achieve different degrees of accuracy de-

pending on efficiency requirements.

Using audio material collected from two real-life record-

ing sessions, we show that it is possible to optimize the op-

erations of sound engineers by automating time-consuming

tasks. We further discuss how such framework can be inte-

grated pragmatically within common DAW software.



2. RELATED WORK

At the application level, alignment techniques were already

introduced in the literature in [3]. Alignment of audio to

the symbolic representation of a piece was integrated into

the workflow, permitting the automation of the editing pro-

cess through operations such as pitch and timing correc-

tions. The application of these approaches is precluded in

the present context by the requirement of accessing a sym-

bolic representation of the music. Nonetheless, despite this

limitation, the work provides important insights in the inte-

gration within a DAW setup.

At the technological level, audio alignment has often been

the subject of extensive research; an overview of classical

approaches in literature can be found in [6]. In contrast to

traditional methods, an important aspect of this work is the

consideration of partial results and detection of interest re-

gions. An audio alignment method with similar aims was

introduced in [7], that explicitly deals with the synchroniza-

tion of recordings that have different structural forms.

3. GENERAL ARCHITECTURE

The proposed methodology was devised assuming that a

generic algorithm is available that is capable of aligning

audio sequences without a known starting position. Even

though methods such as HMM or DTW [4] could have been

used for this aim, we chose to exploit our previous work [6]

on sequential Montecarlo inference because of its straight-

forward applicability to the present context, its flexibility

regarding the degree of accuracy given by the availability of

smoothing algorithms and the possibility to trade accuracy

for computational efficiency in an direct way.

In the first phase a rough alignment is produced as in Fig-

ure 2(a); the initial uncertainty in the alignment is due to the

fact that the initial position is not known a priori. In a second

phase we identify a sufficiently long region of the alignment

that can be reasonably approximated by a straight line, as in

Figure 2(b); this region intuitively corresponds to the “cor-

rect” section of the alignment. These two phases solve the

task of placing the takes along the reference (Figure 1).

The remaining steps address the tasks in which a more

accurate alignment is required. In the third phase, the ini-

tial portion of the alignment is corrected, starting from a

position inside the region found in the previous phase and

using a reversed variant of the alignment algorithm (Fig-

ure 2(c)). Finally, a refined alignment is produced by ex-

ploiting a smoothing algorithm for sequential Montecarlo

inference, as shown in Figure 2(d).

4. METHODOLOGY

The four phases described in the previous section are high-

lighted in Figure 2 and described below in detail.
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(a) Initial alignment, using sequential Montecarlo inference.
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(b) Identification of the interest region of the alignment.
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(c) Correction of the beginning of the alignment.
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(d) Final alignment obtained using smoothed inference.

Figure 2. Alignment methodology.



4.1 Initial Alignment

The alignment problem is formulated as the tracking of an

input data stream along a reference, using motion equations.

4.1.1 System State Representation

The system state is modeled as a two-dimensional random

variable x = (s, t), representing the current position in the

reference audio and tempo respectively; s is measured in

seconds and t is the speed ratio of the performances. The

incoming signal processing frontend is based on spectral

features extracted from the FFT analysis of an overlapping,

windowed signal representation, with hop size ∆T . In order

to use sequential Montecarlo methods to estimate the hidden

variable xk = (sk, tk) using observation zk at time frame k,

we assume that the state evolution is Markovian.

4.1.2 Observation Modeling

Let p(zk|xk) denote the likelihood of observing an audio

frame zk of the take given the current position along the ref-

erence performance sk. We consider a simple spectral sim-

ilarity measure, defined as the Kullback-Leibler divergence

between the power spectra at frame k of the take and at time

sk in the reference.

4.1.3 System State Transition Modeling

Let p(xk|xk−1) denote the pdf for the state transition; we

make use of tempo estimation in the previous frame, assum-

ing that it does not change too quickly:

p(xk|xk−1) = N (

[

sk
tk

]

| µk,Σ)

µk =

[

sk−1 +∆T tk−1

tk−1

]

Σ =

[

σ2
s ∆T 0
0 σ2

t ∆T

]

Intuitively, this corresponds to a performance where tempo

is rather steady but can fluctuate; the parameters σ2
t and σ2

s

control respectively the variability of tempo and the pos-

sibility of local mismatches that do not affect the overall

tempo estimate.

4.1.4 Inference Algorithm

Sequential Montecarlo inference methods work by recur-

sively approximating the current distribution of the system

state using the technique of Sequential Importance Sam-

pling: a random measure {xi
k, w

i
k}

Ns

i=1 is used to charac-

terize the posterior pdf with a set of Ns particles over the

state domain and associated weights, and is updated at each

time step as in Algorithm 1. In particular, q(xk|xk−1, zk) is

the particle sampling function. In our implementation this

corresponds to the transition probability density function; in

this case the algorithm is known as condensation algorithm.

An optional resampling step is used to address the de-

generacy problem, common to particle filtering approaches;

this is discussed in detail in [1,5] and in the next paragraph.

The decoding of position and tempo is carried out by

computing the expected value of the resulting random mea-

sure (which is efficiently computed as E[xk] =
∑Ns

i=1 x
i
kw

i
k).

Algorithm 1: SIS Particle Filter - Update step

for i = 1 . . . Ns do

sample xi
k according to q(xi

k|x
i
k−1, zk)

ŵi
k ← wi

k−1

p(zk|x
i
k)p(x

i
k|x

i
k−1

)

q(xi
k
|xi

k−1
,zk)

wi
k ←

ŵi
k∑

j
ŵ

j

k

∀i = 1 . . . Ns

Neff ← (
∑Ns

i=1(w
i
k)

2)−1

if Neff < resampling threshold then

resample x1
k . . . x

Ns

k according to ddf w1
k . . . w

Ns

k

wi
k ← N−1

s ∀i = 1 . . . Ns

4.1.5 Initialization

Initialization plays a central role in the performance of the

algorithm; in a probabilistic context this corresponds to an

appropriate choice of the prior distribution p(x0).
In a real-time setup the player is expected to start the per-

formance at a well known point of the reference; this fact is

exploited in the design of the algorithm by setting an appro-

priately shaped prior distribution, typically a low-variance

one around the beginning.

In the proposed situation however the initial point is not

known (it represents indeed the aim of our interest). To cope

with this, the prior distribution p(x0) is set to be uniform

over the whole duration L of the reference performance; the

algorithm is expected to “converge” to the correct position

after a few iterations. Figure 3 shows the evolution of the

probability distribution for the position of the input at dif-

ferent moments of the alignment.

4.1.6 Degeneracy Issues w.r.t. Realtime Alignment

A relevant parameter of Algorithm 1 is the resampling thresh-

old. The variable Neff , commonly known as effective sam-

ple size, is used to estimate the degree of degeneracy which

affects the random measure; degeneracy is related to the

variance of the weights {wi
k}

Ns

1 , and it is proven to be al-

ways increasing in absence of resampling. In a degenerate

situation most particles have close-to-zero weight, resulting

in most of the computation being spent in updating parti-

cles which are subject to numerical approximation errors.

Resampling is introduced to obviate this issue. Intuitively,

resampling replaces a random measure of the true distribu-

tion with an equivalent one (in the limit of Ns →∞) that is

better suited for the inference algorithm. Since resampling



ref. time [s]

0 100 200 300 400 500 600

(a) prior distribution (k = 0)

ref. time [s]

0 100 200 300 400 500 600

(b) k = 1

ref. time [s]

0 100 200 300 400 500 600

(c) k = 10

ref. time [s]

125 130 135 140

(d) k = 50

Figure 3. Evolution of p(sk|z1 . . . zk).

introduces other problems (in particular, sample impover-

ishment, i.e., a small number of particles is selected multi-

ple times) its usage should be limited, thus producing the

necessity for a threshold on the effective sample size.

In the real-time score following case [6] the mass of the

distribution is always concentrated around a small region

of the domain thus allowing the resampling threshold to be

relatively low. In contrast, in a situation such as the one

depicted in Figure 3, the sparsity of the distribution in the

initial phases of the alignment imposes a much higher re-

sampling threshold, otherwise many relevant hypotheses are

soon lost in the resampling phase and cannot be recovered.

4.2 Identification of the Interest Region

This phase aims at identifying a region of the alignment ob-

tained previously where it is certain that the alignment is

indeed “correct”. As depicted in Figure 2(b), a typical align-

ment can be subdivided into two regions, the first one being

characterized by irregular oscillations (because not enough

data has been observed yet in order to select the most proba-

ble hypothesis with enough confidence) and the second one

resembling a straight line; we will refer to the former as

convergence region and to the latter as interest region.

As can be inferred by observing the plot in Figure 2(b),

the most important characteristic of the interest region is its

slope. From a technical point of view, the slope should be

as constant as possible for the alignment region to be sig-

nificant. From a musical perspective it should be roughly

unitary, implying that the performance tempos of the single

take and the reference are approximately the same. In ad-

dition to that, the duration of the interest region should be

long enough to discard noisy sections of the alignment.

The interest region is identified in the following man-

0 10 20 30 40

take time[s]

re
fe

re
n

c
e
 t

im
e
[s

]

1
9
2
0

1
9
4
0

1
9
6
0

1
9
8
0

Figure 4. Identification of the interest region.

ner: each of many initial candidate regions w1 . . . wW is

iteratively expanded as long as it meets the criteria exposed

above; the longest of the resulting intervals is elected as the

interest region, unless none of them matches the require-

ments, in which case the alignment is identified as incor-

rect. The process described above is depicted in Figure 4

(dashed horizontal lines represent the regions progressively

examined by the algorithm) and formalized in Algorithm 2.

Algorithm 2: Identification of interest region

w1, . . . , wW ← regularly spaced intervals in [0, L]
candidates← ∅ for i = 1 . . .W do

while |wi| < L do

wi ← max(0, wstart
i −∆T),min(L,wend

i +∆T)
ai ← slope of LS-fit line for points in wi

ei ← mean difference with LS-fit line in wi

if ai ∈ [1−∆A, 1 + ∆A] ∩ ei < ∆E then
candidates← candidates ∪ i

else
break

if |candidates| > 0 then
interest region← max

i∈candidates
wi

else
alignment is incorrect

4.3 Correction of the Convergence Region

In order to fix the convergence region of the alignment, we

exploit again the sequential Montecarlo inference method-

ology of 4.1, with some adaptations. The general idea is

to run the algorithm “backwards”, i.e., to align the time-

reversed audio streams, starting from a point in the previous

alignment that is known to be correct.

The starting point B is chosen inside the region of in-

terest. The prior distribution for the backward alignment

is equal to that of the forward alignment at B, however

with the value of the velocity for each particle inverted:

p(x
(b)
B ) = diag(1,−1)p(xB |z0 . . . zB). The audio stream of



the take is then reversed and processed by Algorithm 1, as in

Figure 2(c). Experimentation shows that a narrow uniform

or gaussian prior centered in (B,−1)T are for practical pur-

poses equivalent to the form of p(x
(b)
B ) mentioned above.

4.4 Smoothing Inference

Sequential Montecarlo inference algorithms are typically for

online estimation; this implies that at each instant only the

information about the past is exploited, instead of the whole

observation sequence. In the context of an offline appli-

cation however these real-time constraints can be dropped.

Both the Forward/Backward and Viterbi inference algorithms

can be deduced, respectively estimating the probability dis-

tribution at each instant given the full observation sequence

and the Maximum A Posteriori alignment. The running time

of both algorithms is quadratic in the number of particles,

however this issue can be mitigated by an appropriate choice

of the prior distribution p(x
(fb)
0 ) such as a resampling of

diag(1,−1) p(x
(b)
0 ) with a smaller numer of samples.

5. EVALUATION

An ideal evaluation of the efficacy of the proposed method-

ology in the context discussed in Section 1 should aim at

measuring the amount of work saved in production with re-

spect to the current workflow. A discussion of our current

work in this area is presented in Section 6.

Below we evaluate the efficacy of the proposed approach

regarding the initial phase of laying out the takes as in Fig-

ure 1. The accuracy of the alignment in terms of latency and

average error was evaluated in our previous work [6]; a sim-

ilar analysis could not be performed in this case, due to the

lack of a (manually annotated) reference linking the timings

of each musical event for all takes to the reference record-

ing. Moreover, in this situation the aim is rather to position

correctly the highest number of takes against the reference,

rather than to align them with the highest possible precision.

5.1 Dataset description

We collected the recordings produced in two real-life ses-

sions by different groups of sound engineers, consisting of

approximately 3 hours of audio data. The first one is a

recording session of the second movement of J. Brahms’

sextet op. 18; the second one was produced shortly after the

premiere of P. Manoury’s “Tensio”, for string quartet and

live electronics, in December 2010. Table 1 summarizes

their characteristics.

5.2 Experimental Results

We performed the alignment of each take in the two databases

according to the procedure introduced in Section 4. We se-

lect the center point of the interest region identified in the

dataset n. of rec. duration [s]

ref. takes (avg,std) total

Brahms 20 + ref. 588.8 112.8, 92.0 2844.0

Manoury 49 + ref. 2339.4 113.5, 94.0 7900.4

Table 1. Datasets used for evaluation.

second phase as the alignment reference for the whole take

(we do not performs the optional two last steps).

In all the test we executed, we set the number of particles

Ns to be proportional to the duration of the reference (60

particles per second). Our implementation aligns a minute

of audio in 2.29s for Ns = 105 on a laptop computer with a

2.4 Ghz Intel i5 processor (a single core is used).

5.2.1 Brahms Dataset

For this dataset, a manual placement of all the takes with

respect to the reference recording was performed using a

musical score, in order to evaluate the correctness of the au-

tomatic procedure. Aural inspection of the data showed that

none of the recordings but one presented undesired noises.

All the takes but one were correctly aligned. In the un-

successful case, the length of the recording itself was one

second shorter than the minimum length for an interest re-

gion (15s); using last alignment point as a reference, the

placement of this take also results to be correct.

5.2.2 Manoury Dataset

The dataset contains a complete run-through and 49 sepa-

rate takes. The particularity of this dataset is the presence

of undesired material for the final mix in many of the indi-

vidual takes (such as speech, practice sessions, volume and

calibration tests). Out of 49 takes, 14 contain exclusively

noise and 21 partially. In the former case we consider the

alignment correct if the file is discarded, in the latter we aim

at aligning correctly the interesting portion of the take. This

is in sharp contrast with the “cleanness” of the Brahms set

and presents difficulties that were not foreseen when formu-

lating the alignment procedure.

Contrarily to the Brahms dataset, the evaluation of the

alignment precision was done a posteriori: instead of per-

forming a manual alignment in advance, the results of the

automatic alignment were checked. The reason for this lies

behind the length (approximately 40 minutes) and complex-

ity of the music: even with the score at our disposal, it was

immediately evident that a manual alignment would have

taken a very long time. It is precisely this difficulty that

sound engineers had to face.

Our first experiment aligning this dataset yielded rather

poor results on the 21 files containing noise regions of sig-

nificant length (in some cases up to more than one minute);

since in almost all cases the noisy portion was at the begin-

ning, we decided to directly align the reversed audio streams



in the first phase. With this simple adaptation the results are

as follows: of the 35 files containing interesting regions, 26
were correctly aligned; all of the 14 takes that contained ex-

clusively noises were correctly discarded by the algorithm.

The absence of false positives (no noise-only takes were

mistakenly aligned) and the correct positioning of all the

aligned files suggest that the simple algorithm for identifi-

cation of the interest region is robust enough to be applied

to rather short audio segments, yielding the possibility of re-

peating the alignment algorithm multiple times on different

subregions of the audio in order to avoid noisy sections.

6. WORKFLOW ADAPTATION

The audio industry has established over the years common

standards for mixing that are adopted in most professional

studio records worldwide. Integration of new technologies

within existing workflow therefore requires special attention

to existing practices within the community. To this end, we

conducted several interviews with sound engineers.

From an R&D standpoint, an ideal integration would be

a direct implementation of this technology into the graphi-

cal user interface of common DAW softwares to maximize

usability. Such integration would allow novel possibilities,

such as linking two tracks by means of their alignment and

defining the placement of transition points between them

for crossfading, avoiding any destructive editing regarding

the discarded audio regions. Such integration requires di-

rect contact with software houses which are mostly close to

public domain development.

An alternative solution is represented by standalone align-

ment tools, whose outputs should be directly importable into

a commercial DAW. Virtually all the major DAWs and video

post production systems support the Open Media Frame-

work (OMF) and the Advanced Authoring Format (AAF),

respectively owned by Avid Technology, Inc. and by the

Advanced Media Workflow Association (AMWA) 1 . These

are employed as interchange formats to allow interoperabil-

ity between different software. An alignment software, that

we are currently developing, could automatically construct

an initial session using an interchange format that audio en-

gineers can use in their DAW to start the mixing process.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we attempted to address two issues: Intro-

ducing novels tools generalizing audio matching algorithms

to partial alignment with relevant region detection, and their

integration within realistic studio mixing procedure to accel-

erate mixing session preparation for audio engineers. The

first task involves adapting audio alignment techniques to

situations where there is no specific prior knowledge on the

1 http://www.avid.com, http://www.amwa.tv

starting point of the alignment. Such considerations would

allow audio engineers to automatically obtain a global view

of many different individual takes with regards to a refer-

ence run-through recording in a typical recording session, as

well as providing access to relevant parts within each take;

this is a time-consuming task if done manually. We further

discussed how this procedure can realistically be integrated

into common mixing workflows.

Applications of the proposed technology are not limited

to the preparation of the initial mixing session: mid-level in-

formation obtained during the alignment task can in fact be

further integrated in a studio mixing workflow. For exam-

ple, our audio alignment provides useful information about

the tempo of a performance with regards to the reference

that can be employed as an important factor for the mix-

ing engineer. Such integration requires further collaboration

with audio engineers to determine an optimal exploitation of

these informations in the context of existing practices.
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