
HAL Id: hal-00694591
https://hal.inria.fr/hal-00694591

Submitted on 4 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Level Set Representation Driven by a
Stochastic Dynamics

Christophe Avenel, Etienne Mémin, Patrick Pérez

To cite this version:
Christophe Avenel, Etienne Mémin, Patrick Pérez. Tracking Level Set Representation Driven by a
Stochastic Dynamics. International Conference on Curves and Surfaces, Jul 2010, Avignon, France.
pp.130-141, �10.1007/978-3-642-27413-8_8�. �hal-00694591�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49898604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00694591
https://hal.archives-ouvertes.fr


Tracking Level Set Representation Driven

by a Stochastic Dynamics

Christophe Avenel1, Etienne Mémin2, and Patrick Pérez3

1 Université Rennes 1
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Abstract. We introduce a non-linear stochastic filtering technique to
track the state of a free curve from image data. The approach we pro-
pose is implemented through a particle filter, which includes color mea-
surements characterizing the target and the background respectively. We
design a continuous-time dynamics that allows us to infer inter-frame de-
formations. The curve is defined by an implicit level-set representation
and the stochastic dynamics is expressed on the level-set function. It
takes the form of a stochastic partial differential equation with a Brow-
nian motion of low dimension. Specific noise models lead to the tradi-
tional level set evolution law based on mean curvature motions, while
other forms lead to new evolution laws with different smoothing behav-
iors. In these evolution models, we propose to combine local photometric
information, some velocity induced by the curve displacement and an
uncertainty modeling of the dynamics. The associated filter capabilities
are demonstrated on various sequences with highly deformable objects.

Keywords: Tracking, Particle filtering, Level set, Continuous dynamic.

1 Introduction

The video tracking of an interface between two regions is a central process in
numerous domains like medical imaging, meteorology or traffic control. Despite
the many solutions proposed, no optimal solution exists yet for state variables
defined on large dimensional spaces such as curves.

In order to deal with regions undergoing a complex deformation along time
and potentially involving topological changes, we will confine ourself to a level
set representation of the region boundaries. This representation has the great
advantage to formulate the curve evolution within an Eulerian framework which
avoids the definition of splitting/merging stratagem of Lagrangian splines curve
representations when the curve is subject to topological changes.

Many tracking approaches proposed so far for the tracking of a level set
curve representation are often defined as techniques implementing successive
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almost independent detection processes on each image of the image sequence
[3,7,8,9,11,12]. Even if those techniques includes a temporal initialization strat-
egy, they cannot truly be considered as tracking processes, as they do not
guaranty any temporal coherence of the curve point trajectory. Such temporal
incoherences are all the more pregnant that ambiguities due to clutter noise or
illumination variations are observed. In addition to this, the few probabilistic
techniques that have been proposed so far in the literature for curve tracking
[5,14] are built upon adhoc linear models of the curve evolution law which limits
them to the tracking of objects undergoing small or quasi-rigid deformations.

In the solution we propose, the evolution law is defined as a continuous-time
stochastic dynamical model. The tracking is formulated as a stochastic filtering
problem in which the available photometric data are filtered by such stochastic
evolution laws. Stochastic filtering in high dimensional spaces is excruciatingly
difficult to implement with particle or ensemble filters due to obvious sampling
difficulties of high dimensional pdf., it is hence very important to devise dynamics
that are the most accurate as possible. In the same time, we have to circumscribe
the space of the random deformations applied on the curve in order to be able
to efficiently draw samples, but also to make possible an efficient exploration of
the considered curve’s state space. To that end, the curve dynamics on which
we rely is formulated as a stochastic transport equation defined directly on the
implicit surface function. It includes constant displacement uncertainties along
the curve tangent and normal directions. The transport velocity at each point
of the curve is inferred from its past trajectory. This transport velocity field is
computed through an additional vectorial level set function maintaining along
time the correspondences between the current curve’s points location and their
original positions. The dynamics describing the evolution of this auxiliary func-
tion incorporates the uncertainties on the curve deformations as well. The curve
dynamics is supplemented with a local photometric information that takes the
form of a data-driven force, in order to guide more efficiently the curve prediction
toward the next image observation.

2 Continuous-Time Dynamical Model of Level Set and
Filtering

This section first recalls the general principles of particle filtering and presents
the level set framework. Built on these ingredients, the proposed approach is
then detailed.

2.1 Particle Filter

In this subsection, we introduce the filtering method we are using in the rest of
the paper. The corresponding filters, called particle filters, are very general in the
sense they enable coping with nonlinear dynamics and nonlinear measurement
with additive eventually non-Gaussian noises. Denoting by x0:k the trajectory
from the initial time up to the current time instant k of the hidden Markov
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process we want to estimate from the whole set of past observations z1:k, a
recursive expression of the filtering distribution p(x0:k|z1:k) can be obtained
from Bayes’ law and the assumption that the measurements depends only on
the current state:

p(x0:k|z1:k) = p(x0:k−1|z1:k−1)
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
. (1)

Particle filtering techniques implement an approximation of this density, using a
sum of N Diracs centered on hypothesized locations in the state space. At each
one of these locations - called particles - is assigned a weight w(i)

k describing his
relevance. This approximation can be formulated as

p(x0:k|z1:k) ≈
N∑

i=1

w
(i)
k δx0:k (x0:k) . (2)

It is impossible to simulate the samples directly from this unknown distribu-
tion. Particles are thus simulated from a proposal distribution π(x0:k|z1:k). This
distribution, called the importance distribution, approximates the true filter-
ing distribution. Each sample is then weighted using the ratio between the two
distributions. The value of w(i)

k accounts for the deviation with respect to the
unknown true distribution.

As a result, the target distribution will be fairly sampled by the particles x(i)
0:k

weighted by weights w(i)
k , defined as

w
(i)
k =

p(x(i)
0:k|z1:k)

π(x(i)
0:k|z1:k)

. (3)

To get the best efficiency the approximation needs obviously to be the closest
as possible to the true distribution. However, any importance function can be
chosen, with the only restriction that its support contains the target density’s
one. The importance ratio can be recursively computed assuming the importance
density can be written in the following recursive form:

π(x0:k|z1:k) = π(x0:k−1|z1:k−1)π(xk |z1:k,x0:k−1) (4)

As p(zk|z1:k−1) is the same for every particle, it can be removed from relation
(1), which leads to a general recursive update formulation of the weights at the
current time when the measurement zk becomes available:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

π(x(i)
k |x(i)

0:k−1, z1:k)
. (5)

Using (2) and the normalized weights, it is then easy to obtain marginals of the
complete filtering density:

p(xk|z1:k) ≈
N∑

i=1

w
(i)
k δxk

(xk) . (6)
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Thus, by propagating the particles from time k−1 through the proposal density
π(x(i)

k |x(i)
0:k−1, z1:k), and by weighting the sampled states with w

(i)
k , we obtain a

sampling of the filtering law.
Asymptotically, for a number of particles tending to infinity, convergence to-

ward the Bayesian filtering distribution of various classes of particle filters has
been demonstrated [4] with a rate of 1/

√
N . In practical implementations the

number of particles is difficult to fix. The number of required particles to en-
sure the filter convergence depends on the state space dimension but also on the
ability we have to draw samples in meaningful areas of this state space.

A resampling step of the particles is necessary to avoid the increase over time
of the weight variance. Without this step, the number of significant particles
decreases significantly along time. This procedure discards particles with weak
weights, and duplicates particles with high weights.

When the proposal distribution is set to the dynamics, the weights updating
rule (5) simplifies to the data likelihood p(zk|x(i)

k ). This particular instance of the
particle filter is called the Bootstrap filter and constitutes the filtering method
we will use in this study.

2.2 Implicit Representation of the Curve

In order to cope with curve’s deformation of any kinds, it is essential to rely on a
curve representation enabling easily the handling of topological changes arising
when the region of interest splits apart in several separated components or on
the contrary reassembles. The Level set formalism [11,15] has been specifically
introduced in that goal to bypass the deficiency of splines based curves repre-
sentation to manage such situations. In this representation the curve Ct at time
t is defined as the zero level set of a scalar function ϕ(x, t) : Ω × R

+ → R:

Ct = {x ∈ Ω|ϕ(x, t) = 0} , (7)

where Ω stands for the image spatial domain. The implicit surface function, ϕ,
is chosen so as to have for instance positive values inside the curve and negative
values outside. A common choice for the implicit function is the signed distance
function but any other surface whose level set fits the curve of interest is pos-
sible. The surface evolution is then defined in order to stick at all time to the
contour dynamics. This representation has the great advantage to allow describ-
ing through a single implicit surface a set of non-intersecting closed curves. The
main geometric features of the curve that will be needed for the curve evolution
computation can be directly obtained from the implicit surface. In particular,
the inward unit normal and the mean curvature are respectively given by:

n =
∇ϕ
‖∇ϕ‖ and κ = div

( ∇ϕ
‖∇ϕ‖

)
=

1
‖∇ϕ‖ (Δϕ−∇ϕT∇2ϕ ∇ϕ), (8)

where Δϕ and ∇2ϕ denote the Laplacian and the Hessian of ϕ, respectively.
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2.3 Stochastic Dynamics

Efficient random sampling in high dimensional state space are known to be
problematic. Some work have been done on Quasi-Random Sampling-High Di-
mensional Model Representation [6], but there is no optimal solution for random
sampling in our case. In order to circumvent this problem, we will restrain the
potential uncertainty on the curve’s deformations to belong to a space of low di-
mension. To that end, the uncertainty on the curve deformation will be defined
from two independent constant Brownian motions directed along the curve’s
normal and tangent:

dCt = vnndt+ σnndBn,t + στn
⊥dBτ,t. (9)

In this equation dBn,t and dBτ,t denote the two Brownian motions, σn and στ are
two diffusion coefficients, n is the unit vector normal to the curve and vn = vTn
is the projection on the curve’s normal of a deterministic transport velocity
field v. The random Brownian diffusion terms encode the curve deformation
uncertainty. The deterministic transportation drift component will be further
detailed in Section 2.4.

The surface ϕ can be used to express the deformation of the curve (9) on
space Ω:

dXt = w∗
n

∇ϕ
|∇ϕ|dt+ σn

∇ϕ
|∇ϕ|dBn,t + στ

∇ϕ
|∇ϕ|

⊥
dBτ,t. (10)

where w∗
n is an extension on the whole image domain of the curve’s drift strength

component.
The curve at time t is defined by construction through its implicit represen-

tation at time t:

ϕ(., t) = ϕ(., 0) +
∫ t

0

dϕ(., s). (11)

It is thus a function of the stochastic process Ct.
As for a fixed point x, ϕ(x, t) is a semi-martingale, the differential of ϕ(X�,�)

has to be calculated through the Ito-Wentzell formula (differential of the com-
position of two stochastic process):

dϕ(x, t) = dϕt(x)+∇ϕT dX+
1
2

∑

i,j

d
〈
X i

t ,X j
t

〉 ∂2ϕ

∂xi∂xj
+
∑

i

d

〈
∂ϕ

∂xi
,X i

t

〉
. (12)

It then leads to

dϕt(x) = b(y, t)dt+ f(y, t)dBn,t (13)

= −∇ϕTw∗
ndt−

σ2
τdt

2

(
Δϕ− 1

|∇ϕ|2∇ϕ
TΔϕ∇ϕ

)

+
σ2

ndt

2

(
1

|∇ϕ|2∇ϕ
TΔϕ∇ϕ

)
− σn|∇ϕ|dBn,t.
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Compared to the classical deterministic level set differential, this expression in-
troduces a Brownian component directed along the curve normal and an ad-
ditional second-order smoothing term. The mean curvature component results
from the introduction of the curve motion uncertainty along the curve tangent.
It is worth noting that this formulation permits to interpret the mean curvature
motion component as a consequence of the uncertainty one has on the curve’s de-
formation along its tangent. This stochastic representation of the curve temporal
evolution will enable us to draw samples of forecasted deformed curves.

2.4 Velocity Computation by Keeping Curve’s Point
Correspondences

The evolution law introduced in the previous section depends on a transport
velocity field. This transport component could be derived from motion mea-
surements estimated from the image sequence. However this solution has several
drawbacks. It increases substantially the computational cost of the approach and
requires the use of an external estimation technique. Furthermore, such a solu-
tion is not adapted to handle occlusions areas, where motion estimation is prone
to errors. The use of such velocity measures would require thus the introduction
of an additional occlusion detection mechanism and the definition of an alter-
native velocity field when occlusions occur. We propose instead to infer directly
the velocity from each particle displacements, via a second implicit representa-
tion that keeps track of each point’s starting location in the image plane. As
proposed in [13] to keep this point correspondences, we introduce an additional
vectorial level set w encoding on the level set domain the transportation of the
curve’s point location at the initial time. Keeping track of these backward point
correspondences between the current evolving curve and a recent predecessor
will allow us to derive an estimate of the curve’s point velocity field.

More precisely, introducing the previous Cartesian coordinates of the curve’s
points location and encoding them through a vector-valued level set function
ψk : R

2 × R
+ → R

2 such that ψk(x, t) define the location that point x ∈ Ω at
time t ∈ [k, k − 1] was occupying at previous instant k − 1:

ψk(x, k − 1) = x. (14)

This new level set function is intrinsically attached to the curve and undergoes
deformations dictated by the stochastic curve’s evolution law (9). Applying in
the same way as previously the Ito formula, its differential reads:

dψi(x, t) = dψi
t(x) + (∇ψi

t)
TdX�

+
1
2

∑

i,j

d
〈
X i

t ,X j
t

〉 ∂2ψi
t

∂xi∂xj
+
∑

i

d

〈
∂ψi

t

∂xi
,X i

t

〉
= 0. (15)

In this case, the tangential component of the Brownian motion is not null. This
function enables us to define the curve’s transportation component (13) as

v(x, t)dt =
1
Δt

(x− E(ψk−1(x, k − 1)|Ck−1)), t ∈ [k − 1, k], (16)
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where E(·|Ct) denotes the expectation with respect to the the path of Ct up
to time t (formally the natural filtration associated to the process Ct). This
transportation velocity field is thus defined as a deterministic function computed
from the realization of the curve (through its level set function ϕt) up to the
previous instant k−1. Considering the particle approximation this velocity field
is computed as

v(x, t)dt =
1
Δt

(
x− 1

N

N∑

i=1

w(i)ψk−1,(i)(x, k − 1)

)
, t ∈ [k − 1, k], (17)

where ψk−1,(i) corresponds to the auxiliary level set distance function associated
to particle ϕ(i) and w(i) its importance weight.

Let us note that as v(x, t) can only be used from instant t = 1, we have to
define a transport component for t between 0 and 1. This initial transportation
component is set to the velocity field estimated from the two first images through
an optical-flow estimator.

The velocity field is complemented with a local potential F (ϕ) that cor-
responds to the Chan and Vese segmentation operator [2] extended to color
histograms. It allows us to refine the tracking by taking into account color in-
formation, using local measurements that are inexpensive to compute1.

The two components are combined linearly with proportions β(t) ∈ [0, 1] and
1 − β(t) respectively, yielding:

vn = β(t)vTn+ (1 − β(t))∂ϕF (ϕ). (18)

For our tracking purpose, the photometric component is especially helpful in
the temporal vicinity of the second image, whereas the velocity component is
more likely to be meaningful in the temporal vicinity of the first image. As a
consequence we choose to change gradually the proportion of each components
according to

β(t) = t− k + 1, t ∈ [k − 1, k]. (19)

Equations (13-15) allows us to forecast instances of deformed curves and to
sample the proposal distribution. The importance weights of these curve particles
have to be updated from the data likelihood. We detail in the following section
this likelihood and propose a technique for estimating the variances of the curve
evolution law uncertainties.

3 Measurement Models and Parameters Estimation

3.1 Likelihood Definition

In bootstrap filters, the data likelihood associated to each particle directly de-
termines its weight. It is therefore crucial for this distribution to be sufficiently
1 As a consequence of the use of a data-driven force in the dynamics, the state space

model is not anymore a classical hidden Markov model. It has been shown, however,
that standard derivations that lead to filtering recursion can still be conducted with
such models, leading to so-called conditional filters [1].
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discriminant in order to discard curves which are too distant from the intended
result. To this end, we choose to define a likelihood that depends on the simi-
larity between the color distributions inside the curve at times t = 0 and t = k
respectively. This is a classical choice in literature [10]. For each particle, it reads:

p(zt|x(i)
t ) ∝ exp−λd(h0,h

(i)
k ), (20)

where d is the Bhattacharyya distance between h0 the reference interior color
histogram instantiated at time 0 and h

(i)
k the interior color histogram associ-

ated to the i-th level set sample at time k, and λ is a positive parameter. For
discrete probability distributions p and q defined over the same domain X , the
Bhattacharyya distance is defined as

d(p, q) =

(
1 −

∑

x∈X

√
p(x)q(x)

)1/2

. (21)

3.2 Parameters Estimation

The dynamics defined through equations (13-15) involves two diffusion coefficient
related to the uncertainty associated to the curve motion. These parameters σn

and στ can be derived from the displacements field between two consecutive
images, as follows. Let u(x, t) be the displacement of point x ∈ Ω at time k
to its corresponding position at time k + 1, according to the evolution of the
implicit function ϕ conditioned on the past observation. We assume that this
displacement field is a noisy version of v,

u(x, k) = v(x, k)dt + σnndBn,t + στn
⊥dBτ,t, (22)

with noises along the normal and the tangent of ϕ level-lines having same char-
acteristics as those in (9). We are therefore making here the assumption that
the noises associated with the level set displacement and the curve noises are
collinear and have the same variances. Furthermore, we assume that the trans-
port velocity field is such that v(x, t) = E(u(x, k))/dt. The empirical covariances
with respect to the filtering law of this observed displacement along the curve
normal and tangent provide an estimation of the noise variances σ2

n and σ2
τ :

σ2
n =

1
N − 1

∑

i=1:N

⎛

⎝ 1
n− 1

∑

x∈C(i)

w(i) ((u(x, k) − v(x, k)) · n(x, t))2
⎞

⎠ (23)

σ2
τ =

1
N − 1

∑

i=1:N

⎛

⎝ 1
n− 1

∑

x∈C(i)

w(i)
(
(u(x, k) − v(x, k)) · n⊥(x, t)

)2
⎞

⎠ . (24)

For the time interval between the two first images, the values of these parameters
are computed from the initial motion field used to initialize our filter. The next
section shows results obtained for different kinds of image sequences.
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4 Experiments and Results

This section reports several tracking results obtained with our approach. We aim
here at highlighting the main abilities of the method. Note that in all these exper-
iments, the number of particles is fixed as N = 100. Each curve initialization is
performed manually, at the initial time. This initial curve will be systematically
plotted for all the sequences tested.

4.1 Interest of a Continuous-Time Stochastic Dynamics and
Auxiliary Level-Set

One of the main distinctive features of our approach is that it relies on a
continuous-time stochastic dynamics. This allows the exploitation of temporal
continuity even when deformations between successive images are drastic, as
illustrated in the jellyfish sequence in Fig. 1 (a - e). This is in contrast with ap-
proaches relying on a succession of segmentation tasks. On the same sequence,
for instance, the Chan-Vese segmentation method fails to recover an appropriate
tracking of the delineated region (Fig. 1 : f - j). In this approach the segmenta-
tion process is initialized with the results obtained on the previous frame. There
is no explicit handling of the possible deformation between two images. On the
tracking results, in addition to the mean curve we plot through a white band a
representation of the variance of the filtering. This aspect is further detailed in
the next section.

Getting inter-frame tracking information is also of potential interest in con-
text where successive images of the sequence are fairly distant in time, e.g., in
meteorology and weather forecast.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60 (e) t = 80

(f) t = 0 (g) t = 20 (h) t = 40 (i) t = 40 (j) t = 40

Fig. 1. Tracking of a jellyfish, with a highly deformable body using our method (a - e)
and deterministic Chan-Vese technique (f - j)

4.2 Variance Visualization and Analysis

Beyond the tracking results provided by the weighted mean curve, local confi-
dence assessment via local variance visualization (or analysis) is an interesting
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feature of our approach. The weighted set of implicit function samples provided
by particle filtering permits such a visualization. The weighted local variance of
the level set functions around the mean level set, which is obtained by comput-
ing V =

∑N
i=1 w

(i)(ϕ(i) − ϕ)2, is here represented by a white band around the
mean curve, the lower the variance, the narrower the uncertainty band. To illus-
trate this variance representation, we show results obtained on a second sequence
(Fig. 2) showing a tiger running. In this sequence the colors of the background
and the target are very close, which is an important source of ambiguities. We
can observe in particular that for areas around the legs, the uncertainty is impor-
tant. We observe that the results are good without using any external estimated
motion field.

(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

Fig. 2. Tracking of running tiger with our particle filter on the space of implicit func-
tions

To be able to access to an estimation of the tracking uncertainty is a great
advantage of our technique. This should be of great interest in several application
domains such as medical imaging in which the ability to quantify locally the
quality of a result is essential for end-users.

4.3 Occlusions Management

One of the advantage provided by our transport velocity formulation compared
to any optical flow measurements, is that it authorizes a natural handling of
occlusion situations. As a matter of fact, no matter the region of interest be
visible or not a velocity measure of the curve’s is always available. This measure
can thus be used at all instants without any distinction on the visibility or not
of the considered point. There is here no need of empirical external occlusion
detectors. For example, on Fig. 3, the person disappears on frames d and g, but



140 C. Avenel, E. Mémin, and P. Pérez

(a) t = 0 (b) t = 10 (c) t = 20 (d) t = 30

(e) t = 40 (f) t = 50 (g) t = 60 (h) t = 70

Fig. 3. Example of occlusions on a body walking behind trees

tracking relocks on it after the occlusions end. We can observe that during the
occlusions, the uncertainty is growing all around the curve, as the parameter σn

is growing.
As for the computational load. This approach can be straightforwardly on a

multicore or grid computer as all the particles are independent. Only the weight-
ing and the resampling requires communications between the processors. All
these results have been run on a grid composed of 100 nodes, and the approach
took nearly 5 minutes for a 100 images sequences. Let us note however that the
level set has been implemented with a narrow band efficient implementation and
could be hence much more faster than the present version.

5 Conclusion

In this paper we have proposed a probabilistic filtering method for the tracking
of level sets. The underlying model combines discrete-time image measurements
with a continuous-time stochastic dynamics. This dynamics relies on two dif-
ferent uncertainties on the curve motion, directed respectively along the curve
normal and along the curve tangent. It also includes a transport vector field
that combines an image-based force (related to local photometry) and a velocity
induced by previous curve displacements and deformations. The measurement
considered in this model are built from color histograms of the object delineated
by the user at the initial time. The implementation of the filter is done via a
particle filter whose proposal density amounts to simulating several steps of a
discretized stochastic differential equation.

We have illustrated on several examples the interest of the continuous-time
dynamics and of the estimation confidence assessment that proper stochastic
filtering permits via the approximation of the filtering distribution. In partic-
ular, displaying the estimation uncertainty along the curve, which is done by
computing the variance of each point of this curve, could be an interesting tool
for, e.g., biology or meteorology imaging. Also, the ability to show inter-frame
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results is an other potential advantage that could be used to infer potential curve
deformations between the two frames instant.

Finally, besides allowing to deal with occlusions, using the velocity of the
curve could help predicting the evolution of this curve for a few frames ahead of
time, which should be useful in various domains for forecast application.
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