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We provide a new algorithm for the treatment of the noisy inversion of the Radon transform
using an appropriate thresholding technique adapted to a well-chosen new localized basis. We
establish minimax results and prove their optimality. In particular, we prove that the procedures
provided here are able to attain minimax bounds for any Lp loss. It is important to notice that
most of the minimax bounds obtained here are new to our knowledge. It is also important to
emphasize the adaptation properties of our procedures with respect to the regularity (sparsity) of
the object to recover and to inhomogeneous smoothness. We perform a numerical study that is of
importance since we especially have to discuss the cubature problems and propose an averaging
procedure that is mostly in the spirit of the cycle spinning performed for periodic signals.

Keywords: minimax estimation; second-generation wavelets; statistical inverse problems

1. Introduction

We consider the problem of inverting noisy observations of the d-dimensional Radon
transform. Obviously, the most immediate examples occur for d = 2 or 3. However, no
major differences arise from considering the general case.
There is considerable literature on the problem of reconstructing structures from their

Radon transforms, which is a fundamental problem in medical imaging and, more gener-
ally, in tomography. In our approach, we focus on several important points. We produce
a procedure that is efficient from an L2 point of view, since this loss function mimics
quite well in many situations the preferences of the human eye. On the other hand, we
have at the same time the requirement of clearly identifying the local bumps, of being
able to estimate the different level sets well. We also want the procedure to enjoy good
adaptation properties. In addition, we require the procedure to be simple to implement.
At the heart of such a problem, there is a notable conflict between the inversion part –

which, in the presence of noise, creates an instability reasonably handled by a singular
value decomposition (SVD) approach – and the fact that the SVD basis is very rarely
localized and, as a consequence, capable of representing local features of images, which
are especially important to recover.
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Our strategy is to follow the approach started in [11], which utilizes a construction
borrowed from [21] (see also [13]) of localized frames based on orthogonal polynomials
on the ball, which are closely related to the Radon transform SVD basis.
To achieve the goals presented above, and especially adaptation to different regulari-

ties and local inhomogeneous smoothness, we add a fine-tuned subsequent thresholding
process to the estimation performed in [11].
This improves considerably the performances of the algorithm, both from a theoretical

point of view and a numerical point of view. In effect, the new algorithm provides a much
better spatial adaptation, as well as adaptation to the classes of regularity. We prove here
that the bounds obtained by the procedure are minimax over a large class of Besov spaces
and any Lp loss: we provide upper bounds for the performance of our algorithm and lower
bounds for the associated minimax rate.
It is important to notice that because we consider different Lp losses, we provide rates

of convergence of new types attained by our procedure. Those rates are minimax since
they are confirmed by lower-bound inequalities.
The problem of choosing appropriate spaces of regularity on the ball reflecting the

standard objects analyzed in tomography is a highly non-trivial problem. We decided to
consider the spaces that seem to stay closest to our natural intuition, that is, those that
generalize to the ball the approximation properties by polynomials.
The procedure gives very promising results in the simulation study. We show that

the estimates obtained by thresholding the needlets outperform those obtained either by
thresholding the SVD or by the linear needlet estimate proposed in [11]. An important
issue in the needlet scheme is the choice of the quadrature in the needlet construction.
We discuss the possibilities proposed in the literature and consider a cubature formula
based on the full tensorial grid on the sphere, introducing an averaging close to the
cycle-spinning method.
Among others, one amazing result is that, to attain minimax rates in the L∞ norm, we

need to modify the estimator. This result is also corroborated by the numerical results:
see Theorem 2 and Figures 4 and 5.
In the first section, we introduce the Radon transform and the associated SVD basis.

The following section summarizes the construction of the localized basis, the needlets.
The procedure is introduced in Section 4, where the main theoretical results are stated for
upper bounds and lower bounds. Section 5 details the simulation study. Section 6 details
important properties of the needlet basis. The proof of the two main results stated in
Section 4 is postponed in the two last sections.

2. Radon transform and white noise model

2.1. Radon transform

Here we recall the definitions and some basic facts about the Radon transform (cf. [10, 14,
19]). Denote by Bd the unit ball in Rd, that is, Bd = {x= (x1, . . . , xd) ∈Rd: |x| ≤ 1} with

|x| = (
∑d

i=1 x
2
i )

1/2 and, by Sd−1, the unit sphere in Rd. The Lebesgue measure on Bd
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will be denoted by dx and the usual surface measure on Sd−1 by dσ(x) (sometimes we
will also deal with the surface measure on Sd, which will be denoted by dσd). We let |A|
denote the measure |A|=

∫
A
dx if A⊂Bd and |A|=

∫
A
dσ(x) if A⊂ Sd−1.

The Radon transform of a function f is defined by

Rf(θ, s) =

∫

y∈θ⊥
sθ+y∈Bd

f(sθ+ y) dy, θ ∈ S
d−1, s∈ [−1,1],

where dy is the Lebesgue measure of dimension d − 1 and θ⊥ = {x ∈ Rd: 〈x, θ〉 = 0}.
With a slight abuse of notation, we will rewrite this integral as

Rf(θ, s) =

∫

〈y,θ〉=s
f(y) dy.

By Fubini’s theorem, we have

∫ 1

−1

Rf(θ, s) ds=

∫

Bd

f(x) dx.

It is easy to see (cf. [19]) that the Radon transform is a bounded linear operator
mapping L2(B

d,dx) into L2(S
d−1 × [−1,1],dµ(θ, s)), where

dµ(θ, s) = dσ(θ)
ds

(1− s2)(d−1)/2
.

2.2. Noisy observation of the Radon transform

We consider observations of the form

dY (θ, s) =Rf(θ, s) dµ(θ, s) + εdW (θ, s),

where the unknown function f belongs to L2(B
d,dx). The meaning of this equation is

that, for any ϕ(θ, s) in L2(S
d−1 × [−1,1],dµ(θ, s)), one can observe

Yϕ =

∫
ϕ(θ, s) dY (θ, s) =

∫

Sd−1×[−1,1]

Rf(θ, s)ϕ(θ, s) dµ(θ, s) + ε

∫
ϕ(θ, s) dW (θ, s)

= 〈Rf,ϕ〉µ + εWϕ.

Here Wϕ =
∫
ϕ(θ, s) dW (θ, s) is a Gaussian field of zero mean and covariance

E(Wϕ,Wψ) =

∫

Sd−1×[−1,1]

ϕ(θ, s)ψ(θ, s) dσ(θ)
ds

(1− s2)(d−1)/2
= 〈ϕ,ψ〉µ.

The goal is to recover the unknown function f from the observation of Y . Our idea is
to refine the algorithms proposed in [11] using thresholding methods. In [11], estimation
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schemes are derived that combine the stability and computability of SVD decompositions
with the localization and multiscale structure of wavelets. To this end, a specific frame
(essentially following the construction from [13]) is used. It comprises elements of nearly
exponential localization and is, in addition, compatible with the SVD basis of the Radon
transform.

2.3. Singular value decomposition of the Radon transform

The SVD of the Radon transform was first established in [5, 15]. In this regard, we also
refer the reader to [19, 28].

2.3.1. Jacobi and Gegenbauer polynomials

The Radon SVD bases are defined in terms of Jacobi and Gegenbauer polynomials.

The Jacobi polynomials P
(α,β)
n , n ≥ 0, constitute an orthogonal basis for the space

L2([−1,1],wα,β(t) dt) with weight wα,β(t) = (1− t)α(1 + t)β , α,β > −1. They are stan-

dardly normalized by P
(α,β)
n (1) =

(
n+α
n

)
and then [1, 7, 25]

∫ 1

−1

P (α,β)
n (t)P

(α,β)
n′ (t)wα,β(t) dt= δn,n′h(α,β)n ,

where

h(α,β)n =
2α+β+1

(2n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+α+ β + 1)
.

The Gegenbauer polynomials Cλn are a particular case of Jacobi polynomials and are
traditionally defined by

Cλn(t) =
(2λ)n

(λ+ 1/2)n
P (λ−1/2,λ−1/2)
n (t), λ >−1/2,

where, by definition, (a)n = a(a+1) · · · (a+n− 1)= Γ(a+n)
Γ(a) (note that in [25] the Gegen-

bauer polynomial Cλn is denoted by Pλn ). It is readily seen that Cλn(1) =
(
n+2λ−1

n

)
=

Γ(n+2λ)
n!Γ(2λ) and

∫ 1

−1

Cλn(t)C
λ
m(t)(1− t2)λ−1/2 dt= δn,mh

(λ)
n with h(λ)n =

21−2λπ

Γ(λ)2
Γ(n+ 2λ)

(n+ λ)Γ(n+ 1)
.

2.3.2. Polynomials on Bd and S
d−1

Let Πn(R
d) be the space of all polynomials in d variables of degree ≤ n. We denote

by Pn(Rd) the space of all homogeneous polynomials of degree n and by Vn(Rd) the
space of all polynomials of degree n that are orthogonal to lower-degree polynomials
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with respect to the Lebesgue measure on Bd. Of course, V0(R
d) will be the set of all

constants. We have the following orthogonal decomposition:

Πn(R
d) =

n⊕

k=0

Vk(Rd).

Also, denote by Hn(R
d) the subspace of all harmonic homogeneous polynomials of

degree n (i.e., Q ∈Hn(R
d) if Q ∈ Pn(Rd) and ∆Q= 0) and, by Hn(S

d−1), the (injective)
restriction of the polynomials from Hn(R

d) to Sd−1. It is well known that

Nd−1(n) = dim(Hn(S
d−1)) =

(
n+ d− 1
d− 1

)
−
(
n+ d− 3
d− 1

)
∼ nd−2.

Let Πn(S
d−1) be the space of restrictions to Sd−1 of polynomials of degree ≤ n on Rd. It

is also well known that

Πn(S
d−1) =

n⊕

m=0

Hm(Sd−1)

(the orthogonality is, with respect to the surface measure, dσ on Sd−1). Hl(S
d−1) is called

the space of spherical harmonics of degree d on the sphere S
d−1.

Let Yl,m, 1≤m≤Nd−1(l), be an orthonormal basis of Hl(S
d−1), that is,

∫

Sd−1

Yl,m(ξ)Yl,m′(ξ) dσ(ξ) = δm,m′ .

Then the natural extensions of Yl,m on Bd are defined by Yl,m(x) = |x|lYl,m( x|x|) and

satisfy

∫

Bd

Yl,m(x)Yl,m′ (x) dx =

∫ 1

0

rd−1

∫

Sd−1

Yl,m(rξ)Yl,m′ (rξ) dσ(ξ) dr

=

∫ 1

0

rd+2l−1

∫

Sd−1

Yl,m(ξ)Yl,m′ (ξ) dσ(ξ) dr = δm,m′

1

2l+ d
.

For more details, we refer the reader to [6].
The spherical harmonics on Sd−1 and orthogonal polynomials on Bd are naturally

related to Gegenbauer polynomials. Thus, the kernel of the orthogonal projector onto
Hn(S

d−1) can be written as (see [24]):

Nd−1(n)∑

m=1

Yl,m(ξ)Yl,m(θ) =
2n+ d− 2

(d− 2)|Sd−1|C
(d−2)/2
n (〈ξ, θ〉). (1)

The “ridge” Gegenbauer polynomials C
d/2
n (〈x, ξ〉) are orthogonal to Πn−1(B

d) in L2(B
d)

and the kernel Ln(x, y) of the orthogonal projector onto Vn(Bd) can be written in the
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form (see [22, 28])

Ln(x, y) =
2n+ d

|Sd−1|2
∫

Sd−1

Cd/2n (〈x, ξ〉)Cd/2n (〈y, ξ〉) dσ(ξ)
(2)

=
(n+1)d−1

2dπd−1

∫

Sd−1

C
d/2
n (〈x, ξ〉)Cd/2n (〈y, ξ〉)

‖Cd/2n ‖2
dσ(ξ).

The following important identities are valid for “ridge” Gegenbauer polynomials:

∫

Bd

Cd/2n (〈ξ, x〉)Cd/2n (〈η, x〉) dx=
h
(d/2)
n

C
d/2
n (1)

Cd/2n (〈ξ, η〉), ξ, η ∈ S
d−1, (3)

and, for x ∈Bd, η ∈ Sd−1,

∫

Sd−1

Cd/2n (〈ξ, x〉)Cd/2n (〈ξ, η〉) dσ(ξ) = |Sd−1|Cd/2n (〈η, x〉); (4)

see [22]. By (2) and (4)

Ln(x, ξ) =
(2n+ d)

|Sd−1| C
d/2
n (〈x, ξ〉), ξ ∈ S

d−1,

and again by (2)

∫

Sd−1

Ln(x, ξ)Ln(y, ξ) dσ(ξ) = (2n+ d)Ln(x, y).

2.3.3. The SVD of the Radon transform

Assume that {Yl,m: 1≤m≤Nd−1(l)} is an orthonormal basis for Hl(S
d−1). Then it is

standard and easy to see that the family of polynomials,

fk,l,m(x) = (2k+ d)1/2P
(0,l+d/2−1)
j (2|x|2 − 1)Yl,m(x),

0≤ l≤ k, k− l= 2j,1≤ i≤Nd−1(l),

form an orthonormal basis of Vk(Bd); see [6]. Here, as before, Yl,m(x) = |x|lYl,m(x/|x|).
On the other hand, the collection

gk,l,m(θ, s) = [h
(d/2)
k ]

−1/2
(1− s2)(d−1)/2C

d/2
k (s)Yl,m(θ), k ≥ 0, l≥ 0,1≤m≤Nd−1(l),

is an orthonormal basis of L2(S
d−1× [−1,1],dµ(θ, s)). Most important, the Radon trans-

form R :L2(B
d) 7→ L2(S

d−1 × [−1,1],dµ(θ, s)) is a one-to-one mapping and

Rfk,l,m = λkgk,l,m, R∗gk,l,m = λkfk,l,m,
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where

λ2k =
2dπd−1

(k+ 1)(k+ 2) · · · (k+ d− 1)
=

2dπd−1

(k+ 1)d−1
∼ k−d+1.

More precisely, we have for any f ∈ L2(B
d)

Rf =
∑

k≥0

λk
∑

0≤l≤k,k−l≡0 (mod2)

∑

1≤m≤Nd−1(l)

〈f, fk,l,m〉gk,l,m.

Furthermore, for f ∈ L2(B
d),

f =
∑

k≥0

λ−1
k

∑

0≤l≤k,k−l≡0 (mod2)

∑

1≤m≤Nd−1(l)

〈Rf, gk,l,m〉µfk,l,m.

In the above identities, the convergence is in L2.
For the Radon SVD, we refer the reader to [11, 19, 28].

3. Construction of needlets on the ball

In this section, we briefly recall the construction of the needlets on the ball. This con-
struction is due to [21]. Its aim is to build a very well-localized tight frame constructed
using the eigenvectors of the Radon transform. For more precision, we refer the reader
to [11, 12, 21]
Let {fk,l,m} be the orthonormal basis of Vk(Bd) defined in Section 2.3.3. Denote by Tk

the index set of this basis, that is, Tk = {(l,m): 0≤ l≤ k, l≡ k (mod2),0≤m≤Nd−1(l)}.
Then the orthogonal projector of L2(B

d) onto Vk(Bd) can be written in the form

Lkf =

∫

Bd

f(y)Lk(x, y) dy with Lk(x, y) =
∑

l,m∈Tk

fk,l,m(x)fk,l,m(y).

Using (1), Lk(x, y) can be written in the form

Lk(x, y)

= (2k+ d)
∑

l≤k,k−l≡0 (mod2)

P
(0,l+d/2−1)
j (2|x|2 − 1)|x|lP (0,l+d/2−1)

j (2|y|2 − 1)|y|l

×
∑

m

Yl,m

(
x

|x|

)
Yl,m

(
y

|y|

)

=
(2k+ d)

|Sd−1|
∑

l≤k,k−l≡0 (mod2)

P
(0,l+d/2−1)
j (2|x|2 − 1)|x|lP (0,l+d/2−1)

j (2|y|2 − 1)|y|l

×
(
1 +

l

d/2− 1

)
C
d/2−1
l

(〈
x

|x| ,
y

|y|

〉)
.
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Another representation of Lk(x, y) has already been given in (2). Clearly,

∫

Bd

Lk(x, z)Lk′(z, y) dz = δk,k′Lk(x, y) (5)

and, for f ∈ L2(B
d),

f =
∑

k≥0

Lkf and ‖f‖22 =
∑

k

‖Lkf‖22 =
∑

k

〈Lkf, f〉. (6)

The construction of the needlets is based on the classical Littlewood–Paley decompo-
sition and a subsequent discretization.
Let a ∈C∞[0,∞) be a cut-off function such that 0≤ a≤ 1, a(t) = 1 for t ∈ [0,1/2] and

suppa⊂ [0,1]. We next use this function to introduce a sequence of operators on L2(B
d).

For j ≥ 0, write

Ajf(x) =
∑

k≥0

a

(
k

2j

)
Lkf(x) =

∫

Bd

Aj(x, y)f(y) dy

with Aj(x, y) =
∑

k

a

(
k

2j

)
Lk(x, y).

Also, we define Bjf =Aj+1f −Ajf . Then, setting b(t) = a(t/2)− a(t), we have

Bjf(x) =
∑

k

b

(
k

2j

)
Lkf(x) =

∫

Bd

Bj(x, y)f(y) dy

with Bj(x, y) =
∑

k

b

(
k

2j

)
Lk(x, y).

Obviously, for f ∈ L2(B
d),

〈Ajf, f〉=
∑

k

a

(
k

2j

)
〈Lkf, f〉 ≤ ‖f‖22.

An important result from [21] (cf. [13]) asserts that the kernels Aj(x, y), Bj(x, y) have
nearly exponential localization. Namely, for any M > 0 there exists a constant CM > 0
such that

|Aj(x, y)|, |Bj(x, y)| ≤CM
2jd

(1 + 2jd(x, y))M
√
Wj(x)

√
Wj(y)

, x, y ∈Bd, (7)

where

Wj(x) = 2−j +
√
1− |x|2, |x|2 = |x|2d =

d∑

i=1

x2i (8)
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and

d(x, y) =Arccos(〈x, y〉+
√
1− |x|2

√
1− |y|2), 〈x, y〉=

d∑

i=1

xiyi.

Let us define

Cj(x, y) =
∑

k

√
a

(
k

2j

)
Lk(x, z) and Dj(x, y) =

∑

k

√
b

(
k

2j

)
Lk(x, z).

Note that Cj and Dj have the same localization as the localization of Aj , Bj in (7)
(cf. [21]). Using (5), we get,

Aj(x, y) =

∫

Bd

Cj(x, z)Cj(z, y) dz, Bj(x, y) =

∫

Bd

Dj(x, z)Dj(z, y) dz. (9)

And, obviously, z 7→ Cj(x, z)Cj(z, y) (resp., Dj(x, z)Dj(z, y)) are polynomial of degrees
< 2j+1.
The following proposition follows from results in [21] and [27] and establishes a cubature

formula.

Proposition 1. Let {B(ξ̃i, ρ): i ∈ I} be a maximal family of disjoint spherical caps of
radius ρ= τ2−j with centers on the hemisphere S

d
+. Then for sufficiently small 0< τ ≤ 1

the set of points χj = {ξi: i ∈ I} obtained by projecting the set {ξ̃: i ∈ I} on Bd is a set
of nodes of a cubature formula that is exact for Π2j+2(Bd): for any P ∈Π2j+2(Bd),

∫

Bd

P (u) du=
∑

ξ∈χj

ωj,ξP (ξ),

where, moreover, the coefficients ωj,ξ of this cubature are positive and satisfy ωj,ξ ∼
Wj(ξ)2

−jd, and the cardinality of the set χj is of order 2jd.

3.1. Needlets

Going back to identities (9) and applying the cubature formula described in Proposition 1,
we get

Aj(x, y) =

∫

Bd

Cj(x, z)Cj(z, y) dz =
∑

ξ∈χj

ωj,ξCj(x, ξ)Cj(y, ξ) and

Bj(x, y) =

∫

Bd

Dj(x, z)Dj(z, y) dz =
∑

ξ∈χj

ωj,ξDj(x, ξ)Dj(y, ξ).

We define the father needlets, ϕj,ξ , and the mother needlets, ψj,ξ, by

ϕj,ξ(x) =
√
ωj,ξCj(x, ξ) and ψj,ξ(x) =

√
ωj,ξDj(x, ξ), ξ ∈ χj, j ≥ 0.
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We also set ψ−1,0 =
1
Bd

|Bd| and χ−1 = {0}. From above, it follows that

Aj(x, y) =
∑

ξ∈χj

ϕj,ξ(x)ϕj,ξ(y), Bj(x, y) =
∑

ξ∈χj

ψj,ξ(x)ψj,ξ(y).

Therefore,

Ajf(x) =

∫

Bd

Aj(x, y)f(y) dy =
∑

ξ∈χj

〈f,ϕj,ξ〉ϕj,ξ =
∑

ξ∈χj

αj,ξϕj,ξ, αj,ξ = 〈f,ϕj,ξ〉

and

Bjf(x) =

∫

Bd

Bj(x, y)f(y) dy =
∑

ξ∈χj

〈f,ψj,ξ〉ψj,ξ =
∑

ξ∈χj

βj,ξψj,ξ, βj,ξ = 〈f,ψj,ξ〉.

It is easy to prove (see [21]) that

‖ϕj,ξ‖2 ≤ 1.

From (6) and the fact that
∑

j≥0 b(t2
−j) = 1 for t ∈ [1,∞), it readily follows that

f =
∑

j≥−1

∑

ξ∈χj

〈f,ψj,ξ〉ψj,ξ, f ∈ L2(B
d),

and, taking the inner product with f , it leads to

‖f‖22 =
∑

j

∑

ξ∈χj

|〈f,ψj,ξ〉|2.

In turn, this shows that the family {ψj,ξ} is a tight frame for L2(B
d).

4. Needlet inversion of a noisy Radon transform and
minimax performances

Our estimator is based on an appropriate thresholding of a needlet expansion as follows.
f can be decomposed using the frame above:

f =
∑

j≥−1

∑

ξ∈χj

〈f,ψj,ξ〉ψj,ξ.

Our estimation procedure will be defined by the following steps

α̂k,l,m =
1

λk

∫
gk,l,m dY, (10)

β̂j,ξ =
∑

k,l,m

γj,ξk,l,mα̂k,l,m (11)
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with

γj,ξk,l,m = 〈gk,l,m, ψj,ξ〉

and

f̂ =

Jε∑

j=−1

∑

ξ∈χj

β̂j,ξ1{|β̂j,ξ|≥κ2jνcε}ψj,ξ (12)

with

ν = (d− 1)/2. (13)

Hence, our procedure has three steps: the first one (10) corresponds to the inversion of
the operator in the SVD basis, the second one (11) projects on the needlet basis and the
third one (12) ends up the procedure with a final thresholding. The tuning parameters
of this estimator are

• The range Jε of resolution levels will be taken such that

2Jε(d−1/2) ≤ (ε
√
log 1/ε)

−1
< 2(Jε+1)(d−1/2).

• The threshold constant κ is an important tuning of our method. The theoretical point
of view asserts that, for κ above a constant (for which our evaluation is probably not
optimal), the minimax properties hold. Evaluations of κ from the simulation point
of view are also given.

• cε is a constant depending on the noise level. We shall see that the following choice
is appropriate:

cε = ε
√
log 1/ε.

• Notice that the threshold function for each coefficient contains 2jν . This is due to
the inversion of the Radon operator and the concentration relative to the gk,l,m’s of
the needlets.

• It is important to remark here that, unlike the (linear) procedures proposed in [11],
this one does not require the knowledge of the regularity while, as will be seen in the
sequel, it attains bounds that are as good as the linear ones and even better since
they are handling much wider ranges for the parameters of the Besov spaces.

We will consider the minimax properties of this estimator on the Besov bodies con-
structed on the needlet basis. In [13], it is proved that these spaces can also be described
as approximation spaces, so they have a genuine meaning and can be compared to stan-
dard Sobolev spaces.
We define here the Besov body, Bsπ,r, as the space of functions f =

∑
j≥−1

∑
ξ∈χj

βj,ξψj,ξ
such that

∑

j

2jsr
(∑

ξ∈χj

(|βj,ξ|‖ψj,ξ‖π)π
)r/π

<∞
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(with the obvious modifications for the cases π or r = ∞) and Bsπ,r(M), the ball of
radius M of this space.

Theorem 1. For 0 < r ≤ ∞, π ≥ 1, 1 ≤ p < ∞, there exist some constant cp =
cp(s, π, r,M), κ0 such that if κ ≥ κ0, s > (d + 1)( 1π − 1

p )+ and, in addition, if π < p,

s > d+1
π − 1

2 :

(1) If 1
p <

d
d+1 ,

sup
f∈Bs

π,r(M)

(E‖f̂ − f‖pp)1/p

≤ cp(log 1/ε)
p/2

× (ε
√
log 1/ε)

(s−(d+1)(1/π−1/p))/(s+d−(d+1)/π)∧s/(s+d−1/2)∧(s−2(1/π−1/p))/(s+d−2/π)
.

(2) If d
d+1 ≤ 1

p and d > 2 or p > 1,

sup
f∈Bs

π,r(M)

(E‖f̂ −f‖pp)1/p ≤ cp(log 1/ε)
p/2(ε

√
log 1/ε)

s/(s+d−1/2)∧(s−2(1/π−1/p))/(s+d−2/π)
.

(3) If d= 2 and p= 1,

sup
f∈Bs

π,r(M)

(E‖f̂ − f‖1)≤ c1(log 1/ε)
1/2(ε

√
log 1/ε)

s/(s+2−1/2)
.

Remark 1. Up to logarithmic terms, the rates observed here are minimax, as will appear
in the following theorem. It is known that in this kind of estimation, full adaptation yields
unavoidable extra logarithmic terms. The rates of the logarithmic terms obtained in these
theorems are, most of the time, suboptimal (for instance, for obvious reasons, the case
p = 2 yields fewer logarithmic terms). A more detailed study could lead to optimized
rates, which we decided not to include here for the sake of simplicity.
The cumbersome comparisons of the different rates of convergence are summarized

in Figures 1 and 2 for the case 0 < 1
p <

d
d+1 . These figures illustrate and highlight the

differences between the cases p > 4 and p < 4. We put 1
p as the horizontal axis and the

regularity s as the vertical axis. As explained later, after the lower-bound results, zones I
and II correspond to two different types of the so called “dense” case, whereas zone III
corresponds to the “sparse” case.

For the case of an L∞ loss function, we have a slightly different result since the threshol-
ding depends on the L∞ norm of the local needlet. Let us consider the following estimate:

f̂∞ =

Jε∑

j=−1

∑

ξ∈χj

β̂j,ξ1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdcε}ψj,ξ,

2Jεd = (ε
√
log 1/ε)

−1
.
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Figure 1. The three different minimax rate type zones are shown with respect to the Besov
space parameters s and π for a fixed loss norm Lp with 0< 1

p
< 1

4
.

Then, for this estimate, we have the following results:

Theorem 2. For 0 < r ≤ ∞, π ≥ 1, s > d+1
π , there exist some constants c∞ =

c∞(s, π, r,M) such that if κ2 ≥ 4τ∞, where τ∞ := supj,ξ 2
−j(d+1)/2‖ψj,ξ‖∞,

sup
f∈Bs

π,r(M)

E‖f̂∞ − f‖∞ ≤ c∞(ε
√
log 1/ε)

(s−(d+1)/π)/(s+d−(d+1)/π)
.

The following theorem states lower bounds for the minimax rates over Besov spaces in
this model.

Figure 2. The three different minimax rate type zones are shown with respect to the Besov
space parameters s and π for a fixed loss norm p with 1

4
< 1

p
< d

d+1
.
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Theorem 3. Let E be the set of all estimators, for 0< r ≤∞, π ≥ 1, s > d+1
π .

(a) There exists some constant C∞ =C∞(s, π, r,M) such that,

inf
f⋆∈E

sup
f∈Bs

π,r(M)

E‖f⋆ − f‖∞ ≥C∞(ε
√
log 1/ε)

(s−(d+1)/π)/(s+d−(d+1)/π)
.

(b) For 1 ≤ p <∞, there exists some constant Cp = Cp(s, π, r,M) such that if s >
(d+1
π − d+1

p )+,

(1) If 1
p <

d
d+1

inf
f⋆∈E

sup
f∈Bs

π,r(M)

(E‖f⋆ − f‖pp)1/p

≥Cpε
(s−(d+1)(1/π−1/p))/(s+d−(d+1)/π)∧s/(s+d−1/2)∧(s−2(1/π−1/p))/(s+d−2/π).

(2) If d
d+1 ≤ 1

p and d > 2 or p > 1

inf
f⋆∈E

sup
f∈Bs

π,r(M)

(E‖f⋆ − f‖pp)1/p ≥Cpε
s/(s+d−1/2)∧(s−2(1/π−1/p))/(s+d−2/π).

(3) If d= 2 and p= 1

inf
f⋆∈E

sup
f∈Bs

π,r(M)

(E‖f⋆ − f‖1)≥Cpε
s/(s+2−1/2).

Remark 2. A careful look at the proof shows that the different rates observed in the
two preceding theorems can be “explained” by geometrical considerations. In fact, de-
pending on the cubature points around which they are centered, the needlets do not
behave the same way. In particular, their Lp norms differ. This leads us to consider
two different regions on the sphere, one near the pole and one closer to the equator. In
these two regions, we considered dense and sparse cases in the usual way. This yielded
four rates. Then it appeared that one of them (sparse) is always dominated by the oth-
ers.

5. Applications to the fan beam tomography

5.1. The 2D case: Fan beam tomography

When d= 2, the Radon transform studied in this paper is the fan beam Radon transform
used in a computed axial tomography (CAT) scan. The geometry of such a device is
illustrated in Figure 3. An object is placed in the middle of the scanner and X-rays are
sent from a pointwise source, S(θ1), making an angle θ1 with a reference direction. Rays
go through the object and the energy decay between the source and an array of receptors
is measured. As the log decay along the ray is proportional to the integral of the density f
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Figure 3. Simplified CAT device.

of the object along the same ray, the measurements are

R̃f(θ1, θ2) =

∫

eθ1+λe(θ1−θ2)∈B2

f(x) dλ

with eθ = (cosθ, sinθ). This is equivalent to the classical Radon transform

Rf(θ, s) =

∫

y∈θ⊥,
sθ+y∈B2

f(sθ+ y) dy, θ ∈ S1, s∈ [−1,1],

for θ = θ1 − θ2 and s= sin θ2. The ray source is then rotated to a different angle and the
measurement process is repeated. In our Gaussian white noise model, we measure the
continuous function Rf(θ, s) through the process dY = Rf(θ, s) dθ ds

(1−s2) + εdW (θ, s).

The measure dθ ds
(1−s2) corresponds to the uniform measure dθ1 dθ2 by the change of the

variable that maps (θ1, θ2) into (θ, s). Our goal is to recover the unknown function, f,
from the observation of Y using the needlet thresholding mechanism described in the
previous sections.
In our implementation, we exploit the tensorial structure of the SVD basis of the disk

in polar coordinates:

fk,l,m(r, θ) = (2k+ 2)1/2P
(0,l)
j (2|r|2 − 1)|r|lYl,m(θ), 0≤ l≤ k, k− l= 2j,1≤m≤ 2,

where P 0,l
j is the corresponding Jacobi polynomial, and Yl,1(θ) = cl cos(lθ) and Yl,2(θ) =

cl sin(lθ) with c0 =
1√
2π

and cl =
1√
π
, otherwise. The basis of S2 × [−1,1] has a similar

tensorial structure as it is given by

gk,l,m(θ, s) = [hk]
−1/2(1− s2)1/2C1

k(s)Yl,m(θ), k ≥ 0, l≥ 0,1≤m≤ 2,

where C1
k is the Gegenbauer of parameter 1 and degree k. We recall that the correspond-

ing eigenvalues are

λk =
2
√
π√

k+ 1
.
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5.2. SVD, needlet and cubature

In our numerical studies, we compare four different type of estimators: linear SVD esti-
mators, thresholded SVD estimators, linear needlet estimators and thresholded needlet
estimators. They are defined from the measurement of the values of the Gaussian field
on the SVD basis function Ygk,l,m

and the following linear estimates of, respectively, the
SVD basis coefficients 〈f, fk,l,m〉 and the needlet coefficients 〈f,ψj,ξ〉,

α̂k,l,m =
1

λk
Ygk,l,m

=
1

λk

∫
gk,l,m dY

and

β̂j,ξ =
√
ωj,ξ

∑

k

√
b(k/2j)

∑

l,m

gk,l,m(ξ)α̂k,l,m.

The estimators we consider are respectively defined as:

linear SVD estimates f̂LS
J =

∑

k<2J

∑

l,m

α̂k,l,mfk,l,m,

linear needlet estimates f̂LN
J =

∑

j<J

∑

ξ

β̂j,ξψj,ξ,

thresholded SVD estimates f̂TS
T =

∑

k<2J

∑

l,m

ρTk
(α̂k,l,m)fk,l,m,

thresholded needlet estimates f̂TN
T =

∑

j<J

∑

ξ

ρTj,ξ
(β̂j,ξ)ψj,ξ,

where ρT (·) is the hard threshold function with threshold T :

ρT (x) =

{
x, if |x| ≥ T ,
0, otherwise.

A more precise description is given in Table 1. In our experiments, the values of Ygk,l,m

have been obtained from an initial approximation of 〈f, fk,l,m〉 computed with a very
fine cubature to which a Gaussian i.i.d. sequence is added.
We have used, in our numerical experiments, thresholds of the form

Tk =
κ

λk
ε
√
log 1/ε and Tj,ξ = κσj,ξε

√
log 1/ε,

where σj,ξ is the standard deviation of the noisy needlet coefficients when f = 0 and ε= 1:

σ2
j,ξ = ωj,ξ

∑

k

b(k/2j)
∑

l,m

gk,l,m(ξ)2.
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Table 1. Algorithmic description of the considered estimators

Linear SVD Thresh. SVD Linear needlet Thresh. needlet

f̂LS f̂TS f̂LN f̂TN

Observation dY =Rf dθ ds√
1−s2

+ εdW

SVD Dec Yhk,l,
= 〈Y, gk,l,m〉= 〈Rf, gk,l,m〉+ εk,l,m = µk〈f, fk,l,m〉+ εk,l,m

Inv. Radon α̂k,l,m = 1

µk
〈Y, gk,l,m〉= 〈f, fk,l,m〉+ 1

µk
εk,l,m

Needlet
transf.

β̂j,ξ =
√
ωj,ξ

∑
k

√
b( k

2j
)

×∑
l,m

fk,l,m(ξ)α̂k,l,m

Coeff. mod. α̂SL
k,l,m = 1k≤kmax α̂k,l,m α̂ST

k,l,m = ρTk (α̂k,l,m) β̂NL
j,ξ = 1j<jmax β̂j,ξ β̂NT

j,ξ = ρTj,ξ (β̂j,ξ)

Needlet
inv.

α̂⋆
k,l,m =

∑
j

√
b( k

2j
)

×∑
ξ∈χj

√
ωj,ξfk,l,m(ξ)β̂⋆

j,ξ

SVD rec. f̂⋆ =
∑

k,l,m α̂⋆
k,l,mfk,l,m

Note that, while the needlet threshold is different than in Theorem 1, as σj,ξ is of or-
der 2jν , its conclusions remain valid.
An important issue in the needlet scheme is the choice of the cubature in the needlet

construction. Proposition 1 ensures the existence of a suitable cubature ξj for every level j

based on a cubature ξ̃j on the sphere but gives neither an explicit construction of the
points on the sphere nor an explicit formula for the weights ωj,ξ. Those ingredients are,
nevertheless, central in the numerical scheme and should be specified.
Three possibilities have been considered: a numerical cubature deduced from an almost

uniform cubature of the half sphere available, an approximate cubature deduced from
the Healpix cubature on the sphere and a cubature obtained by subsampling a tensorial
cubature associated to the latitude and longitude coordinates on the sphere. The first
strategy has been considered by Baldi et al. [2] in a slightly different context; there is,
however, a strong limitation on the maximum degree of the cubature available and, thus,
this solution has been abandoned. The Healpix strategy, also considered by Baldi et al. in
another paper [3], is easily implementable but, as it is based on an approximate cubature,
fails to be precise enough in our numerical experiments. The last strategy relies on the
subsampling on a tensorial grid on the sphere. While such a strategy provides a simple
way to construct an admissible cubature, the computation of the cubature weights is
becoming an issue as no closed form is available.
To overcome those issues, we have considered a cubature formula based on the full

tensorial grid appearing as proposed by [16]. This cubature does not satisfy the condi-
tion of Proposition 1, but its weights can be computed explicitly. Furthermore, we argue
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that, using our modified threshold, we can still control the risk of the estimator. Indeed,
note first that the modified threshold is such that the thresholding of a needlet depends
only on its scale parameter j and on its center ξ and not on the corresponding cubature
weight ωj,ξ. Assume now that we have a collection of K cubature, each satisfying condi-

tions of Proposition 1 and thus defining a suitable estimate, f̂k. We can use the “average”
cubature obtained by adding all the cubature points and averaging the cubature weights.
This new cubature defines a new estimate, f̂ , satisfying

f̂ =
1

K

K∑

k=1

f̂k.

By convexity, for any p≥ 1,

‖f − f̂‖pp =
∥∥∥∥∥f − 1

K

K∑

k=1

f̂k

∥∥∥∥∥

p

p

≤ 1

K

K∑

k=1

‖f − f̂k‖pp

and, thus, this average estimator is as efficient as the worst estimator in the family f̂k. The
full tensorial cubature is an average of suitable cubatures. The corresponding estimator
satisfies the error bounds of Theorems 1 and 2. Note that this principle is quite close to the
cycle-spinning method introduced by Donoho et al. Indeed, the same kind of numerical
gain is obtained with this method. The numerical comparison of the Healpix cubature
and our tensorial cubature is largely in favor of our scheme. Furthermore, as already
noticed by [16], the tensorial structure of the cubature leads to some simplification in
the numerical implementation of the needlet estimator. The resulting scheme is almost
as fast as the Healpix-based one.

5.3. Numerical results

In this section, we compare five “estimators” (linear SVD with best scale, linear needlet
with best scale, thresholded SVD with best κ, thresholded needlet with best κ and thresh-
olded needlet with κ= 3) for seven different norms (L1, L2, L4, L6, L7, L8, L10 and L∞)
and seven noise levels ε (2k/1 000 for k in 0,1, . . . ,6). Each subfigure of Figures 4 and 5
plots the logarithm of the estimation error for a specific norm against the opposite of the
logarithm of the noise level. Note that the subfigure overall aspect is explained by the
error decay when the noise level diminishes. The good theoretical behavior of the thresh-
olded needlet estimator is confirmed numerically: the thresholded needlet estimator with
an optimized κ appears as the best estimator for every norm while a fixed κ yields a very
good estimator, except for the L∞ case, as expected by our theoretical results. These
results are confirmed visually by the reconstructions of Figure 6. In the needlet ones,
errors are smaller and much more localized than in their SVD counterparts. Observe also
how the fine structures are much more preserved with the thresholded needlet estimate
than with any other methods.
We conclude this paper with some sections devoted to the proofs of our results.
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Figure 4. Estimation results in log Lp norm. Each figure shows the decay of the logarithm of
the error against the logarithm of the noise parameter for the specified norm.

6. Needlet properties

6.1. Key inequalities

The following inequalities are true (and proved in [13, 17, 18, 20]) and will be fundamental
in the sequel. In the following lines, gj,ξ will stand either for ϕj,ξ or ψj,ξ :

∀j ∈N, ∀ξ ∈ χj 0< c≤ ‖gj,ξ‖22 ≤ 1, (14)

∀j ∈N, ξ ∈ χj , ∀x ∈ X
∑

ξ∈χj

‖gj,ξ‖1|gj,ξ(x)| ≤C <∞, (15)

|gj,ξ(x)| ≤CM
2jd/2√

Wj(x)(1 + 2jd(x, ξ))M
(16)
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Figure 5. Estimation results in log Lp norm. Each figure shows the decay of the logarithm of
the error against the logarithm of the noise parameter for the specified norm.

(recall that Wj(x) has been defined in (8)). From these inequalities, one can deduce the
following ones (see [12]): for all 1≤ p≤∞,

(∑

ξ∈χj

|〈f, gj,ξ〉|p‖gj,ξ‖pp
)1/p

≤ C‖f‖p, (17)

∥∥∥∥
∑

ξ∈χj

λξgj,ξ(x)

∥∥∥∥
p

≤
(
C

c

)2(∑

ξ∈χj

‖λξgj,ξ‖pp
)1/p

. (18)

6.2. Besov embeddings

It is a key point to clarify how the Besov spaces defined above may be included in each
of the others. As will be seen, the embeddings will parallel the standard embeddings
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Figure 6. Visual comparison for the original Logan–Shepp phantom with ε= 8/1000. Errors
are much more localized in the needlet-based estimates compared to the fully delocalized errors
of the SVD based estimates. Fine structures are much more restored in the thresholded needlet
estimate than in the other estimates.
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of usual Besov spaces, but with important differences, which, in particular, yield new
minimax rates of convergence as detailed above.
We begin with an evaluation of the different Lp norms of the needlets. More precisely,

in [13] it is shown that, for 0< p≤∞,

‖ψj,ξ‖p ∼ ‖ϕj,ξ‖p ∼
(

2jd

Wj(ξ)

)1/2−1/p

, ξ ∈ χj . (19)

The following inequalities are proved in [11]:

∑

ξ∈χj

‖gj,ξ‖pp ≤ c2j(dp/2+(p/2−2)+) if p 6= 4, (20)

∑

ξ∈χj

‖gj,ξ‖pp ≤ cj2jdp/2 if p= 4. (21)

We are now able to state the embedding results (see [12]).

Theorem 4. (1) 1≤ p≤ π ≤∞⇒Bsπ,r ⊆Bsp,r.

(2) ∞≥ p≥ π > 0, s > (d+ 1)(1/π− 1/p), ⇒Bsπ,r ⊆B
s−(d+1)(1/π−1/p)
p,r .

7. Proof of the upper bounds

A important tool for the proof of the upper bounds that clarifies the thresholding pro-
cedure is the following lemma.

Lemma 1. For all j ≥−1, ξ ∈ χj, β̂j,ξ has a Gaussian distribution with mean βj,ξ and
variance σ2

j,ξ, with

σ2
j,ξ ≤ c2j(d−1)ε2.

Proof. As we can write

β̂j,ξ =
∑

k,l,m

γj,ξk,l,m

∫

Bd

ffk,l,m dx+
∑

k,l,m

γj,ξk,l,m
ε

λk
Zk,l,m

= βj,ξ +Zj,ξ.

Here the summation is over {(k, l,m): 0 ≤ k < 2j ,0 ≤ l ≤ k, l ≡ k (mod2),1 ≤ m ≤
Nd−1(l)}. Since the Zk,l,m’s are independent N(0,1) random variables, Zj,ξ ∼N(0, σ2

j,ξ),
we have

σ2
j,ξ = ε2

∑

k,l,m

|γj,ξk,l,m|2 (k)d
π
d−12dk

≤ (2j)d−1

π
d−12d

≤ c2j(d−1)ε2 (22)
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with c= (d/2π)d−1. Here, we used that {fk,l,m} is an orthonormal basis for L2 and hence∑
k,l,m |γj,ξk,l,m|2 = ‖ψj,ξ‖22 ≤ 1. �

Let us now begin with the second theorem, the proof of which is slightly simpler.

7.1. Proof of Theorem 2

In this proof, as well as in the other one, C will denote any constant in the sense of
Theorems 1–3; we assume that f belongs to the Besov ball Bsπ,r(M) and measure the
loss in Lp norm (here, p =∞). Then C denotes a generic quantity that depends only
on s, r, p and M . Note that the exact value denoted by C may vary from one line to
another.
We have, if we denote

AJ (f) :=
∑

j>J

∑

ξ∈χj

βj,ξψj,ξ,

‖f̂∞ − f‖∞ ≤ ‖f̂∞ −AJ(f)‖∞ + ‖AJ(f)− f‖∞
≤ ‖f̂∞ −AJ(f)‖∞ +C‖f‖Bs

π,r
2−J(s−(d+1)/π).

We have used, as Bsπ,r ⊂B
s−(d+1)1/π
∞,r ,

‖AJf − f‖∞ ≤C‖f‖Bs
π,r

2−J(s−(d+1)1/π).

Moreover,

2−J(s−(d+1)/π) ≤ (ε
√
log 1/ε)

−(s−(d+1)/π)/d ≤ (ε
√
log 1/ε)

−(s−(d+1)/π)/(s−(d+1)/π+d)

as s > d+1
π .

We have, using (18),

‖f̂∞ −AJ (f)‖∞ ≤
∑

j<J

∥∥∥∥
∑

ξ∈χj

(β̂j,ξ1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdε
√

log 1/ε} − βj,ξ)ψj,ξ

∥∥∥∥
∞

≤
∑

j<J

(∥∥∥∥
∑

ξ∈χj

((β̂j,ξ − βj,ξ)ψj,ξ1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdε
√

log 1/ε})

∥∥∥∥
∞

+

∥∥∥∥
∑

ξ∈χj

(βj,ξψj,ξ1{|β̂j,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε})

∥∥∥∥
∞

)

≤ C

c

∑

j<J

(
sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdε
√

log 1/ε})

+ sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε})

)
.
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We decompose the first term of the last inequality

sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdε
√

log 1/ε})

= sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞≥κ2jdε
√

log 1/ε}

× (1{|βj,ξ|‖ψj,ξ‖∞≥(κ/2)2jdε
√

log 1/ε} +1{|βj,ξ|‖ψj,ξ‖∞<(κ/2)2jdε
√

log 1/ε}))

≤ sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞≥(κ/2)2jdε
√

log 1/ε})

+ sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|βj,ξ|‖ψj,ξ‖∞>(κ/2)2jdε
√

log 1/ε})

and the second one

sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε})

= sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε}

× (1{|βj,ξ|‖ψj,ξ‖∞≥2κ2jdε
√

log 1/ε} + 1{|βj,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε}))

≤ sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞>κ2jdε
√

log 1/ε})

+ sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|βj,ξ|‖ψj,ξ‖∞<κ2jdε
√

log 1/ε}).

Now we will bound each of the four terms coming from the last two inequalities. Since
for X ∼N(0, σ2), we have

E(|Y |1{|Y |>λσ}) = σ
2√
2π

∫ ∞

λ

ye−y
2/2 dy = e−λ

2/2 2√
2π

≤ e−λ
2/2.

Noticing that the standard deviation of (β̂j,ξ−βj,ξ)‖ψj,ξ‖∞ is smaller than τ∞2jdε (using
Lemma 1 and (16)), we have

∑

j≤J
E

(
sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞≥(κ/2)2jdε
√

log 1/ε})

)

≤
∑

j≤J

∑

ξ∈χj

E(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞≥(κ/2)2jdε
√

log 1/ε})≤ c2Jdεκ
2/2τ2

∞

≤Cεκ
2/2τ2

∞−1
√
log1/ε

−1 ≤Cε
√
log1/ε

if κ2 ≥ 4τ2∞, where we have used Cardχj ≤ c2jd. This proves that this term will be of
the right order.
For the second term, let us observe that we have, using Theorem 4,

|βj,ξ|‖ψj,ξ‖∞ ≤C‖f‖Bs
π,r

2−j(s−(d+1)/π),
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so only the j’s index such that j ≤ j1 will verify this inequality:

2j1 ∼
(
2C‖f‖Bs

π,r

κ
(ε
√
log1/ε)

)−1/(s+d−(d+1)π)

.

On the other side, using the Pisier lemma [23],

E

(
sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞)

)
≤ τ∞2jdε

√
2 log2c2jd.

So

∑

j≤j1
E

(
sup
ξ∈χj

(|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞1{|βj,ξ|‖ψj,ξ‖∞>(κ/2)2jdε
√

log 1/ε})
)

≤ τ∞
∑

j≤j1
2jdε

√
2 log2c2jd ≤Cεj

1/2
1 2j1d

.C(‖f‖Bs
π,r

)(s−(d+1)π)/(s+d−(d+1)/π)(ε
√
log 1/ε)

(s−(d+1)/π)/(s+d−(d+1)/π)
.

This proves that this term will be of the right order. Concerning the first term of the
second inequality,

E

(
sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞>κ2jdε
√

log 1/ε})
)

≤C‖f‖Bs
π,r

∑

ξ∈χj

P (|β̂j,ξ − βj,ξ|‖ψj,ξ‖∞ > κ2jdε
√
log 1/ε)

but

P (|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞ > κ2jdε log1/ε)≤ e−(κ2jdε
√

log 1/ε)2/(2(ε2j(d−1)/2‖ψj,ξ‖∞)2) ≤ εκ
2/2τ2

∞ .

So

∑

j≤J
E

(
sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|β̂j,ξ−βj,ξ|‖ψj,ξ‖∞>κ2jdε
√

log 1/ε})

)

≤C‖f‖Bs
π,r
Jεκ

2/2τ2
∞ ≤C‖f‖Bs

π,r
(ε
√
log 1/ε)

(s−(d+1)/π)/(s+d−(d+1)/π)

if κ2/2≥ τ2∞. This proves that this term will be of the right order. Concerning the second
term of the second inequality,

sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|βj,ξ|‖ψj,ξ‖∞<2κ2jdε
√

log 1/ε})

≤ 2κ2jdε
√
log 1/ε∧C‖f‖Bs

π,r
2−j(s−(d+1)/π),
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let us again take

2j1 ∼ (ε
√
log 1/ε)

−1/(s+d−(d+1)π)

∑

j≤J
sup
ξ∈χj

(|βj,ξ|‖ψj,ξ‖∞1{|βj,ξ|‖ψj,ξ‖∞<2κ2jdε log 1/ε})

≤C‖f‖Bs
π,r

(
ε log1/ε

∑

j≤j1
2jd +

∑

j1<j≤J
2−j(s−(d+1)/π)

)

.C‖f‖Bs
π,r

(ε
√
log1/ε)

(s−(d+1)/π)/(s+d−(d+1)/π)
.

This ends the proof of Theorem 2.

7.2. Proof of Theorem 1

As in the previous proof, we begin with the decomposition,

‖f̂ε− f‖pp ≤ 2p−1(‖f̂ε −AJ (f)‖pp + ‖AJ(f)− f‖pp).

Using the fact that, for π ≥ p, Bsπ,r ⊂ Bsp,∞, and for π ≤ p,Bsπ,r ⊂ B
s−(d+1)(1/π−1/p)
p,∞ ,

we obtain

‖AJ(f)− f‖pp ≤C‖f‖pBs
π,r

2−Jsp if π ≥ p

and

‖AJ(f)− f‖pp ≤C‖f‖pBs
π,r

2−J(s−(d+1)(1/π−1/p))p if π ≤ p.

We have 2−Jsp ≤ (ε
√
log1/ε)sp/(d−1/2) ≤ (ε

√
log 1/ε)sp/(s+d−1/2). Obviously, this term

has the right rate for π ≥ p. For π < p,

2−J(s−(d+1)(1/π−1/p)) ≤ (ε log 1/ε)(s−(d+1)(1/π−1/p))/(d−1/2)

≤ (ε log 1/ε)(s−(d+1)(1/π−1/p))/(s+d−(d+1)/π),

thanks to s≥ (d+1)/π− 1/2. This gives the right rate for dp > d+1. For dp≤ d+1, we
have (again as s≥ (d+1)/π−1/2 ), s− (d+1)( 1π − 1

p )≥ d− 1
2 , so 2−J(s−(d+1)(1/π−1/p)) ≤

(ε log1/ε)(s−(d+1)(1/π−1/p))/(d−1/2) ≤ (ε log 1/ε)s/(s+d−1/2). Finally, this proves that the
bias term above always has the right rate.
Let us now investigate the stochastic term

E‖f̂ −AJ (f)‖pp ≤CJp−1
∑

j<J

E

∥∥∥∥
∑

ξ∈χj

(β̂j,ξ1{|β̂j,ξ|≥κ2jνε
√

log 1/ε} − βj,ξ)ψj,ξ

∥∥∥∥
p

p

.
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But

∥∥∥∥
∑

ξ∈χj

(β̂j,ξ1{|β̂j,ξ|≥κ2jνε
√

log 1/ε} − βj,ξ)ψj,ξ

∥∥∥∥
p

p

≤C2p−1

(∥∥∥∥
∑

ξ∈χj

((β̂j,ξ − βj,ξ)ψj,ξ1{|β̂j,ξ|≥κ2jνε
√

log 1/ε})

∥∥∥∥
p

p

+

∥∥∥∥
∑

ξ∈χj

(βj,ξψj,ξ1{|β̂j,ξ|<κ2jνε
√

log 1/ε})

∥∥∥∥
p

p

)

≤C

(∑

ξ∈χj

|β̂j,ξ − βj,ξ|p‖ψj,ξ‖pp1{|β̂j,ξ|≥κ2jνε
√

log 1/ε}

+
∑

ξ∈χj

|βj,ξ|p‖ψj,ξ‖pp1{|β̂j,ξ<κ2jνε
√

log 1/ε}

)
.

In turn,

|β̂j,ξ − βj,ξ|p1{|β̂j,ξ|≥κ2jνε
√

log 1/ε}

= |β̂j,ξ − βj,ξ|p1{|β̂j,ξ|≥κ2jνε
√

log 1/ε}(1{|βj,ξ|≥(κ/2)2jνε
√

log 1/ε} + 1{βj,ξ|<(κ/2)2jνε
√

log 1/ε})

≤ |β̂j,ξ − βj,ξ|p1{|β̂j,ξ−βj,ξ|≥(κ/2)2jνε
√

log 1/ε} + |β̂j,ξ − βj,ξ|p1{|βj,ξ|>(κ/2)2jdε
√

log 1/ε}

and

|βj,ξ|p1{|β̂j,ξ<κ2jdε
√

log 1/ε} = |βj,ξ|p1{|β̂j,ξ<κ2jdε
√

log 1/ε}

× (1{|βj,ξ|≥2κ2jdε
√

log 1/ε} + 1{|βj,ξ|<κ2jdε
√

log 1/ε})

≤ |βj,ξ|p1{|β̂j,ξ−βj,ξ|>κ2jdε
√

log 1/ε} + |βj,ξ|p1{|βj,ξ|<κ2jdε
√

log 1/ε}.

We now have the following bound using direct computation:

E(|β̂j,ξ − βj,ξ|p1{|β̂j,ξ−βj,ξ|≥(κ/2)2jνε
√

log 1/ε})≤C2jpνεp(κ
√
log 1/ε)

p−1
εκ

2/2.

Hence,

Jp−1
∑

j≤J

∑

ξ∈χj

E(|β̂j,ξ − βj,ξ|p‖ψj,ξ‖pp1{|β̂j,ξ−βj,ξ|≥(κ/2)2jνε
√

log 1/ε})

≤CJp−1
∑

j≤J
εp(κ

√
log 1/ε)

p−1
εκ

2/2
∑

ξ∈χj

‖ψj,ξ‖pp
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≤C
√
log 1/ε

p−1
εp(κ

√
log1/ε)

p−1
εκ

2/2
∑

j≤J
2jpν2j(dp/2+(p/2−2)+)

≤Cεp

if κ≥√
2p is large enough (we have used (19)).

Using the forthcoming inequality (24),

∑

ξ∈χj

E(|β̂j,ξ − βj,ξ|p‖ψj,ξ‖pp1{|βj,ξ|>(κ/2)2jνε
√

log 1/ε})

≤Cεp
∑

ξ∈χj

2jνp‖ψj,ξ‖pp1{|βj,ξ|>(κ/2)2jνε
√

log 1/ε}

≤Cεp
(
κ

2
ε
√
log 1/ε

)−q
.

Hence,

Jp−1
∑

j≤J

∑

ξ∈χj

E(|β̂j,ξ − βj,ξ|p‖ψj,ξ‖pp1{|βj,ξ|>(κ/2)2jνε
√

log 1/ε})

≤CJp
√
log 1/ε

−p
(
κ

2

)−q
(ε
√
log1/ε)

p−q

and, as J ≤ 1
d−1/2 log 1/ε+ 1,

≤C(ε
√
log1/ε)

p−q
(log 1/ε)p/2.

This term is thus of the right rate. Let us now turn to

∑

ξ∈χj

E(|βj,ξ|p‖ψj,ξ‖pp1{|β̂j,ξ−βj,ξ|>κ2jνε
√

log 1/ε})

=
∑

ξ∈χj

|βj,ξ|p‖ψj,ξ‖ppP (|β̂j,ξ − βj,ξ|> κ2jνε
√
log 1/ε).

As the standard deviation of β̂j,ξ − βj,ξ is smaller than ε2j(d−1)/2,

P (|β̂j,ξ − βj,ξ|> κ2jνε
√
log 1/ε)≤ εκ

2/2.

So

Jp−1
∑

j≤J
E

(∑

ξ∈χj

|βj,ξ|p‖ψj,ξ‖pp1{|β̂j,ξ−βj,ξ|>κ2jνε
√

log 1/ε}

)

≤C‖f‖pBs
π,r
Jp−1εκ

2/2 ≤C(ε
√
log 1/ε)

p
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if κ2 is large enough (where we have used that Bsπ,r ⊂ Bs
′

p,r ⊂ Lp with s′ = s − (d +
1)(1/π− 1/p)). Hence this term also is of the right order.
Let us turn now to the last one, using (24)

∑

ξ∈χj

|βj,ξ|p‖ψj,ξ‖pp1{|βj,ξ|<2κ2jνε
√

log 1/ε} ≤ (2κε
√
log1/ε)

p−q
.

Hence,

Jp−1
∑

j≤J
sup
ξ∈χj

(|βj,ξ|‖pψj,ξ‖pp1{|βj,ξ|<2κ2jνε
√

log 1/ε})

≤C‖f‖Bs
π,r
Jp(ε

√
log1/ε)

p−q ≤C‖f‖Bs
π,r

√
log 1/ε

p
(ε
√
log 1/ε)

p−q
.

This proves that all the terms have the proper rate. It remains now to state and prove
the following lemma.

Lemma 2. Let A = {(s, π), s > (d+ 1)( 1π − 1
p ) ∩ (s > 0)}, and f ∈ Bsπ,r,1≤ π ≤∞,1≤

p <∞. If
∑

ξ∈χj
(|βj,ξ|‖ψj,ξ‖π)π = ρπj 2

−jsπ with ρ ∈ lr(N), then, with ν = d−1
2 ,

∑

ξ∈χj

( |βj,ξ|
2jν

)q
(2jν‖ψj,ξ‖p)p ≤Cρqj ,

where q < p is as follows:

(1) p− q = sp
s+d−1/2 (q =

(d−1/2)p
s+d−1/2 ) in the following domain I:

{(s, π), (s(1/p− 1/4)≥ (d− 1/2)(1/π− 1/p))∩A}.

Moreover, we have the following slight modification at the frontier: the domain becomes

{(s, π), (s(1/p− 1/4) = (d− 1/2)(1/π− 1/p))∩A}

and the inequality

∑

ξ∈χj

( |βj,ξ|
2jν

)q
(2jν‖ψj,ξ‖p)p ≤Cρqjj

1−q/π .

(2) p− q = (s−2(1/π−1/p))p
s+d−2/π (q = dp+2

s+d−2/π ) in the following domain II:

{(s, π)(s > dp(1/π− 1/p))∩ (s(1/p− 1/4)< (d− 1/2)(1/π− 1/p))∩A}.

(3) p− q = (s−(d+1)(1/π−1/p))p
s+d−(d+1)/π (q = dp−(d+1)

s+d−(d+1)/π ) in the following domain III:

{
(s, π),

(
dp

(
1

π
− 1

p

)
≥ s

)
∩A, for 1

p
<

d

d+ 1

}
.

This lemma is to be used essentially through the following corollary.
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Corollary 1. Respectively, in the domains I, II, III, we have, for q described in the
lemma and f ∈Bsπ,r,

∑

ξ∈χj

1{|βj,ξ|/2jν≥λ}(2
jν‖ψj,ξ‖p)p ≤Cρqjλ

−q, (23)

∑

ξ∈χj

1{|βj,ξ|/2jν≤2jνλ}|βj,ξ|p‖ψj,ξ‖pp ≤Cρqjλ
p−q (24)

with an obvious modification for

{(s, π), (s(1/p− 1/4) = (d− 1/2)(1/π− 1/p))∩A}.

Proof. Let us recall that on a measure space (X,µ) we have, if h ∈ Lq(µ) then µ(|h| ≥
λ)≤ ‖h‖q

q

λq and, as q < p,

∫

|h|≤λ
|h|p dµ ≤

∫
(|h| ∧ λ)p dµ=

∫ λ

0

pxp−1µ(|h| ≥ x) dx

≤
∫ λ

0

pxp−1
‖h‖qq
xq

dx=
p‖h‖qq
p− q

λp−q .

For the corollary, we take X = χj , µ(ξ) = (2jν‖ψj,ξ‖p)p and h(ξ) =
|βj,ξ|
2jν . �

Proof of Lemma 2. Let us fix q (chosen later) and investigate separately the two cases
q ≥ π and q < π.
For q ≥ π, we have, using (19),

Ij(f, q, p) =
∑

ξ∈χj

∣∣∣∣
βj,ξ
2jν

∣∣∣∣
q

‖2jνψj,ξ‖pp ∼ 2jν(p−q)
∑

ξ∈χj

|βj,ξ|q
(

2jd

Wj(ξ)

)p/2−1

≤ 2jν(p−q)
(∑

ξ∈χj

(
|βj,ξ|q

(
2jd

Wj(ξ)

)p/2−1)π/q)q/π

= 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π
(

2jd

Wj(ξ)

)(p/2−1)π/q)q/π

= 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π
(

2jd

Wj(ξ)

)π/2−1(
2jd

Wj(ξ)

)(π/q)(p/2−1)−(π/2−1))q/π

≤ 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π
(

2jd

Wj(ξ)

)π/2−1)q/π
2j(d+1)((p−q)/2+q(1/π−1/q)
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if we choose q such that (sq+d(p− q)+(d+1)q( 1π − 1
q )) = 0 gives q = pd−(d+1)

s+d−(d+1)π . Hence,

p− q = s−(d+1)(1/π−1/p)
s+d−(d+1)π p; q − π =−π s−pd(1/π−1/p)

s+d−(d+1)π . Thus, in domain III,

{(
1

p
<

d

d+ 1

)
∩ (s− (d+ 1)(1/π− 1/p)> 0)∩ (s− pd(1/π− 1/p)≤ 0)

}
,

we have 0< q < p, π ≤ q,
∑

ξ∈χj
|βj,ξ

2jν |q‖2jνψj,ξ‖pp ≤ ρqj .

For q < π, we have, using (19),

Ij(f, q, p) =
∑

ξ∈χj

∣∣∣∣
βj,ξ
2jν

∣∣∣∣
q

‖2jνψj,ξ‖pp ∼ 2jν(p−q)
∑

ξ∈χj

|βj,ξ|q
(

2jd

Wj(ξ)

)p/2−1

,

2jν(p−q)
∑

ξ∈χj

|βj,ξ|q
(

2jd

Wj(ξ)

)(π/2−1)q/π(
2jd

Wj(ξ)

)(p/2−1)−(π/2−1)q/π

≤ 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π
(

2jd

Wj(ξ)

)π/2−1)q/π

×
(∑

ξ∈χj

(
2jd

Wj(ξ)

)π/(π−q)((p/2−1)−(π/2−1)q/π))1−q/π

∼ 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π‖ψj,ξ‖ππ
)q/π(∑

ξ∈χj

(
2jd

Wj(ξ)

)(π(p−q)/(2(π−q)))−1)1−q/π

∼ 2jν(p−q)
(∑

ξ∈χj

|βj,ξ|π‖ψj,ξ‖ππ
)q/π(∑

ξ∈χj

‖ψj,ξ‖π(p−q)/(π−q)π(p−q)/(π−q)

)1−q/π
.

Now let us investigate separately the cases π(p−q)
(π−q) smaller, greater or equal to 4.

Case π(p−q)
(π−q) < 4. Using (19)–(21), we have

Ij(f, q, p)≤C2jν(p−q)ρqj2
−jsq2jd(p−q)/2 ≤Cρqj .

If we define q such that −sq + (p − q)(d − 1/2) = 0, that is, q = p(d−1/2)
s+d−1/2 , then p −

q = sp
s+d−1/2 > 0. So π − q = π s−(d−1/2)p(1/π−1/p)

s+d−1/2 > 0 ⇔ s
p > (d − 1/2)(1/π − 1/p) and

π(p−q)
(π−q) = sp

s−(d−1/2)p(1/π−1/p) < 4⇔ s(1/p− 1/4)> (d− 1/2)(1/π − 1/p). Hence we only

need to impose s(1/p− 1/4)> (d− 1/2)(1/π− 1/p) and domain I is given by

{(s− (d+ 1)(1/π− 1/p)> 0)∩ (s > 0)} ∩ {s(1/p− 1/4)> (d− 1/2)(1/π− 1/p)}

on which Ij(f, q, p)≤Cρ
p(d−1/2)/(s+d−1/2)
j .
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Case π(p−q)
(π−q) > 4. Using (19)–(21), we have

Ij(f, q, p)≤C2jν(p−q)ρqj2
−jsq2jd(p−q)/22j((p−q)/2−2(π−q)/π).

If we put (p− q)d− sq− 2π−qπ = 0⇔ q = pd−2
s+d−2/π , we have p− q = s−2(1/π−1/p)

s+d−2/π p > 0⇔
s− 2(1/π− 1/p)> 0 and π− q = s−dp(1/π−1/p)

s+d−2/π π > 0⇔ s− dp(1/π− 1/p)> 0.

Moreover, π(p−q)(π−q) = s−2(1/π−1/p)
s−dp(1/π−1/p)p > 4⇔ s(1/p− 1/4)< (d− 1/2)(1/π− 1/p). Hence,

on the domain

{(0< s)∩ (s > (d+1)(1/π− 1/p))

∩ (s > dp(1/π− 1/p))∩ (s(1/p− 1/4)< (d− 1/2)(1/π− 1/p))},

we have Ij(f, q, q)≤Cρ
(pd−2)/(s+d−2/π)
j .

Case π(p−q)
(π−q) = 4. Using (19)–(21), we have

Ij(f, q, p)≤C2jν(p−q)ρqj2
−jsqj1−q/π2jd(p−q)/2 ≤Cρqjj

1−q/π

if (p − q)(d − 1/2) − sq = 0 ⇔ q = p d−1/2
s+d−1/2 . This is realized either if p = 4 = π and

for s > 0 or if p 6= 4, π 6= 4 and 0 < q = π p−4
π−4 = p d−1/2

s+d−1/2 . Moreover, q < π and q < p

⇔ 4< p< π; or 4< π < p and π(p−q)
(π−q) = 4⇔ s(1/p−1/4) = (d−1/2)(1/π−1/p)}. Hence,

on the domain

{(s, π), (s(1/p− 1/4) = (d− 1/2)(1/π− 1/p))∩ (s > 0)∩ (s > (d+ 1)(1/π− 1/p))},

we have Ij(f, q, p)≤Cρ
(p(d−1/2))/(s+d−1/2)
j js/(s+d−1/2). �

8. Proof of the lower bounds

In this section, we prove the lower bounds: for 0< s<∞,1≤ π ≤∞,0< r ≤∞,0<M <
∞, denoting by Bsπ,r(M) the ball of radius M of the space Bsπ,r and, by E , the set of all
estimators, we consider

ωp(s, π, r,M, ε) = inf
f⋆∈E

sup
f∈Bs

π,r(M)

E‖f⋆ − f‖pp,

ω∞(s, π, r,M, ε) = inf
f⋆∈E

sup
f∈Bs

π,r(M)

E‖f⋆ − f‖∞.

The main tool will be the classical lemma introduced by Fano in 1952 [8]. We will use
the version of Fano’s lemma introduced in [4]. For details on general lower bound results,
see also [26]. Let us recall that K(P,Q) denotes the Kullback information “distance”
between P and Q.
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Lemma 3. Let A be a sigma algebra on the space Ω, and Ai ∈A, i ∈ {0,1, . . . ,m}, such
that ∀i 6= j, Ai ∩Aj =∅, Pi, i ∈ {0,1, . . . ,m} are m+ 1 probability measures on (Ω,A).
Define

p :=
m
sup
i=0

Pi(A
c
i ) and κ := inf

j∈{0,1,...,m}

1

m

∑

i6=j
K(Pi, Pj),

then

p≥ 1

2
∧ (C

√
m exp(−κ)) with C = exp

(
−3

e

)
. (25)

This inequality will be used in the following way: Let Hε be the Hilbert space of
measurable functions on Z = Sd−1 × [−1,1] with the scalar product

〈ϕ,ψ〉ε = ε2
∫

Sd−1

∫ 1

−1

ϕ(θ, s)ψ(θ, s) dσ(θ)
ds

(1− s2)(d−1)/2
.

It is well known that there exists a (unique) probability measure on (Ω,A): Qf the
density of which, with respect to P, is

dQf
dP

= exp

(
W ε(f)− 1

2
‖f‖2Hε

)
.

Let us now choose f0, f1, . . . , fm in Bsπ,r(M) such that i 6= j =⇒ ‖fi − fj‖p ≥ δ and
denote Pi =QR(fi/ε2). Let f

⋆ be an arbitrary estimator of f . Obviously, the sets Ai =

(‖f⋆− f‖p < δ
2 ) are disjoint sets and we have, for i 6= j,

K(Pi, Pj) =
1

2ε2

∫

Z

|R(fi − fj)|2 dµ.

Now

ωp(s, π, q,M, ε)≥ inf
f⋆∈E

sup
fi,i=0,1,...,m

E‖f⋆ − fi‖pp

≥
(
δ

2

)p
inf
f⋆∈E

sup
fi,i=0,1,...,m

P

(
‖f⋆ − fi‖p ≥

δ

2

)
.

Likewise,

ω∞(s, π, q,M, ε)≥
(
δ

2

)
inf
f⋆∈E

sup
fi,i=0,1,...,m

P

(
‖f⋆ − fi‖∞ ≥ δ

2

)
.

Using Fano’s lemma,

sup
fi,i=0,1,...,m

P

(
‖f⋆− fi‖p ≥

δ

2

)
≥ 1

2
∧ (C

√
m exp(−κ))
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with

κ= inf
j=0,...,M

1

m

∑

i6=j

1

2ε2

∫

Z

|R(fi − fj)|2 dµ.

So if, for a given ε, we can find f0, f1, . . . , fm in Bs,0π,r(M) such that i 6= j =⇒‖fi−fj‖p ≥
δ(ε) and C

√
m exp(−κ)≥ 1/2, then we have

for p <∞, ωp(s, π, q,M, ε)≥ 1
2δ(ε)

p and ω∞(s, π, q,M, ε)≥ 1
2δ(ε).

In the sequel, we will choose, as usual, sets of functions containing either two items
(sparse case) or a number of order 2jd or 2j(d−1) (dense cases). We will consider
sets of functions that are basically linear combinations of needlets at a fixed level
f =

∑
ξ∈χj

βj,ξψj,ξ . Because the needlets have different orders of norms, depending on
whether they are around the north pole or closer to the equator, we will have to investi-
gate different cases. These differences will precisely yield the different minimax rates.

8.1. Reverse inequality

Because the needlets are not forming an orthonormal system, we cannot pretend that
inequality (18) is an equivalence. Since, precisely in the lower-bound evaluations, we need
to bound both sides of the Lp norm for terms of the form

∑
ξ∈Aj

λξψj,ξ with Aj ⊂ χj .
The following section is devoted to this problem.

Proposition 2. For Aj ⊂ χj ,

1

C

( ∑

ξ′∈Aj

∣∣∣∣
〈∑

ξ∈Aj

λξψj,ξ, ψj,ξ′

〉∣∣∣∣
p

‖ψj,ξ′‖pp
)1/p

≤
∥∥∥∥
∑

ξ∈Aj

λξψj,ξ

∥∥∥∥
p

≤C

(∑

ξ∈Aj

|λξ|p‖ψj,ξ‖pp
)1/p

.

Proof. Let f =
∑

ξ∈Aj
λξψj,ξ. Clearly, by (18),

∥∥∥∥
∑

ξ∈Aj

λξψj,ξ

∥∥∥∥
p

≤C

(∑

ξ∈Aj

|λξ|p‖ψj,ξ‖pp
)1/p

,

and by (17),

( ∑

ξ′∈χj

∣∣∣∣
〈∑

ξ∈Aj

λξψj,ξ, ψj,ξ′

〉∣∣∣∣
p

‖ψj,ξ′‖pp
)1/p

≤C

∥∥∥∥
∑

ξ∈Aj

λξψj,ξ

∥∥∥∥
p

,

so obviously,

1

C

( ∑

ξ′∈Aj

∣∣∣∣
〈∑

ξ∈Aj

λξψj,ξ, ψj,ξ′

〉∣∣∣∣
p

‖ψj,ξ′‖pp
)1/p

≤
∥∥∥∥
∑

ξ∈Aj

λξψj,ξ

∥∥∥∥
p

≤C

(∑

ξ∈Aj

|λξ|p‖ψj,ξ‖pp
)1/p

.
�
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In the sequel, we will look for subset Aj with equilibrated Lp norms, that is, such that
there exists

0<Dj , such that ∀ξ ∈Aj ,‖ψj,ξ‖p ∼Dj .

(Here and in the rest of this section, aj,ξ ∼ bj will mean that there exist two absolute
constants c1 and c2 – which will not be precised for the sake of simplicity – such that
c1bj ≤ aj,ξ ≤ c2bj , for all considered ξ.) As specified above, Dj may have different forms
depending on the regions. Using (19), we have

‖ψj,ξ‖p ∼
(

2jd

2−j +
√
1− |ξ|2

)1/2−1/p

.

For our purpose, let us precise Proposition 1 by choosing the cubature points in the
following way: We choose in the hemisphere Sd+ strips Sk =B(A, (2k+ 1)η) \B(A,2kη)
with η ∼ π

22j+1 , k ∈ {0, . . . ,2j−1} (A is the north pole). In each of these strips, we choose

a maximal η-net of points ξ̃, whose cardinality is of order kd−1. Projecting these points
on the ball, we obtain cubature points ξ on the ball with coefficients ωj,ξ ∼ 2−jdWj(ξ).
As a consequence, we have in the set {x ∈ Rd, |x| ≤ 1√

2
}, about 2jd points of cubature

for which

Dj ∼ ‖ψj,ξ‖p ∼ 2jd(1/2−1/p).

And in the corona {(1− 2−2j ≤ |x| ≤ 1}, we have about 2j(d−1) points of cubature for
which

Dj ∼ ‖ψj,ξ‖p ∼ 2j(d+1)(1/2−1/p).

Now let us consider a set Aj of cubature points included in one of the two sets con-
sidered just above (either {x ∈Rd, |x| ≤ 1√

2
} or {(1− 2−2j ≤ |x| ≤ 1}). Consider also the

matrix (parametrized by Aj)

M(Aj) = (〈ψj,ξ, ψj,ξ′〉)ξ,ξ′∈Aj×Aj .

We have, for any λ ∈ lp(Aj), using Proposition 2,

‖M(Aj)(λ)‖lp(Aj) ≤C′‖λ‖lp(Aj).

On the other hand, let us observe that, using (14),

0< c≤ ‖ψj,ξ‖22 = 〈ψj,ξ, ψj,ξ〉 ≤ 1.

Thus,

M(Aj) = Diag(M(Aj)) +M
′(Aj) = Diag(M(Aj))(Id + [Diag(M(Aj))]

−1
M

′(Aj)),

where Diag(M(Aj)) is the diagonal matrix parametrized by Aj extracted from M(Aj).
Clearly, each of the terms of [Diag(M(Aj)]

−1 is bounded by c−1.
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So if ‖[Diag(M(Aj)]
−1M′(Aj)‖L(lp(Aj)) ≤ α < 1, we have

‖M(Aj)
−1‖L(lp(Aj)) ≤ c−1 1

1−α
.

Let us prove that we can choose Aj large enough and such that such an α exists. Using
the Schur lemma (see [9], Appendix 29),

‖[Diag(M(Aj)]
−1

M
′(Aj)‖L(lp(Aj)) ≤ c−1 sup

ξ∈Aj

∑

ξ′ 6=ξ,ξ′∈Aj

|〈ψj,ξ, ψj,ξ′〉|.

Now, using (16),

|〈ψj,ξ, ψj,ξ′〉| ≤C2
M

∫

Bd

1√
Wj(x)

1

(1 + 2jd(x, ξ))M
1√
Wj(x)

1

(1 + 2jd(x, ξ′))M
dx

and thus, by triangular inequality,

|〈ψj,ξ, ψj,ξ′〉| ≤
C2
M

(1 + 2jd(ξ, ξ′))M

∫

Bd

1

2−j +
√
1− |x|2

dx

≤ C2
M

1

(1 + 2jd(ξ, ξ′))M
|Sd−1|

∫ 1

0

rd−2 dr.

So

∀M |〈ψj,ξ, ψj,ξ′〉| ≤C′
M

1

(1 + 2jd(ξ, ξ′))M
. (26)

Now, let us choose Aj as a maximal Kη net in the set χj ∩ {x ∈R
d, |x| ≤ 1√

2
} (case 1)

or as a maximalKη net in the set χj∩{(1−2−2j ≤ |x| ≤ 1} (case 2). Recall that η ∼ π
22j+1

and K will be chosen later.
As, in case 1,

Card{ξ′, d(ξ′, ξ)∼Kl2−j}. (Kl)d,

∑

ξ′ 6=ξ,ξ′∈Aj

|〈ψj,ξ, ψj,ξ′〉| ≤
2j/K∑

l=1

(Kl)dCM
1

(1+Kl)M
≤CM

2j/K∑

l=1

(Kl)d
1

(Kl)M
≤ 2CM
KM−d ≤ α

if M − d≥ 2 and K is large enough. In case 2, again

Card{ξ′, d(ξ′, ξ)∼Kl2−j}. (Kl)d−1

so

∑

ξ′ 6=ξ,ξ′∈Aj

|〈ψj,ξ, ψj,ξ′〉| ≤
2j/K∑

l=1

(Kl)d−1CM
1

(1 +Kl)M
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≤ CM

2j/K∑

l=1

(Kl)d−1 1

(Kl)M
≤ 2CM
KM−d+1

≤ α

if M − d≥ 1 and K is large enough.
Hence, M(Aj) is invertible in both cases and we have

c−1 1

1− α

(∑

ξ∈Aj

|λξ|p
)1/p

≤
( ∑

ξ′∈Aj

∣∣∣∣
〈∑

ξ∈Aj

λξ〈ψj,ξ, ψj,ξ′
〉∣∣∣∣

p)1/p

and
(∑

ξ∈Aj

|λξ|p‖ψj,ξ‖pp
)1/p

.

∥∥∥∥
∑

ξ∈Aj

λξψj,ξ

∥∥∥∥
p

.

(∑

ξ∈Aj

|λξ|p‖ψj,ξ‖pp
)1/p

.

8.2. Lower bounds associated sparse/dense cases and different
choices of Aj

Let j be fixed and choose

f =
∑

ξ∈Aj

βj,ξψj,ξ.

We have

f =
∑

2j−1<k<2j+1

Pk(f),

where Pk is the orthogonal projector on Vk(Bd). So

‖R(f)‖2 = 〈R∗R(f), f〉=
∑

2j−1<k<2j+1

〈λ2kPk(f), f〉

≤
(

sup
2j−1<k<2j+1

λ2k

)∑

k

‖Pk(f)‖2 ≤C2−j(d−1)
∑

ξ∈Aj

|βj,ξ|2.

8.2.1. Sparse choice, case 1

Let fi = γεiψj,ξi , i ∈ {1,2}, εi is +1 or −1, in such a way that

‖f1 − f2‖p = ‖γψj,ξ1 − γψj,ξ2‖p = γ‖ψj,ξ1 − ψj,ξ2‖p ∼ γ(‖ψj,ξ1‖+ ‖ψj,ξ2‖p).

In case 1, ‖ψj,ξ‖r ∼ 2jd(1/2−1/r). So

fi ∈ Bsπ,r(1) ⇐⇒ γ2jd(1/2−1/π) ∼ 2−js ⇐⇒ γ ∼ 2−j(s+d(1/2−1/π)),

δ = ‖f1 − f2‖p ∼ γ2jd(1/2−1/p) ∼ 2−j(s+d(1/2−1/π)−d(1/2−1/p) = 2−j(s−d(1/π−1/p)).
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On the other hand,

K(P1, P2) =
1

2

1

ε2
2−j(d−1)γ2 ∼ 1

2

1

ε2
2−j(d−1)2−2j(s+d(1/2−1/π)) =

1

2

1

ε2
2−2j(s+d−1/2−d/π).

Now, by the Fano inequality, if j is chosen so that ε ∼ 2−j(s+d−1/2−d/π) (under the
constraint s > d(1/π− (1− 1/2d))),

(
2

δ

)p
E‖f⋆ − fi‖pp ≥ P (‖f⋆ − fi‖p > δ/2)≥ c.

So, necessarily,

E‖f⋆ − fi‖pp ≥ cδp ∼ ε(s−d(1/π−1/p))/(s+d−1/2−d/π).

Remark 3. If

d

(
1/π−

(
1− 1

2d

))
< s≤ d(1/π− 1/p)

(so, necessarily, 1
p ≤ 1− 1

2d), then

lim
ε→0

ωp(s, π, q,M, ε)≥C > 0.

8.2.2. Sparse choice, case 2

In case 2, ‖ψj,ξ‖r ∼ 2j(d+1)(1/2−1/r), so

fi ∈ Bsπ,r(1) ⇐⇒ γ2j(d+1)(1/2−1/π) ∼ 2−js ⇐⇒ γ ∼ 2−j(s+(d+1)(1/2−1/π)),

δ = ‖f1 − f2‖p ∼ γ2j(d+1)(1/2−1/p) ∼ 2−j(s+(d+1)(1/2−1/π)−(d+1)(1/2−1/p)

= 2−j(s−(d+1)(1/π−1/p)).

On the other hand,

K(P1, P2) =
1

2

1

ε2
2−j(d−1)γ2 =

1

2

1

ε2
2−j(d−1)2−2j(s+(d+1)(1/2−1/π))

∼ 1

2

1

ε2
2−2j(s+d−(d+1)/π).

Now, by the Fano inequality, if ε∼ 2−j(s+d−(d+1)/π) (under the constraint s > (d+1)( 1π −
d
d+1)),

(
2

δ

)p
E‖f⋆ − fi‖pp ≥ P (‖f⋆ − fi‖p > δ/2)≥ c.

So, necessarily,

E‖f⋆ − fi‖pp ≥ cδp ∼ ε(s−(d+1)(1/π−1/p))p/(s+d−(d+1)/π).



Radon needlet thresholding 39

Remark 4. If

(d+ 1)

(
1/π− d

d+ 1

)
< s≤ (d+ 1)(1/π− 1/p)

(so, necessarily, 1
p <

d
d+1 ),

lim
ε→0

ωp(s, π, q,M, ε)≥C > 0.

8.2.3. Dense choice, case 1

In this case, we take

fρ = γ
∑

ξ∈Aj

εξψj,ξ, εξ =±1, ρ= (εξ)ξ∈Aj .

As we are in case 1, we have

γr
∥∥∥∥
∑

ξ∈Aj

εξψj,ξ

∥∥∥∥
r

r

∼ γr2jd(r/2−1)
∑

ξ∈Aj

|εξ|r ∼ γr2jd(r/2−1)Card(Aj)∼ γr2jdr/2.

Using the Varshamov–Gilbert theorem (see [26], Chapter 2), we consider a subset A
of {−1,+1}Aj such that Card(A) ∼ 2(1/8)Card(Aj) and for ρ 6= ρ′, ρ, ρ′ ∈ A, ‖ρ− ρ′‖1 ≥
1
2 Card(Aj). Let us now restrict our set to

fρ = γ
∑

ξ∈Aj

εξψj,ξ, εξ =±1, ρ= (εξ)ξ∈Aj , ρ ∈A,

fρ ∈ Bsπ,r(1) ⇐⇒ γ

(∑

ξ∈Aj

‖ψj,ξ‖ππ
)1/π

∼ γ2jd/2 ∼ 2−js.

So we choose

γ ∼ 2−j(s+d/2).

Moreover,

δ = ‖fρ − fρ′‖p = γ

∥∥∥∥
∑

ξ∈Aj

(εξ − ε′ξ)ψj,ξ

∥∥∥∥
p

∼ γ

(∑

ξ∈Aj

|εξ − ε′ξ|p‖ψj,ξ‖pp
)1/p

∼ γ2jd(1/2−1/p)‖ρ− ρ′‖1/p1 ∼ 2−j(s+d/2)2jd/2 = 2−js.

Let us compute the Kullback distance,

K(Pρ, Pρ′) =
1

2ε2
2−j(d−1)‖fρ − fρ′‖22 ∼

1

2ε2
2−j(d−1)2−2j(s+d/2)2jd =

1

2ε2
2−2j(s+d/2−1/2),
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so, by the Fano inequality,

E‖f̂ − f‖pp
δp

≥ 1/2∧ c2(1/8)2jde−(1/(2ε2))2−2j(s+d/2−1/2) ≥ 1/2

if

ε∼ 2−j(s+d−1/2).

This implies

inf
f∈Bs

π,r

E‖f̂ − f‖pp ≥ cεsp/(s+d−1/2).

8.2.4. Dense choice, case 2

Similar to the previous case, we take now (with a slight abuse of notation, since the
subset A obtained using the Varshamov–Gilbert theorem is not the same A, as Aj has
also changed)

fρ = γ
∑

ξ∈Aj

εξψj,ξ, εξ =±1, ρ= (εξ)ξ∈Aj , ρ∈A.

As we are in case 2, we have

γr
∥∥∥∥
∑

ξ∈Aj

εξψj,ξ

∥∥∥∥
r

r

∼ γr2j(d+1)(r/2−1)
∑

ξ∈Aj

|εξ|r

∼ γr2j(d+1)(r/2−1)Card(Aj)∼ γr2j[(d+1)r/2−2],

fρ ∈Bsπ,r(1) ⇐⇒ γ

(∑

ξ∈Aj

‖ψj,ξ‖ππ
)1/π

∼ γ(2j(d−1)2j(d+1)(π/2−1))
1/π

∼ γ2−j((d+1)/2−2/π) ∼ 2−js.

So we choose

γ ∼ 2−j(s+(d+1)/2−2/π).

Moreover,

δ = ‖fρ − fρ′‖p = γ

∥∥∥∥
∑

ξ∈Aj

(εξ − ε′ξ)ψj,ξ

∥∥∥∥
p

∼ γ

(∑

ξ∈Aj

|εξ − ε′ξ|p‖ψj,ξ‖pp
)1/p

∼ γ2j(d+1)(1/2−1/p)‖ρ− ρ′‖1/p1 ∼ γ2j(d+1)(1/2−1/p)2j(d−1)1/p

∼ 2−j(s+(d+1)/2−2/π)2j((d+1)/2−2/p) = 2−j(s−2(1/π−1/p)).

Let us compute the Kullback distance:

K(Pρ, Pρ′) =
1

2ε2
2−j(d−1)‖fρ − fρ′‖22
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∼ 1

2ε2
2−j(d−1)2−2j(s+(d+1)/2−2/π)2j(d−1) =

1

2ε2
2−2j(s+(d+1)/2−2/π),

so, by the Fano inequality,

E‖f̂ − f‖pp
δp

≥ 1/2∧ c2(1/8)2j(d−1)

e−1/(2ε2)2−2j(s+(d+1)/2−2/π) ≥ 1/2

if

ε∼ 2−j(s+d−2/π).

This implies

inf
f∈Bs

π,r(1)
E‖f̂ − f‖pp ≥ cεp(s−2(1/π−1/p))/(s+d−2/π).

Remark 5. The case p=∞ can be handled using the same arguments without difficul-
ties.
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