
HAL Id: hal-00695038
https://hal.inria.fr/hal-00695038

Submitted on 20 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Management in IaaS Clouds: A Holistic
Approach

Eugen Feller, Cyril Rohr, David Margery, Christine Morin

To cite this version:
Eugen Feller, Cyril Rohr, David Margery, Christine Morin. Energy Management in IaaS Clouds: A
Holistic Approach. 5th IEEE International Conference on Cloud Computing (CLOUD), Jun 2012,
Honolulu, Hawaii, United States. �hal-00695038�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49898203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00695038
https://hal.archives-ouvertes.fr

Energy Management in IaaS Clouds: A Holistic

Approach

Eugen Feller, Cyril Rohr, David Margery, Christine Morin

INRIA Centre Rennes - Bretagne Atlantique

Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

{Eugen.Feller, Cyril.Rohr, David.Margery, Christine.Morin}@inria.fr

Abstract—Energy efficiency has now become one of the major
design constraints for current and future cloud data center
operators. One way to conserve energy is to transition idle servers
into a lower power-state (e.g. suspend). Therefore, virtual ma-
chine (VM) placement and dynamic VM scheduling algorithms
are proposed to facilitate the creation of idle times. However,
these algorithms are rarely integrated in a holistic approach and
experimentally evaluated in a realistic environment.

In this paper we present the energy management algorithms
and mechanisms of a novel holistic energy-aware VM manage-
ment framework for private clouds called Snooze. We conduct an
extensive evaluation of the energy and performance implications
of our system on 34 power-metered machines of the Grid’5000
experimentation testbed under dynamic web workloads. The
results show that the energy saving mechanisms allow Snooze to
dynamically scale data center energy consumption proportionally
to the load, thus achieving substantial energy savings with only
limited impact on application performance.

Keywords-Cloud Computing, Energy Management, Consolida-
tion, Relocation, Live Migration, Virtualization

I. INTRODUCTION

Cloud computing has gained a lot of attention during the last

years and cloud providers have reacted by building increasing

numbers of energy hungry data centers in order to satisfy the

growing customers resource (e.g. storage, computing power)

demands. Such data centers do not only impose scalability and

autonomy (i.e. self-organization and healing) challenges on

their management frameworks, but also raise questions regard-

ing their energy efficiency [1]. For instance, Rackspace which

is a well known Infrastructure-as-a-Service (IaaS) provider

hosted approximately 78.717 servers and served 161.422 cus-

tomers in 2011 [2]. Moreover, in 2010 data centers have

consumed approximately 1.1 - 1.5% of the world energy [3].

One well known technique to conserve energy besides

improving the hardware is to virtualize the data centers and

transition idle physical servers into a lower power-state (e.g.

suspend) during periods of low utilization. Transitioning idle

resources into a lower power state is especially beneficial as

servers are rarely fully utilized and lack power-proportionality.

For example, according to our own measurements conducted

on the Grid’5000 [4] experimental testbed in France, modern

servers still consume a huge amount of power (∼ 182W)

despite being idle. Consequently, taking energy saving actions

during periods of low utilization appears to be attractive and

thus is the target of our research. However, as virtual machines

(VMs) are typically load balanced across the servers, idle times

need to be created first. Therefore, dynamic VM relocation

and consolidation can be used in order to migrate VMs

away from underutilized servers. It can be done either event-

based (i.e. relocation) upon underload detection or periodically

(i.e. consolidation) by utilizing the live migration features of

modern hypervisors (e.g. KVM [5], Xen [6]).

Some dynamic VM relocation (e.g. [7]) and many consoli-

dation algorithms (e.g. [8]–[10]) have been recently proposed

with only few of them being validated in a realistic environ-

ment (e.g. [7]) though under static workloads (i.e. the number

of VMs in the system stays constant). Moreover, all these

works either target relocation or consolidation and mostly

consider only two resources (i.e. CPU, memory).

To the best of our knowledge none of the mentioned works:

(1) integrate most of the energy management mechanisms

within a holistic cloud management framework: VM resource

utilization monitoring and estimations, overload and under-

load anomaly detection, relocation, consolidation, and power

management; (2) experimentally evaluate them under dynamic

workloads (i.e. on-demand VM provisioning); (3) consider

more than two resource dimensions (e.g. CPU, memory,

network Rx, and network Tx).

In our previous work [11] we have proposed a novel scal-

able and autonomic VM management framework for private

clouds called Snooze. In this work, we focus on its energy

management algorithms and mechanisms. Our first contribu-

tion is a unique holistic solution to perform VM resource

utilization monitoring and estimations, detect and react to

anomaly situations and finally do dynamic VM relocation and

consolidation to power off and on idle servers. Our second

contribution is an experimental evaluation of the proposed

algorithms and mechanisms in a realistic environment using

dynamic web workloads on 34 power-metered nodes of the

Grid’5000 experimental testbed.

The results show that Snooze energy management mech-

anisms allow it to scale the data center energy consumption

proportionally to current utilization with only limited impact

on application performance, thus achieving substantial energy

savings. This work has direct practical application as it can be

either applied in a production environment to conserve energy

or as a research testbed for testing and experimenting with

advanced energy-aware VM scheduling algorithms.

The remainder of this article is organized as follows.

Section II discusses the related work. Section III introduces

the energy saving algorithms and mechanisms of Snooze.

Section IV presents the evaluation results. Section V closes

this article with conclusions and future work.

II. BACKGROUND

Energy conservation has been the target of research during

the last years and led to many works at all levels (i.e. hardware

and software) of the infrastructure. This section focuses on the

software level and presents related work on VM relocation and

consolidation.

In [9] multiple energy-aware resource allocation heuristics

are introduced. However, only simulation-based results based

on simple migration and energy-cost models are presented.

Finally, only one resource dimension (i.e. CPU) is considered.

In [12] the authors propose a multi-objective profit-oriented

VM placement algorithm which takes into account perfor-

mance (i.e. SLA violations), energy efficiency, and virtual-

ization overheads. Similarly to [9] this work considers CPU

only and its evaluation is based on simulations.

In [7] a framework is introduced which dynamically re-

configures a cluster based on its current utilization. The

system detects overload situations and implements a greedy

algorithm to resolve them. However, it does not include any

energy saving mechanisms such as underload detection, VM

consolidation and power management.

In [10] a consolidation manager based on constraint pro-

gramming (CP) is presented. It is solely limited to static

consolidation (i.e. no resource overcommitment is supported)

and neither includes overload/underload anomaly detection,

relocation, nor any power saving actions.

In [13] the Eucalyptus cloud management framework is

extended with live migration and consolidation support. The

extension neither supports anomaly detection nor event-based

VM relocation. Moreover, it remains unclear when and how

many migrations are triggered during its evaluation. Finally, it

targets static workloads and is tested on three nodes which is

far from any real cloud deployment scenario.

Last but not least in [14] the VMware Distributed Resource

Scheduler (DRS) is presented. Similarly, to our system DRS

performs dynamic VM placement by observing the current re-

source utilization. However, neither its system (i.e. architecture

and algorithms) nor evaluation (i.e. performance and energy)

details are publicly available.

Snoozes goes one step further than previous works by

providing a unique experimentally evaluated holistic energy

management approach for IaaS clouds.

III. ENERGY MANAGEMENT IN IAAS CLOUDS: A

HOLISTIC APPROACH

Snooze is an energy-aware VM management framework for

private clouds. Its core energy conservation algorithms and

mechanisms are described in this section.

First we introduce the system model and its assumptions.

Afterwards, a brief overview of the system architecture and

its parameters is given. Finally, the energy management algo-

rithms and mechanisms are presented.

A. System Model and Assumptions

We assume a homogeneous data center whose nodes are

interconnected with a high-speed LAN connection such as

Gigabit Ethernet or Infiniband. They are managed by a hy-

pervisor such as KVM [5] or Xen [6] which supports VM

live migration. Power management mechanisms (e.g. suspend,

shutdown) are assumed to be enabled on the nodes. VMs are

seen as black-boxes. We assume no restriction about applica-

tions: both compute and web applications are supported.

B. System Architecture

The architecture of the Snooze framework is shown in Fig-

ure 1. It is partitioned into three layers: physical, hierarchical,

and client.

H
ie
ra
rc
h
ic
al
 l
ay
er

P
h
y
si
ca
l
la
y
er

Local
controller (LC)

Group
manager (GM)

Cluster

Group
leader (GL)

Entry
points (EPs)

LC - GM
communication

Inter-GM
communication

GM - GL
communication

C
li
en
t
la
y
er

Fig. 1. System architecture

At the physical layer, machines are organized in a cluster, in

which each node is controlled by a so-called Local Controller

(LC).

A hierarchical layer allows to scale the system and is com-

posed of fault-tolerant components: Group Managers (GMs)

and a Group Leader (GL).

Each GM manages a subset of LCs and is in charge of

the following tasks: (1) VM monitoring data reception from

LCs; (2) Resource (i.e. CPU, memory and network) utilization

estimation and VM scheduling; (3) Power management; (4)

Sending resource management commands (e.g. start VM,

migrate VM, suspend host) to the LCs.

LCs enforce VM and host management commands coming

from the GM. Moreover, they monitor VMs, detect over-

load/underload anomaly situations and report them to the

assigned GM.

There exists one GL which oversees the GMs, keeps ag-

gregated GM resource summary information, assigns LCs to

GMs, and dispatches VM submission requests to the GMs. The

resource summary information holds the total active, passive,

and used capacity of a GM. Active capacity represents the

capacity of powered on LCs, while passive capacity captures

resources available on LCs in power saving state. Finally, used

capacity represents the aggregated LC utilization.

A client layer provides the user interface. It is implemented

by a predefined number of replicated Entry Points (EPs).

C. System Parameters

Let LCs denote the set of LCs and VMs the set of VMs,

with n = |LCs| and m = |VMs| representing the amounts of

LCs and VMs, respectively.

Available resources (i.e. CPU, memory, network Rx, and

network Tx) are defined by the set R with d = |R| (d = 4). CPU

utilization is measured in percentage of the total LC capacity.

For example, if a LC has four physical cores (PCORES)

and a given VM requires two virtual cores (VCORES), the

maximum CPU requirement of a VM would be 50%. Memory

is measured in Kilobytes and network utilization in Bytes/sec.

VMs are represented by requested and used capacity vectors

(RCv resp. UCv). RCv := {RCv,k}1≤k≤d reflects the static

VM resource requirements in which each component defines

the requested capacity for resource k ∈ R. They are used

during the initial VM submission to place VMs on LCs. On

the other hand, used capacity vectors UCv := {UCv,k}1≤k≤d

become available as the result of monitoring. Each component

of the vector represents the estimated VM utilization for

resource k over the last measurement period T (e.g. one day).

LCs are assigned with a predefined static homogeneous

capacity vector Cl := {Cl,k}1≤k≤d. In addition, their current

utilization cl is computed by summing up the VM used

capacity vectors: cl :=
∑

∀v∈LCl

UCv .

We introduce Ml := {MIDl,k}1≤k≤d as the LC resource

capping vector which puts an upper bound on the maximum

aimed LC utilization for each resource k with 0 ≤ MIDl,k ≤
1. In other words we keep a limited amount of available

resources to compensate for overprovisioning. This is required

in order to mitigate performance problems during periods of

high resource contention.

LCl is considered to have enough capacity for VMv if

either cl + RCv ≤ Cl ⋄ Ml holds during submission or

cl +UCv ≤ Cl ⋄Ml during VM relocation or consolidation.

⋄ denotes elementwise vector multiplication.

Introducing resource upper bounds leads to situations where

VMs can not be hosted on LCs despite enough resources being

available. For example when MIDl,CPU = 0.8 and only two

PCORES exist, VM requiring all of them can not be placed

(i.e. 2 VCORE / 2 PCORE ≤ 0.8 does not hold).

Therefore, we define the notion of packing density (PD)

which is a vector of values between 0 and 1 for each resource

k. It can be seen as the trust given to the user’s requested VM

resource requirements and allows VMs to be hosted on LCs

despite existing MID capping’s. When PD is enabled, Snooze

computes the requested VM resource requirements as follows:

RCv := RCv ⋄PD.

In order to detect anomaly situations we define a 0 ≤
MINk ≤ 1 and 0 ≤ MAXk ≤ 1 threshold for each resource

k. If the estimated resource utilization for k falls below MINk

the LC is considered as underloaded, otherwise if it goes

above MAXk LC is flagged as overloaded (see the following

paragraphs).

LCs and VMs need to be sorted by many scheduling

algorithms. Sorting vectors requires them to be first normalized

to scalar values. Different sort norms such as L1, Euclid or

Max exist. In this work the L1 norm is used.

D. Resource Monitoring and Anomaly Detection

Monitoring is mandatory to take proper scheduling deci-

sions and is performed at all layers of the system. At the

physical layer VMs are monitored and resource utilization

information is periodically transferred to the GM by each LC.

It is used by the GM in the process of VM resource utilization

estimation and scheduling.

At the hierarchical layer, each GM periodically sends

aggregated resource summary information to the GL. This

information includes the used and total capacity of the GM

with the former being computed based on the estimated VM

resource utilization of the LCs and is used to guide VM

dispatching decisions.

Overload and underload anomaly detection is performed

locally by each LC based on aggregated VM monitoring

values. This allows the system to avoid many false-positive

anomaly alerts. Particularly, for each VM a system admin-

istrator predefined amount of monitoring data entries is first

collected. After the LC has received all VM monitoring data

batches, it performs the total LC resource utilization estimation

by averaging the VM resource utilizations and summing up the

resulting values. Finally, a threshold crossing detection (TCD)

is applied on each dimension of the estimated host resource

utilization vector based on the defined MINk and MAXk

thresholds to detect anomaly situations. LCs are marked as

overloaded (resp. underloaded) in the data sent to GM if at

least one of the dimensions crosses the thresholds.

E. Resource Utilization Estimations

Resource utilization estimations are essential for most of

the system components. For example, they are required in

the context of anomaly detection and VM scheduling (i.e.

placement, relocation, and consolidation).

GM performs LC resource utilization estimations in order to

generate its aggregated resource summary information. TCD

decisions are based on estimated VM resource utilizations.

Finally, in the context of VM scheduling, VM resource uti-

lizations are estimated in order to: (1) Compute the total LC

resource utilization; (2) Sort LCs and VMs.

Snooze provides abstractions which allow to easily plug in

different estimators for each resource. For example VM CPU

utilization can be estimated by simply considering the average

of the n most recent monitoring values. Alternatively, more

advanced prediction algorithms (e.g. based on Autoregressive-

Moving-Average (ARMA)) can be used. In this work the

former approach is taken.

F. Energy-Aware VM Scheduling

Scheduling decisions are taken at two levels: GL and GM.

At the GL level, VM to GM dispatching is done based on the

GM resource summary information. For example, VMs could

be dispatched across the GMs in a capacity-aware round-robin

or first-fit fashion. In this work round-robin is used. Thereby,

GL favors GMs with enough active capacity and considers

passive capacity only when not enough active one is available.

Note that summary information is not sufficient to take exact

dispatching decisions. For instance, when a client submits

a VM requesting 2GB of memory and a GM reports 4GB

available it does not necessary mean that the VM can be

finally placed on this GM as its available memory could be

distributed among multiple LCs (e.g. 4 LCs with each 1GB of

RAM). Consequently, a list of candidate GMs is provided by

the dispatching policies. Based on this list, a linear search is

performed by issuing VM placement requests to the GMs.

At the GM level, the actual VM scheduling decisions are

taken. Therefore, four types of scheduling policies exist: place-

ment, overload relocation, underload relocation, and finally

consolidation. Placement policies (e.g. round-robin or first-

fit) are triggered event-based to place incoming VMs on LCs.

Similarly, relocation policies are called when overload (resp.

underload) events arrive from LCs and aims at moving VMs

away from heavily (resp. lightly loaded) nodes. For example,

in case of overload situation VMs must be relocated to a

more lightly loaded node in order to mitigate performance

degradation. Contrary, in case of underload, for energy saving

reasons it is beneficial to move VMs to moderately loaded

LCs in order to create enough idle-time to transition the

underutilized LCs into a lower power state (e.g. suspend).

Complementary to the event-based placement and relocation

policies, consolidation policies can be specified which will

be called periodically according to the system administrator

specified interval to further optimize the VM placement of

moderately loaded nodes. For example, a VM consolidation

policy can be enabled to weekly optimize the VM placement

by packing VMs on as few nodes as possible.

G. VM Relocation

The Snooze VM overload relocation policy is shown in

Algorithm 1. It takes as input the overloaded LC along with

its associated VMs and a list of LCs managed by the GM.

The algorithm outputs a Migration Plan (MP) which specifies

the new VM locations.

The overload relocation policy first estimates the LC utiliza-

tion, computes the maximum allowed LC utilization, and the

overloaded capacity delta (i.e. difference between estimated

and maximum allowed LC utilization). Afterwards it gets the

VMs assigned to the overloaded LC, sorts them in increasing

order based on estimated utilization and computes a list of

candidate VMs to be migrated. The routine to compute the

migration candidates first attempts to find the most loaded VM

among the assigned ones whose estimated utilization equals

or is above the overloaded capacity delta. This way a single

migration will suffice to move the LC out of overload state.

Otherwise, if no such VM exists, it starts adding VMs to the

list of migration candidates starting from the least loaded one

until the sum of the estimated resource utilizations equals or is

above the overload capacity delta. Finally the destination LCs

are sorted in increasing order based on estimated utilization

and migration candidates are assigned to them starting from

the first one if enough capacity is available. Moreover, the new

VM to LC mappings are added to the MP.

Algorithm 1 VM Overload Relocation

1: Input: Overloaded LC with the associated VMs and resource
utilization vectors UC, list of destination LCs

2: Output: Migration Plan MP

3: c ← Estimate LC utilization
4: m ← Compute max allowed LC utilization
5: o ← Compute the amount of overloaded capacity (c, m)
6: VMssource ← Get VMs from LC
7: Sort VMsource in increasing order
8: VMcandidates ← computeMigrationCandidates(VMssource, o)
9: Sort destination LCs in increasing order

10: for all v ∈ VMcandidates do
11: LCfit ← Find LC with enough capacity to host v (v, LCs)
12: if LCfit = ∅ then
13: continue;
14: end if
15: Add (v, LCfit) mapping to the migration plan
16: end for
17: return Migration plan MP

The underload relocation policy is depicted in Algorithm 2.

It takes as input the underloaded LC and its associated VMs

along with the list of LCs managed by the GM. It first

retrieves the VMs from the underloaded LC and sorts them in

decreasing order based on the estimated utilization. Similarly,

LCs are sorted in decreasing order based on the estimated

utilization. Then, VMs are assigned to LCs with enough spare

capacity and added to the MP. The algorithms follows an all-

or-nothing approach in which either all or none of the VMs

are migrated. Migrating a subset of VMs does not contribute

to the energy saving objective (i.e. create idle times) and thus

is avoided. In order to avoid a ping-pong effect in which VMs

are migrated back and forth between LCs, LCs are transitioned

into a lower power state (e.g. suspend) once all VMs have been

migrated thus they can not be considered as destination LCs

during subsequent underload events.

H. VM Consolidation

VM consolidation is a variant of the multi-dimensional bin-

packing problem which is known to be NP-hard [15]. Our

system is not limited to any particular consolidation algorithm.

However, because of the NP-hard nature of the problem and

the need to compute solutions in a reasonable amount of time

Algorithm 2 VM Underload Relocation

1: Input: Underloaded LC with the associated VMs and resource
utilization vectors UC, list of destination LCs

2: Output: Migration Plan MP

3: VMcandidates ← Get VMs from underloaded LC
4: Sort VMcandidates in decreasing order
5: Sort LCs in decreasing order
6: for all v ∈ VMcandidates do
7: LCfit ← Find LC with enough capacity to host v
8: if LCfit = ∅ then
9: Clear migration plan

10: break;
11: end if
12: Add (v, LCfit) mapping to the migration plan
13: end for
14: return Migration plan MP

it currently implements a simple yet efficient two-objective

(i.e. minimizes the number of LCs and migrations) polynomial

time greedy consolidation algorithm. Particularly, a modified

version of the Sercon [8] algorithm is integrated which differs

in its termination criteria and the number of VMs which are

removed in case not all VMs could be migrated from a LC.

Sercon follows an all-or-nothing approach and attempts to

move VMs from the least loaded LC to a non-empty LC with

enough spare capacity. Either all VMs can be migrated from a

host or none of them will be. Migrating only a subset of VMs

does not yield to less number of LCs and thus is avoided.

The pseudocode of the modified algorithm is shown in Al-

gorithm 3. It takes as input the LCs including their associated

VMs. LCs are first sorted in decreasing order based on their

estimated utilization. Afterwards, VMs from the least loaded

LC are sorted in decreasing order, placed on the LCs starting

from the most loaded one and added to the migration plan. If

all VMs could be placed the algorithm increments the number

of released nodes and continues with the next LC. Otherwise,

all placed VMs are removed from the LC and MP and the

procedure is repeated with the next loaded LC. The algorithm

terminates when it has reached the most loaded LC and outputs

the MP, number of used nodes, and number of released nodes.

I. Migration Plan Enforcement

VM relocation and consolidation algorithms output a mi-

gration plan (MP) which specifies new mapping of VMs to

LCs required to transition the system from its current state to

the new optimized one. Migration plan is enforced only if it

yields to less LCs. Enforcing the migration plan computed by

the relocation and consolidation algorithms of our framework

is straightforward as it only involves moving VMs from their

current location to the given one. Note that, unlike other works

(e.g. [10]) our algorithms do not introduce any sequential

dependencies or cycles. Particularly, VMs are migrated to an

LC if and only if enough capacity is available on it without

requiring other VMs to be moved away first.

Migrations can happen either sequentially or in parallel. In

the former case only one VM is moved from the source to the

destination LC at a time, while the latter allows multiple VMs

to be migrated concurrently. Given that modern hypervisors

Algorithm 3 VM Consolidation

1: Input: List of LCs with their associated VMs and resource
utilization vectors UC

2: Output: Migration Plan MP , nUsedNodes, nReleasedNodes
3: MP ← ∅
4: nUsedNodes ← 0
5: nReleasedNodes ← 0
6: localControllerIndex ← |LCs| − 1

7: while true do
8: if localControllerIndex = 0 then
9: break;

10: end if
11: Sort LCs in decreasing order
12: LCleast ← Get the least loaded LC (localControllerIndex)
13: VMsleast ← Get VMs from LCleast

14: if VMsleast = ∅ then
15: localControllerIndex ← localControllerIndex - 1
16: continue;
17: end if
18: Sort VMsleast in decreasing order
19: nPlacedVMs ← 0

20: for all v ∈ VMsleast do
21: Find suitable LC to host v
22: if LC = ∅ then
23: continue;
24: end if
25: LCleast ← LCleast ∪ {v}
26: MP ← MP ∪{v}
27: nPlacedVMs ← nPlacedVMs + 1
28: end for
29: if nPlacedVMs = |VMsleast| then
30: nReleasedNodes ← nReleasedNodes + 1
31: else
32: LCleast ← LCleast \ VMsleast
33: MP ← MP \VMsleast
34: end if
35: localControllerIndex ← localControllerIndex - 1
36: end while
37: nUsedNodes ← |LCs| - nReleasedNodes
38: return Migration plan MP , nUsedNodes, nReleasedNodes

(e.g. KVM) support parallel migrations there is no reason not

to do so given that enough network capacity is available. This

is exactly what our system does.

Still, there exists a caveat here related to the pre-copy live

migration termination criteria of the underlying hypervisor. For

example, in KVM live migration can last forever (i.e. make no

progress) if the number of pages that got dirty is larger than

the number of pages that got transferred to the destination LC

during the last transfer period.

In order to detect and resolve such situations Snooze spawns

a watchdog for each migration. Watchdog enforces conver-

gence after a system administrator predefined convergence

timeout given the migration is still pending. Therefore it

suspends the VM thus preventing further page modifications.

The hypervisor is then able to finish the migration and restart

the VM on the destination LC.

J. Power Management

In order to conserve energy, idle nodes need to be tran-

sitioned into a lower power state (e.g. suspend) after the

migration plan enforcement. Therefore, Snooze integrates a

power management module, which can be enabled by the

system administrator to periodically observe the LC utilization

and trigger power-saving state transitions (e.g. from active to

suspend) once they become idle (i.e. do not host any VMs).

Particularly, power management works as follows. Snooze

can be configured to keep a number of reserved LCs always

on in order to stay reactive during periods of low utilization.

Other LCs are automatically transitioned into a lower power

state after a predefined idle time threshold has been reached

(e.g. 180 sec) and marked as passive. Passive resources are

woken up by the GMs either upon new VM submission or

overload situation when not enough active capacity is available

to accommodate the VMs. Therefore a wakeup threshold exists

which specifies the amount of time a GM will wait until the

LCs are considered active before starting another placement

attempt on those LCs.

The following power saving actions can be enabled if

hardware support is available: shutdown, suspend to ram, disk,

or both. Thereby, different shutdown and suspend drivers can

be easily plugged in to support any power management tools.

For example, shutdown can be implemented using IPMItool

or by simply calling the Linux native shutdown command.

Finally to enable LC power on, wakeup drivers can be

specified. Currently, two wakeup mechanisms are supported

in Snooze: IPMI and Wake-On-Lan (WOL).

IV. EVALUATION

A. System Setup

Snooze was deployed on 34 power metered HP ProLiant

DL165 G7 nodes of the Grid’5000 experimental testbed in

Rennes (France) with one EP, one GL, one GM and 31 LCs.

All nodes are equipped with two AMD Opteron 6164 HE

CPUs each having 12 cores (in total 744 compute cores), 48

GB of RAM, and a Gigabit Ethernet connection. They are

powered by six APC AP7921 power distribution units (PDUs).

Power consumption measurements and the benchmarking soft-

ware execution are done from two additional Sun Fire X2270

nodes in order to avoid influencing the measurement results.

The node operating system is Debian with a 2.6.32-5-amd64

kernel. All tests were run in a homogeneous environment

with qemu-kvm 0.14.1 and libvirt 0.9.6-2 installed on the

machines. Each VM is using a QCOW2 disk image with

the corresponding backing image hosted on a Network File

System (NFS). Incremental storage copy is enabled during live

migration. Debian is installed on the backing image. The NFS

server is running on the EP with its directory being exported

to all LCs. VMs are configured with 6 VCORES, 4GB

RAM and 100 MBit/sec network connection. Note that libvirt

currently does not provide any means to specify the network

capacity requirements. Therefore, Snooze wraps around the

libvirt template and adds the necessary network capacity (i.e.

Rx and Tx) fields.

Tables I, II, III, and IV show the system settings used in

the experiments.

B. Experiment Setup

Our study is focused on evaluating the energy and per-

formance benefits of the Snooze energy-saving mechanisms

for dynamic web workloads. To make the study realistic, the

experiment is set up in a way that reflects a real-world web

application deployment: An extensible pool of VMs, each

hosting a copy of a backend web application running on a

HTTP server, while a load-balancer accepts requests coming

from an HTTP load injector client (see Figure 2). Both the

load-balancer and load injector are running on the Sun Fire

X2270 nodes.

Register PDU

metrics

Apache
Benchmark

Snooze API wrapper

Bfire engine

HTTP

B
e
n
c
h
m
a
rk
 n
o
d
e

B
a
la
n
c
e
r n

o
d
e

HAProxy

load-balancer

L
o
g

HTTP

HAProxy

configurator

P
o
ll

VMs

Entry

point
Group

leader

S
n
o
o
z
e
 d
a
ta
 c
e
n
te
r

Register

Start VMsGet GL

Fig. 2. Experiment setup

The backend application consists of a single HTTP end-

point, which triggers a call to the stress tool [16] upon each

request received. Each stress test loads all VM cores during

one second and uses 512 MB of RAM.

The load-balancer tool used is HAProxy v1.4.8, which is

a state-of-the-art load-balancer used in large-scale deploy-

ments [17]. HAProxy is configured in HTTP mode, four

concurrent connections maximum per backend, round-robin

algorithm, and a large server timeout to avoid failed requests.

Finally, the load injector tool is the well-known Apache

benchmark tool [18]. It is configured to simulate 20 concurrent

users sending a total number of 15000 requests. According to

our experiments these parameters provide the best trade-off

between the experiment execution time and the effectiveness

of illustrating the framework features.

The initial deployment configuration of the backend VMs

is done using the Bfire tool [19], which provides a domain-

specific language (DSL) for declaratively describing the pro-

visioning and configuration of VMs on a cloud provider. Bfire

also allows the monitoring of any metric and provides a way to

describe elasticity rules, which can trigger up- or down-scaling

of a pool of VMs when a key performance indicator (KPI)

is below or over a specific threshold. This tool is currently

developed by INRIA within the BonFIRE project [20]. A thin

wrapper was developed to make Snooze Bfire-compatible (i.e.

interact with the Snooze RESTful API to provision VMs).

The experiment lifecycle is as follows: our Bfire DSL is fed

into the Bfire engine, which initially provisions one backend

VM on one of the physical nodes. At boot time, the backend

VM will automatically register with the load-balancer so that

it knows that this backend VM is alive. Once this initial

deployment configuration is ready, the Bfire engine will start

TABLE I
THRESHOLDS

Resource MIN, MID, MAX

CPU, 0.2, 0.9, 1

Memory 0.2, 0.9, 1

Network 0.2, 0.9, 1

TABLE II
ESTIMATOR

Parameter Value

Packing density 0.9

Monitoring backlog 15

Resource estimators average

Consolidation interval 10 min

TABLE III
SCHEDULER

Policy Algorithm

Dispatching RoundRobin

Placement FirstFit

Overload see III-G

Underload see III-G

Consolidation see III-H

TABLE IV
POWER MANAGEMENT

Parameter Value

Idle time threshold 2 min

Wakeup threshold 3 min

Power saving action shutdown

Shutdown driver system

Wakeup driver IPMI

the Apache benchmark against the load-balancer. During the

whole duration of the experiment, Bfire will also monitor

in a background thread the time requests spent waiting in

queue at the load-balancer level (i.e. before being served by a

backend application). Over time, this KPI will vary according

to the number of backend VMs being available to serve the

requests. In our experiment, if the average value of the last 3

acquisitions of that metric is over 600ms (an acceptable time

for a client to wait for a request), then a scale-up event will

be generated, which will increase the backend pool by four

new VMs at once. If the KPI is below the threshold, then

nothing happens. This elasticity rule is monitored every 15

seconds, and all newly created VMs must be up and running

before it is monitored again (to avoid bursting). Meanwhile,

an additional background process is registering the power

consumption values coming from the PDUs to which the

physical nodes are attached.

At the end of the experiment, we show the performance (i.e.

response time) of the application, the power consumption of

the nodes, the number of VMs and live migrations. Moreover,

we visualize all the events (i.e. Bfire, relocation, consolidation,

power management) which were triggered in our system

during the experiments.

Two scenarios are evaluated: (1) No energy savings, to

serve as a baseline; (2) Energy savings enabled (i.e. underload

relocation, consolidation and power management). In both

scenarios overload detection is enabled.

C. Elastic VM Provisioner Events

The elastic VM provisioner (i.e. Bfire) events (i.e. READY,

SCALING, SCALED) without and with energy savings en-

abled (red resp. green colored) are shown in Figure 3. The

experiment starts by provisioning one backend VM which

results in the provisioner to become READY. When it becomes

ready we start the actual benchmark which soon saturates the

VM capacity. Bfire reacts by SCALING up the number of

VMs to four. It takes approximately five minutes to provision

the VMs. This is reflected in the subsequent SCALED event

which signals the VM provisioning success. The same process

happens until the end of the benchmark execution. In total four

SCALING (resp. SCALED) are triggered which result in 17

VMs to be provisioned by the end of the Apache benchmark.

Note that the experiment with energy savings enabled lasts a

bit more (1.2% of time) than without energy savings because

of the need to power on nodes and lightly increased response

time (see the following paragraphs).

READY

SCALING

SCALED

 0 300 600 900 1200 1500 1800 2100
 0
 4
 8
 12
 16

N
u
m

b
e
r

o
f

V
M

s

Time (= sec)

Bfire event
Virtual machines
Experiment end

Bfire event
Virtual machines
Experiment end

Fig. 3. Elastic VM provisioner events

D. Apache Benchmark Performance

The Apache benchmark results (i.e. response time for each

request) are depicted in Figure 4. As it can be observed,

response time increases with the number of requests in both

cases (i.e. without and with energy savings). However, more

interestingly is the fact that response time is not significantly

impacted when energy savings are enabled. Particularly, in

both scenarios a response time peek exists at the beginning

of the experiment. Indeed, one backend VM is quickly satu-

rated. However, when times passes only minor performance

degradation can be observed.

The main reason for the minor performance degradation

lies in the fact that once energy savings are enabled, servers

are powered down, thus increasing the time requests remain

in the HAProxy queue until they can be served by one

of the backends. Moreover, Bfire dynamically increases the

number of VMs with growing load. Increasing the number

of VMs involves scheduling, powering on LCs as well as a

software provisioning phase in which tools are installed on

the scheduled VMs in order to register with HAProxy. This

requires time and thus impacts application performance (i.e.

requests are queued). Performance could be further improved

by taking proactive scaling up decisions. Finally, underload

relocation and consolidation are performed which involve VM

migration which contributes to the performance degradation.

 1200

 1500

 1800

 2100

 2400

 2700

 0 2000 4000 6000 8000 10000 12000 14000

R
e

s
p

o
n

s
e

 t
im

e
 (

=
 m

s
)

Number of requests executed

Energy savings disabled
Energy savings enabled

Fig. 4. Apache benchmark performance

E. System Power Consumption and Events

The system power consumption without and with energy

savings is depicted in Figure 5.

Without energy savings our experimental data center first

consumes approximately 5.7 kW of idle power. With the start

of the benchmark the load increases to 6.1 kW and falls back

with the end of the evaluation. Note that our experiments did

not fully stress all the 744 compute cores which would have

resulted in even higher power consumption (∼ 7.1 kW) but

would also have made harder to conduct the experiment due

to the increased execution time.

 0
 1
 2
 3
 4
 5
 6
 7

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000P
o

w
e

r
(=

 k
W

)

Time (= sec)

Energy savings disabled
Experiment end

Energy savings enabled
Experiment end

Fig. 5. Power consumption

Snooze overcommits nodes by allowing them to host more

VMs than physical capacity allows it. This leads to overloaded

situations requiring VMs to be live migrated. In this context we

distinguish between two types of events: overload relocation

(OR) and migration plan enforced (MPE). The former is trig-

gered in case of overload situation and results in a migration

plan which needs to be enforced. MPE events signal the end

of the enforcement procedure. Figure 6 shows the event profile

including the number of migrations. As it can be observed the

first two OR events trigger five migrations. This is due to the

fact that the First-Fit placement is performed upon initial VM

submission. This leads to an overload situation on the LCs

which needs to be resolved. However, as time progresses the

number of migrations decreases as VMs are placed on more

lightly loaded LCs.

OR

MPE

 0 300 600 900 1200 1500 1800
 0
 1
 2
 3
 4
 5
 6

N
u

m
b

e
r

o
f

m
ig

ra
ti
o

n
s

Time (= sec)

Snooze event
Live migration

Experiment end

Fig. 6. Snooze system events without energy savings

With energy savings enabled, when the experiment starts the

system is idle, and thus the nodes have been powered down

by Snooze, reducing the power consumption to approximately

one kW (see Figure 5).

When the benchmark is started the system reacts by taking

actions required to provision just as many nodes as needed

to host the VMs. This results in the power consumption

following the system utilization (i.e. increasing number of

VMs). Note that the power consumption never drops to the

initial value (i.e. one kW) as VMs are kept in the system in

order to illustrate the framework mechanisms. Consequently,

once idle they still consume additional power. In a production

environment VMs would be shutdown by the customers thus

resulting in additional power savings.

Particularly, the following actions presented in Figure 7

are performed: (1) detect LC underload and overload; (2)

trigger underload and overload relocation (UR resp. OR)

algorithms; (3) enforce migration plans (MPE); (4) perform

periodic consolidation (C); (5) take power saving actions such

as power up and down (PUP resp. PDOWN) depending on

the current load conditions. In order to get an insight in the

system behaviour we have captured all these events.

C
OR
UR

MPE
PDOWN

PUP

 0 300 600 900 1200 1500 1800 2100 2400 2700 3000
 0
 1
 2
 3
 4
 5
 6

N
u

m
b

e
r

o
f

m
ig

ra
ti
o

n
s

Time (= sec)

Snooze event
Live migration

Experiment end

Fig. 7. Snooze system events with energy savings enabled

During the benchmark execution the first OR event appears

as the system becomes overloaded. The overload situation is

resolved by powering up one LC and migrating five VMs.

Then consolidation is started which migrates two VMs. The

system continues to react to OR/UR events and adapt the

data center size according to the current load (i.e. PUP and

PDOWN events follow) until the end of the benchmark. Note

that the number of migrations decreases with the benchmark

execution time as the HAProxy load decreases with increasing

number of backend VMs thus resulting in less OR events.

Towards the end of the benchmark UR happens and results in

a series of PDOWN events. Finally, consolidation is started

and improves the VM placement by migrating one VM. This

shows that relocation and consolidation are complementary.

Putting all the results together, data center energy consump-

tion measured during the benchmark execution without and

with power management enabled amounted to 3.19 kWh (34

nodes), respectively 1.05 kWh (up to 11 nodes), resulting in

67% of energy being conserved. We estimated that for the

same workload with a smaller data center size of 17 nodes,

the energy gains would have been approximately 34%.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented and evaluated the energy man-

agement mechanisms of a unique holistic energy-aware VM

management framework called Snooze. Snooze has a direct

practical application: it can be either utilized in order to

efficiently manage production data centers or serve as a testbed

for advanced energy-aware VM scheduling algorithms.

To the best of our knowledge this is the first cloud man-

agement system which integrates and experimentally evaluates

most of the required mechanisms to dynamically reconfigure

virtualized environments and conserve energy within a holistic

framework. Particularly, Snooze ships with integrated VM

monitoring and live migration support. Moreover, it imple-

ments a resource (i.e. CPU, memory and network) utilization

estimation engine, detects overload and underload situations

and finally performs event-based VM relocation and periodic

consolidation. Snooze is the first system implementing the

Sercon consolidation algorithm which was previously only

evaluated by simulation. Finally, once energy savings are

enabled, idle servers are automatically transitioned into a lower

power state (e.g. suspend) and woken up on demand.

The Snooze energy management mechanisms have been

extensively evaluated using a realistic dynamic web deploy-

ment scenario on 34 power-metered nodes of the Grid’5000

experimental testbed. Our results have shown that the system is

able to dynamically scale the data center energy consumption

proportionally to its utilization thus allowing it to conserve

substantial power amounts with only limited impact on ap-

plication performance. In our experiments we have shown

that with a realistic workload up to 67% of energy could

be conserved. Obviously the achievable energy savings highly

depend on the workload and the data center size.

In the future we intend to extend our work to scientific and

data analysis applications and evaluate different power man-

agement actions (e.g. suspend to ram, disk, both). Moreover

we plan to integrate our previously proposed nature-inspired

VM consolidation algorithm [21] and compare its scalability

with the existing greedy algorithm as well as alternative

consolidation approaches (e.g. based on linear programming).

In addition we plan to apply machine learning techniques in

order to predict VM resource utilization peaks and trigger

pro-active relocation and consolidation actions. Finally, power

management features will be added to the group leader in order

to support power cycling of idle group managers.

Snooze is available as open-source software under the GPL

v2 license at http://snooze.inria.fr.

VI. ACKNOWLEDGMENTS

We would like to thank Oleg Sternberg (IBM Haifa Re-

search Lab), Piyush Harsh (INRIA), Roberto G. Cascella

(INRIA), Yvon Jégou (INRIA), and Louis Rilling (ELSYS De-

sign) for all the great discussions and feedbacks. This research

is funded by the French Agence Nationale de la Recherche

(ANR) project EcoGrappe under the contract number ANR-

08-SEGI-008-02. Experiments presented in this paper were

carried out using the Grid’5000 experimental testbed, being

developed under the INRIA ALADDIN development action

with support from CNRS, RENATER and several Universities

as well as other funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] G. International, “Make IT Green: Cloud Computing and its Contribution
to Climate Change,” 2010, http://www.greenpeace.org/usa/en/media-
center/reports/make-it-green-cloud-computing/.

[2] Rackspace, “Hosting reports third quarter,” 2011. [On-
line]. Available: http://ir.rackspace.com/phoenix.zhtml?c=221673&p=
irol-newsArticle&ID=1627224&highlight=

[3] J. Koomey, “Growth in data center electricity use 2005 to
2010,” Oakland, CA, USA, August 2011. [Online]. Available:
http://www.analyticspress.com/datacenters.html

[4] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche, “Grid’5000:
A Large Scale And Highly Reconfigurable Experimental Grid Testbed,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 4, pp. 481–494, Nov.
2006. [Online]. Available: http://dx.doi.org/10.1177/1094342006070078

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the Linux virtual machine monitor,” in Ottawa Linux

Symposium, Jul. 2007, pp. 225–230. [Online]. Available: http:
//www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
Oct. 2003. [Online]. Available: http://doi.acm.org/10.1145/1165389.
945462

[7] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and gray-box strategies for virtual machine migration,” in
Proceedings of the 4th USENIX conference on Networked systems

design & implementation, ser. NSDI’07. Berkeley, CA, USA:
USENIX Association, 2007, pp. 17–17. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1973430.1973447

[8] A. Murtazaev and S. Oh, “Sercon: Server Consolidation Algorithm
using Live Migration of Virtual Machines for Green Computing,”
IETE Technical Review, vol. 28 (3), 2011. [Online]. Available:
http://tr.ietejournals.org/text.asp?2011/28/3/212/81230

[9] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755 – 768, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X11000689

[10] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in Proceedings

of the 2009 ACM SIGPLAN/SIGOPS international conference on

Virtual execution environments, ser. VEE ’09. New York, NY, USA:
ACM, 2009, pp. 41–50. [Online]. Available: http://doi.acm.org/10.1145/
1508293.1508300

[11] E. Feller, L. Rilling, and C. Morin, “Snooze: A Scalable and Autonomic
Virtual Machine Management Framework for Private Clouds,” in 12th

IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing (CCGrid 2012), Ottawa, Canada, May 2012. [Online].
Available: http://hal.inria.fr/hal-00664621

[12] Í. Goiri, J. L. Berral, O. Fitó, F. Julià, R. Nou, J. Guitart, R. Gavalda,
and J. Torres, “Energy-efficient and multifaceted resource management
for profit-driven virtualized data centers,” Future Gener. Comput.

Syst., vol. 28, no. 5, pp. 718–731, May 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2011.12.002

[13] P. Graubner, M. Schmidt, and B. Freisleben, “Energy-Efficient
Management of Virtual Machines in Eucalyptus,” in Proceedings of

the 2011 IEEE 4th International Conference on Cloud Computing,
ser. CLOUD ’11, 2011, pp. 243–250. [Online]. Available: http:
//dx.doi.org/10.1109/CLOUD.2011.26

[14] VMware, “Distributed Resource Scheduler (DRS),” 2012. [Online].
Available: http://www.vmware.com/products/drs/

[15] J. Csirik, J. B. G. Frenk, M. Labb, and S. Zhang, “On the
multidimensional vector bin packing.” Acta Cybern., vol. 9, no. 4, pp.
361–369, 1990. [Online]. Available: http://dblp.uni-trier.de/db/journals/
actaC/actaC9.html#CsirikFLZ90

[16] “Stress tool,” 2012. [Online]. Available: http://weather.ou.edu/∼apw/
projects/stress/

[17] “HAProxy - The Reliable, High Performance TCP/HTTP Load
Balancer.” [Online]. Available: http://haproxy.1wt.eu/

[18] “ab - Apache HTTP server benchmarking tool,” 2012. [Online].
Available: http://httpd.apache.org/docs/2.0/programs/ab.html

[19] “Bfire - A powerful DSL to launch experiments on BonFIRE,” 2012.
[Online]. Available: https://github.com/crohr/bfire

[20] “BonFIRE - Testbeds for Internet of Services Experimentation,” 2012.
[Online]. Available: http://www.bonfire-project.eu/

[21] E. Feller, L. Rilling, and C. Morin, “Energy-Aware Ant Colony Based
Workload Placement in Clouds,” in Proceedings of the 2011 IEEE/ACM

12th International Conference on Grid Computing, ser. GRID ’11, 2011,
pp. 26–33. [Online]. Available: http://dx.doi.org/10.1109/Grid.2011.13

