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Abstract. This paper proposes a novel multi-scale fluid flow data as-
similation approach, which integrates and complements the advantages
of a Bayesian sequential assimilation technique, the Weighted Ensem-
ble Kalman filter (WEnKF) [12], and an improved multiscale stochastic
formulation of the Lucas-Kanade (LK) estimator. The proposed scheme
enables to enforce a physically plausible dynamical consistency of the
estimated motion fields along the image sequence.

1 Introduction

The analysis of geophysical fluid flows is of the utmost importance in domains
such as oceanography, hydrology or meteorology for applications of forecasting,
studies on climate changes, or for monitoring hazards or events. In all these do-
mains orbital or geostationary satellites provide a huge amount of image data
with a still increasing spatial and temporal resolution. Compared to in situ mea-
surements supplied by dedicated probes or Lagrangian drifters, satellite images
provide a much more denser observation field. They however offer only an indi-
rect access to the physical quantities of interest, and give rise consequently to
difficult inverse problems to estimate characteristic features of the flow such as
velocity fields or vorticity maps.

Fluid motion estimation techniques differ mainly on the smoothness prior
they are handling: first order penalization[13], second order div-curl regulariza-
tion [2, 14], or power law auto-similarity principles [6]. These methods provide
accurate instantaneous displacements, however they may exhibit difficulties for
mid to small scales measurements due to the smoothing prior used and pho-
tometric uniform regions. All these difficulties may thus generate inconsistent
measurements along time. For interested readers, a complete overview of fluid
motion estimation techniques can be found in [7].

Dynamical consistency of the velocity measurements can be enforced by em-
bedding the estimation problem within an image based assimilation process.
Variational assimilations of image information have been recently considered for
the estimation of fluid motion fields [1, 11]. Those methods, though efficient,
constitutes batch methods, which requires forward and backward integrations of
the dynamical system and the associated tangent linear dynamics respectively.
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The latter relies implicitly on a linearization of the dynamics and is adapted in
practice for short time horizon.

On the other hand, stochastic filters are also well known techniques for data
assimilation. Recently, a data assimilation procedure embedding an Ensemble
Kalman filter (EnKF) [5] into the particle filter (PF) framework, referred to
as Weighted Ensemble Kalman filter (WEnKF), has been proposed [12]. This
filter has shown to be efficient on toy examples with synthetic measurements.
The objective of this work consists to specify such a procedure from local noisy
velocity measurements and their uncertainties.

2 Stochastic Lucas-Kanade Estimator

This section first presents a stochastic formulation of the well known Lucas-
Kanade (LK) optical flow approach [9] that will be used to provide local motion
measurements in the assimilation method we propose. This technique departs
somewhat from the traditional Lucas and Kanade motion estimator. It leads
naturally to a continuous multiresolution formulation and enables not only to
extract the motion fields at different resolutions but supplies uncertainties of
those estimates as well.

In what follows, we represent the image luminance with f , and a grid of 2D
points X = (X1, ..., Xn)T ∈ R2n, represents the grid point locations. The image
over a regular grid at time t − 1, I = f(Xt−1, t − 1), is driven by the velocity
field v(Xt−1, t − 1) to generate new point positions Xt at time t.

2.1 Luminance variation with uncertainties

In a stochastic formulation, if we assume that the 2D grid from Xt−1 to Xt is
transported by a velocity field, v, up to a Brownian motion Bt = (B1

t , ..., Bn
t ) ∈

R2n, we can write: dXt = v(Xt−1, t− 1)dt + Σ(Xt, t)dBt, here Σ is the covari-
ance matrix and dXt = Xt − Xt−1. Assuming uncorrelated uncertainties with
local isotropic standard deviation σ(Xt, t), the noise term reads Σ(Xt, t)dBt =
diag σ(Xt, t) ⊗ I2dBt, I2 being the 2 × 2 identity matrix, and ⊗ denoting the
Kronecker product.

The differential of luminance function f defined for each spatial point at time
t is obtained through stochastic calculus differentiation using the celebrated Ito
formulae [10] as :

df(Xt, t) =
∂f(Xt, t)

∂t
dt +

∑

i=(1,2)

∂f(Xt, t)

∂xi
dXi +

1

2

∑

(i,j)

∂2f(Xt, t)

∂xi∂xj
d〈Xi

t,X
j
t 〉.

The quadratic variation terms d〈Xi
t,X

j
t 〉 are computed based on the properties:

d〈Bi, Bj〉 = dt; 〈h(t), h(t)〉 = 〈h(t), Bi〉 = 〈Bj , h(t)〉 = 0.

With the considered uncertainties this yields a luminance variation:

df(Xt, t) =
(∂f

∂t
+ ∇fTv +

1

2
σ2∆f

)
dt + σ∇fT dBt. (1)
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The operators ∇ and ∆ represents the 2D gradient and Laplacian of the lumi-
nance function, respectively. This model obviously comes back to the standard
brightness consistency assumption for zero uncertainties (σ = 0). Interest readers
may refer to [3] for a more complete presentation of this estimator.

2.2 Data model with uncertainties and local estimation

In a minimum least square sense, we define the motion to be estimated v(Xt−1, t−
1), as the minimum conditional variance of the luminance variation. Start-
ing from known grid Xt−1, it can estimated by minimizing the expectation
E(df2(Xt, t)/Xt−1). This conditional expectation given Xt−1 of a function of
a stochastic processes Xt driven by an Ito diffusion (1) discretized through an
Euler-Maruyama scheme, Xt = Xt−1 +v(Xt−1, t− 1)dt+Σ1/2(Bt+1 −Bt), can
be expressed as the following convolution: E(df2(Xt, t)/Xt−1) = df2(Xt−1 +
v, t) ⋆ gΣ , where gΣ = N(0, Σ) is a multidimensional zero mean Gaussian. From
the illumination variation equation (1), the cost function to be minimized reads
hence:

H(f,v) = gΣ ⋆
(δf

δt
+ ∇f · v +

1

2
σ2∆f

)2

. (2)

To alleviate the ill-posed nature of (2)1 we assume a locally constant flow
within a Gaussian window of variance λℓ centered at location (x, y) as in the
standard Lucas-Kanade estimator. At point (x, y), the estimate v should hence
minimize:

arg min
v

gλℓ ⋆ H(f,v). (3)

Differentiating (3) with respect to v and equating to zero, at any position (x, y)
(with fx, fy, ft representing the spatial (x, y) and temporal derivatives of f)
yields:

(
gλℓ ⋆ gΣ ⋆

[ f2
x fxfy

fxfy f2
y

])
v = −gλℓ ⋆ gΣ ⋆

(1

2
σ2∆f + ft

)[
fx

fy

]
. (4)

2.3 Multiresolution Analysis and Uncertainty estimation

A multi-resolution analysis (formulated within an incremental framework) of this
stochastic formulation can be accomplished by a coarse-to-fine decrease of the
variance parameter associated to the local smoothing Gaussian window, λℓ, in
(4). Furthermore, the quadratic variation of luminance function between t − 1
and t can be written as

d〈f(Xt, t), f(Xt, t)〉 = σ2 ‖ ∇f(Xt−1 + v(Xt−1, t), t) ‖
2 . (5)

In a probabilistic sense the variance parameters, in (5) can be estimated as:

σ =

√
E(f(Xt−1 + v(Xt−1, t), t) − f(Xt−1, t))2

E(‖ ∇f(Xt−1 + v(Xt−1, t), t) ‖2)
a.s. (6)

This provides us a spatial distribution of the motion estimate uncertainties.

1 Single equation, with two unknown components.
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3 Monte Carlo implementation of stochastic filtering

with the Weighted-Ensemble Kalman Filter

In this section we briefly review the main principles driving the construction of
the Weighted Ensemble Kalman filter, proposed in [12], and discuss its advan-
tages and limitations in the context of fluid flow analysis. This technique is a
particle implementation of a nonlinear stochastic filtering problem build upon
an ensemble Kalman update stage. In the following section we recall briefly the
basic elements constituting such filter.

3.1 Stochastic filtering, filtering distribution

Stochastic filters aim at estimating the posterior probability distribution p(x0:k|y1:k)
of a state variable trajectory x0:k starting from an initial state x0 up to the state
at the current time xk ∈ Rn given a complete measurements trajectory y1:k. The
state variable trajectory is obtained through the integration of a dynamical sys-
tem:

xt = M(xt−δt) + ηt, (7)

where M denotes a deterministic linear/nonlinear dynamical operator, corre-
sponding to a discrete representation (through numerical integration with time
step δt) of a physical conservation law describing the state evolution. And ηt

is usually a white Gaussian noise of covariance Qδt, that accounts for the un-
certainties in the deterministic state model. However, as the true initial state is
unknown, observation yk ∈ Rm of the state occurring at discrete instants are
assumed to be available. These observations and the state variable are linked
through:

yk = H(xk) + γk, (8)

a measurement equation where γk, the observation noise, is a white Gaussian
noise with covariance matrix R, and H stands for the linear/nonlinear map-
ping from the state variable space to the observation space. We note that the
(integration) time step used for the state variable dynamics δt is usually much
smaller (about 10-100 times), than the latency δk between two subsequent mea-
surements. A sequence of measurements or observations from time 1 to k will be
denoted by a set of vectors of dimension m as: y1:k = {yi, i = 1, . . . , k} where
the latency between two successive measurements is arbitrarily set to δk = 1.

A recursive expression of the filtering distribution p(x0:k|z1:k), describing the
distribution of the hidden Markov process we want to estimate conditioned upon
the whole set of past observations z1:k, can be obtained from Bayes’ law and the
assumption that the measurements depends only on the current state:

p(x0:k|y1:k) = p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
. (9)
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3.2 Linear Gaussian models and the Kalman Filter

For a Gaussian initial distribution, linear dynamics and linear measurement
operator, denoted by M and H respectively, the distribution p(xk|y1:k) remains
a Gaussian distribution whose first and second moment, xa

k = E(xk/y1:k) and
Pa

k = E((x−xa
k)(x−xa

k)T /y1:k), can be explicitly computed from the well known
recursive Kalman equations [8]:

x
f
k = Mxa

k−1, P
f
k = MPa

k−1M
T + Qk, (10)

and

Kk = P
f
kH

T (HP
f
kH

T + R)−1,xa
k = x

f
k + Kk(yk − Hx

f
k),Pa

k = (I − KkH)Pf
k ,

(11)

here superscripts f and a on state variable and covariance denote the respec-
tive quantities before and after analysis (update) at time k, respectively. The
prediction or forecast step (10) brings forward the first two moments of the
state vector, from its previous time step k − 1, through the dynamical model
parameters, while the analysis or the correction step (11) provides the first two
moments of the state characterizing the Gaussian filtering distribution at time
k. The matrix Kk is referred to as the Kalman gain matrix.

3.3 Particle implementation of the nonlinear filtering

For nonlinear dynamics or nonlinear measurement equation a direct sampling
from the filtering distribution is impossible since it would require the complete
knowledge of the filtering distribution – which is in the general case a non Gaus-
sian multimodal distribution – at a previous time.

Particle filtering techniques introduce a discrete approximation of the sought
density as a sum of N weighted Diracs:

p(x0:k|y1:k) ≈
N∑

i=1

w
(i)
k δx0:k

(x0:k) , (12)

centered on hypothesized locations of the state space sampled from a proposal
distribution π(x0:k|z1:k) (also called the importance distribution) approximating

the true filtering distribution. Each sample is then weighted by a weight, w
(i)
k ,

accounting for the ratio between the two distributions. Any importance function
can be chosen (with the only restriction that its support contains the filtering
distribution one). Under weak hypotheses the importance ratio can be recursively
defined as:

w
(i)
k ∝ w

(i)
k−1

p(yk|x
(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

. (13)

By propagating the particles from time k − 1 through the proposal density

π(x
(i)
k |x

(i)
0:k−1,y1:k), and by weighting the sampled states with w

(i)
k , a sampling of
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the filtering law is obtained. When the proposal distribution is set to the prior,

the weights updating rule (13) simplifies to the data likelihood p(yk|x
(i)
k ). This

particular instance of the particle filter is called the Bootstrap filter and consti-
tutes the most common filtering method based on particle filter. Nevertheless,
such an importance function does not take into account the current observation
and depends only weakly on the past data through the filtering distribution esti-
mated at the previous instant. High dimensional probability distribution spaces
being excruciatingly difficult to sample, it is very important to devise an impor-
tance function that enables focusing on the most meaningful areas of the state
space. To that end it is essential to consider proposal distributions that take into
account more significantly the past and current measurements. Along this idea,
the weighted ensemble Kalman filter defines the proposal distribution from the
sampling mechanisms of ensemble Kalman filtering techniques.

3.4 Ensemble Kalman Filtering

The Ensemble Kalman filter [4] can be interpreted as a Monte Carlo implementa-
tion of the Kalman filter recursion for the propagation of the two first moments.
The Ensemble filter relies hence intrinsically on a Gaussian approximation of
the filtering distribution.

More precisely, let us assume that we have sampled N members from ini-

tial filtering distribution p(x0/y0), denoted by x
(i)
0 , i = 1, ..., N . Propagating

these samples, iteratively, through the Kalman prediction and correction steps,
provides us the Gaussian approximations of the prediction and filtering distri-
butions.

The prediction step consists in propagating the ensemble members x
a,(i)
k−1 and

their associated uncertainties (noise) through the state dynamics in order to
obtain a predicted particles or forecast ensemble as:

x
f,(i)
k =

k−δt∑

t=k−1

(
M(x

f,(i)
t ) + η

(i)
t+δt

)
, x

f,(i)
k−1 = x

a,(i)
k−1 . (14)

From this, the empirical mean, x
f
k , of the forecast ensemble and the correspond-

ing empirical forecast covariance matrix P
fe

k are computed. Using this ensemble
based forecast covariance, an ensemble based Kalman gain matrix Ke

k can be
computed. With this Kalman gain and the observation model the forecast en-
semble members are then corrected towards the current observation.

This correction consists to update the forecast ensemble members x
f,(i)
k ,

through the Kalman update equations, with a set of perturbed observation

yk + γ
(i)
k obtained from samples of the observation noise {γ

(i)
k , i = 1, ..., N}.

This provides an analysis ensemble members {x
a,(i)
k , i = 1, ..., N} defined as:

x
a,(i)
k = x

f,(i)
k + Ke

k

(
yk + γ

(i)
k − Hx

f,(i)
k

)
. (15)

Here, we note that, in the Kalman gain or in the update stage, computation of
the high dimensional covariance matrix or inverse of the n× n covariance term,
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(HP
fe

k HT + R)−1, are never explicitly computed nor stored. Rather, Kalman
gain and update are efficiently implemented by defining and employing matrices
with ensemble of perturbations. In most of the geophysical applications, the
state vector related usually to temperature, pressure or velocity fields is of much
higher dimension than the number of samples used in EnKF N . i.e., n >> N ,
thus, handling the perturbation matrices (instead of the actual corresponding
covariance matrices) approximately brings down the number of operations from
O(n2) to O(nN). The inverse needed in the Kalman gain can be efficiently
computed through the singular value decomposition of a n × N matrix [5].

3.5 Weighted EnKF

Starting from the descriptions of the previous section, a hybrid filtering pro-
cedure that takes advantage of both the particle filter and the EnKF can be
devised. We briefly describe the approach proposed in [12].

The importance sampling principle indicates that a wide range of proposal
distributions can be considered. We will experimentally show that a proposal
distribution defined by the EnKF procedure constitutes an efficient proposal
mechanism for particle filter techniques in high dimensional spaces.

Relying on the usual assumption of the EnKF (i.e. considering the dynamics

as a discrete Gaussian system), the conditional distribution p(xk|x
(i)
k ,yo

k) can be
approached by a Gaussian distribution of respective mean and covariance [12]:

µ
(i)
k = (I − Ke

kH)

k−∆t∑

t=k−1

M(x
f,(i)
t ) + Ke

ky
o
k, Σe

k = (I − Ke
kH)Pfe

k . (16)

This distribution provides us a natural expression for the proposal distribution.
In order to make the estimation of the filtering distribution exact (up to the
sampling), each member of the ensemble must be weighted at each instant, k,

with appropriate weights, w
(i)
k , defined from (13). With a systematic resampling

scheme and for high dimensional systems represented on the basis of a very small
number of particles the weights simplify as [12]:

w
(i)
k ∝ p(yo

k|x
(i)
k ), and

N∑

i=1

w
(i)
k = 1. (17)

The Weighted ensemble Kalman filter (WEnKF) procedure can be simply sum-
marized by the algorithm 1.

4 WEnKF assimilation of SLK observations

In this Section, we present our WEnKF formulation based on the SLK optical
flow estimates. In what follows, we detail the dynamical model, the observation
model, and the strategy we adopt to incorporate the uncertainties supplied by
the SLK estimator.
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Algorithm 1 The WEnKF algorithm, one iteration.

Require: Ensemble at instant k − 1: {x
(i)
k−1, i = 1, . . . , N}

observations yo
k

Ensure: Ensemble at time k: {x
(i)
k , i = 1, . . . , N}

EnKF step: Get x
(i)
k from the assimilation of yo

k with an EnKF procedure;

Compute the weights w
(i)
k according to (17);

Resample: For j = 1 . . . N , sample with replacement index a(j) from discrete

probability {w
(i)
k , i = 1, . . . , N} over {1, . . . , N} and set x

(j)
k = x

a(j)
k ;

Dynamical model: As in this work we considered only 2D incompressible fluid
flows, we will rely for the dynamics on the vorticity-velocity formulation of the
Navier-Stokes equation with a stochastic forcing function:

dξ = −∇ξ · vdt + ν∆ξdt + ηdB, (18)

where the state vector x = ξ = vx − uy, represents the vorticity of the velocity
field v = [u, v]T , ν is the kinematic viscosity and ηdB is a random forcing term
(see following section). The velocity field can be recovered from its vorticity
using the Biot-Savart kernel. The numerical simulation of this dynamical model
is detailed in [12].
Observation model: The measurements on which we will rely on are set di-
rectly as the curl map (i.e. vorticity) of the SLK velocity estimates (4). Assuming
the observation is a corrupted version of the true vorticity map (state), we define
the observation model as:

yk = xk + γk, (19)

where γk is a Gaussian random field whose variance is fixed to the spatially
varying uncertainties associated to the measurements. These uncertainties are
provided by our motion estimator from equation (6) where the expectations
have been approached with ensemble empirical mean over the displaced image
corresponding to each ensemble members.To mitigate the effect of outliers a
Gaussian smoothed version of these variances is considered.
Random fields sampling: To simulate the random forcing term dB in the
dynamics (18) and the random field of the observation model (19), homogeneous
Gaussian fields, correlated in space, but uncorrelated in time are used. Their
covariance have a general form given by:

Qiso(r, τ) = E[dB(x, t)dBT (x + r, t + τ)] = gλ(r)dtδ(τ), (20)

where gλ(r) describes the spatial correlation structure with cutoff parameter λ.
These random fields are in practice sampled in the Fourier domain.
WEnKF implementation: With this dynamics and observation models the
WEnKF can be directly implemented as follow. At k = 0, the ensemble of states

{x
a,(i)
0 , i = 1, ..., N} is initialized with noisy versions of the SLK vorticity map

obtained from the two first images of the sequence. At the current time, the
ensemble obtained at the previous measurement instant is propagated through
the stochastic state dynamics (18) to generate the forecast ensemble members
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x
f,(i)
k . The EnKF update is then performed with the new observation in order

to sample the proposal distribution. The importance sampling weighting based
on the likelihood and a resampling process of the particles with respect to those
weights are performed. The empirical mean of the analysis ensemble provides the
vorticity estimate at time k. The corresponding velocity field is finally obtained
from the Biot-Savart law.

Although this direct WEnKF filtering of the SLK vorticity maps does provide
good results as we shall see it, the estimation may fail for long range velocities. To
overcome this limitation and to further improve the performance of the WEnKF
we propose in the next section a multiscale extension of WEnKF.

5 Multiscale SLK-WEnKF filtering

The idea of multiscale WEnKF consists to provide an improved proposal distri-
bution from velocity measurements at different scales. The update step operates
iteratively in an incremental coarse-to-fine way by introducing motion measure-
ments obtained at different scales through the Gaussian smoothing parameter
λℓ in (4). More precisely, at scale ℓ ∈ [0, ℓf ] the proposal ensemble is build from
successive analysis steps as follow:

x
a,(i),ℓ
k = x

f,(i),ℓ
k + K

e,ℓ
k

(
yℓ

k + γ
(i),ℓ
k − Hx

f,(i),ℓ
k

)
, (21)

x
f,(i),ℓ
k = x

f,(i),ℓ−1
k − x

a,ℓ−1
k , (22)

where the measurements yℓ
k are supplied by the stochastic Lucas and Kanade

motion estimates between the backwarped image Ĩℓ
k = f(Xk−1 +

∑ℓ−1
l=0 x

a,l
k , k)

and image Ik−1 = f(Xk−1, k− 1) within the range of scale [λℓ−1, λℓ]. The quan-

tity x
a,ℓ
k denotes the empirical mean of the analysis ensemble. The initial analysis

ensemble is fixed to a null value (xa,ℓc−1
k = 0) and the initial forecast is set to the

forecast ensemble computed from the dynamics (x
f,(i),0
k = x

f,(i)
k ). At each scale,

the Gaussian random fields attached to the measurements are drawn with the
uncertainties provided by the stochastic Lucas and Kanade formulation com-
puted from the couple of images (Ĩℓ, Ik−1) and the current analysis ensemble
(6). Let us note that compared to the previous single scale filtering where the
proposal was based on a single ensemble Kalman update, here several updates
associated to different Kalman gains are considered. In the experimental section
three successive scales will be considered in such a filtering. The final proposal
corresponds to the sum of the analysis ensemble obtained at the different scales:

x
a,(i)
k =

∑l
L x

a,(i),ℓ
k . In the same way as for the previous filter, these ensem-

ble members are then resampled according to the importance weights computed
from the likelihood associated to the original couple of images (Ik−1, Ik).

6 Experimental Results and Comparisons

In this section, we present the results obtained by the application of the single
scale and the multiscale WEnKF denoted as 1L-WEnKF and 3L-WEnKF respec-
tively as the latter has been applied on a set of 3 three successive scale ranges.
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Those filters have been compared with state-of-the-art fluid motion estimators
[6, 11, 14] on a sequence of 100 simulated PIV images with a known ground truth
corresponding to the numerical simulation (DNS) of a forced 2D turbulence at
Reynolds 3000 available at http://www.fluid.irisa.fr. Quantitative compar-
isons with the ground truth in terms of the Root-Mean-Square-Error (RMSE)
of vorticity and velocity are both presented in figure 1.
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Fig. 1. Comparison with State of the Art: RMSE in (a) Vorticity (b) Motion field .

As we notice from the fig. 1(a), the RMSE in vorticity of the SLK approach
is close to the state of art approaches [14, 6] (0.04), though the RMSE values in
velocity are higher (fig. 1(b)). The RMSE in vorticity by assimilating the SLK
observation through 1L-WEnKF is much lower (0.03), while the error in terms
of velocity estimates is close to the approach of Yuan et al. [14]. However, the
3L-WEnKF assimilation shows better results both in terms of vorticity or veloc-
ity. These errors are lower than all the fluid motion estimators that have been
tested and are at the same level as the errors provided by the batch variationnal
assimilation techniques2 [11] (which corresponds thus to a smoothing filter as
opposed to a recursive filter as in our case).

For a visual comparison we show in fig. 2, the vorticity maps obtained by the
different methods for the 50th images of the sequence. The vorticity estimated
by the 3L-WEnKF assimilation ( fig. 2 (h)) corresponds to the lowest error.

Our next set of results corresponds to a real world image sequence of a
2D turbulence generated from the wake of a soap film behind a comb. The
flow is visualized through a Schlieren technique at a rate of 2500 frames per
second. A typical image of the sequence is shown in figure 3(a) in false color. The

2 The results were unfortunately available only for 50 images.
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Fig. 2. (a) Particle image 50 (b) True vorticity and the estimates of (c) SLK (d) Yuan
et al. [14] (e) Heas et. al. [6] (f) Papadakis et al. [11] (g) WEnKF assimilation and (h)
3L-WEnKF assimilation

estimated vorticity maps and velocity fields corresponding to SLK, 1L WEnKF
and 3L WEnKF are shown in figs. 3(b), (c) and (d), respectively. We note that
though the 1L-WEnKF assimilation of SLK brings out some details at a smaller
scale than the SLK measurements, the 3L-WEnKF assimilation recovers even
finer details. It is however important to remarks that all those results remains
consistent and are close when interpreted at a larger scale.

7 Conclusion

In this paper, we have proposed an efficient multiscale extension of the Weighted
Ensemble Kalman filter for fluid flow motion estimation problem. This filter is a
particle filter relying on a proposal distribution built from the ensemble Kalman
filtering mechanism. The particular instance we considered here incorporates
measurements issued from a stochastic extension of the Lucas and Kanade esti-
mator.
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