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Abstract
The CONNECT Integrated Project aims at enabling continuous composition of Networked Systems
(NSs) to respond to the evolution of functionalities provided to and required from the networked envi-
ronment. CONNECT aims at dropping the interoperability barrier by adopting a revolutionary approach
to the seamless networking of digital systems, that is, synthesizing on-the-fly the connectors via which
networked systems communicate. The resulting emergent connectors are effectively synthesized ac-
cording to the behavioral semantics of application- down to middleware-layer protocols run by the in-
teracting parties.
The role of work package WP3 is to devise automated and efficient approaches to connector synthesis,
which can be performed at run-time. Given the respective interaction behavior of networked systems,
we want to synthesize the behavior of the connector(s) needed for them to interact. These connectors
serve as mediators of the networked systems’ interaction at both application and middleware layers.
During the project’s second year, the work of WP3 has been mainly focused on defining a unified pro-
cess, and related artifacts, for the automated synthesis of mediators at both application and middleware
layers. The devised mediator synthesis process allows for the automated production of both a mediator
behavioral model and its implementation into actual code. All this work relies on a CONNECTor theory
that rigorously characterizes concepts, such as protocol abstraction, matching, and mapping, that are
crucial for achieving automated mediator synthesis. The theory, as formalized during the first two years
of the project, is able to deal with an abstract notion of protocol action that did not take into account
data as I/O action parameters.
During the project’s third year, as described in this deliverable, we enhance our CONNECTor theory in
order to consider actions with data and rigorously characterize the abstraction and matching phases
that have been treated informally by the previous theory. Furthermore we propose two possible instan-
tiations of the theory, both of them implemented by two prototype tools. The first instantiation accounts
for a specification of the goal that the CONNECTor to be synthesized has to achieve. The second
instantiation concerns the ability to perform efficient protocol mapping.
Considering the goal allows the synthesis approach to harmonize the interaction of two NSs by only
looking for some possible matchings. However, when such a goal is not provided, this approach ex-
haustively explore the whole NSs interaction. The mapping-driven synthesis, instead, is well suited for
the cases where the goal is not specified. Moreover, it checks the existence of the mediator by avoiding
to perform expensive synthesis steps when a mediator for two NSs does not exist. Furthermore, there
are protocol mismatches that can be handled more effectively with the goal-based approach and mis-
matches for which the mapping-driven method represents the best choice among the two approaches.
The developed prototypes and their respective CONNECTor synthesis methods have been validated by
means of a common case study. Based on the experimented results, an assessment and comparison
of the two methods have been carried out.

Keyword List
Connectors, Protocol Mediators, Protocol Specification, Protocol Synthesis, Application-Layer Interop-
erability, Middleware-Layer Interoperability.
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1 Introduction
The CONNECT Integrated Project aims at enabling continuous composition of Networked Systems

(NSs) to respond to the evolution of functionalities provided to and required from the networked environ-
ment. CONNECT aims at dropping the interoperability barrier by adopting a revolutionary approach to
the seamless networking of digital systems, that is, synthesizing on-the-fly the connectors via which NSs
communicate. The resulting emergent connectors (or CONNECTors) are effectively synthesized accord-
ing to the behavioral semantics of application- down to middleware-layer protocols run by the interacting
parties. The role of work package WP3 is to devise automated and efficient approaches to CONNECTor
synthesis, which can be performed at runtime. Given the respective interaction behavior of NSs, we want
to synthesize the behavior of the CONNECTor(s) needed for them to interact. These CONNECTors serve
as mediators of the NS interaction at both application and middleware layers.

A high level view of the CONNECT architecture is described, in Section 5.1 of Deliverable D1.1 [2], as a
system of various enablers that exchanges information about the NSs to be CONNECTed. In particular, as
described in details in Chapter 6 of this deliverable, the Synthesis enabler takes as input: (i) a description
of two NSs, which contains the information about the NS interface and protocol, and (ii) a, possibly empty,
list of goals that the CONNECTor to be synthesized has to achieve. From these two inputs, the Synthesis
Enabler produces a CONNECTor behavioral model that is interpreted at run-time [4] and hence executed
in order to make the two considered NSs able to interoperate.

During the project’s second year, the work of WP3 has been mainly focused on defining a unified pro-
cess, and related artefacts, for the automated synthesis of mediators at both application and middleware
layers. The devised mediator synthesis process allows for the automated production of both a mediator
behavioral model and its implementation into actual code. In fact, a further outcome of the project’s sec-
ond year has been the development of suitable code-generation techniques to generate the actual code
that implements a synthesized CONNECTor. All this work relies on a CONNECTor theory that rigorously
characterizes concepts, such as protocol abstraction, matching, and mapping, that are crucial for achiev-
ing automated mediator synthesis. The theory, as formalized during the first two years of the project, is
able to deal with an abstract notion of protocol action that did not take into account data as I/O action
parameters.

During the project’s third year, as described in this deliverable, we:

• Enhance our CONNECTor theory in order to both account for actions with data and describe in more
detail the abstraction and matching phases that have been discussed more abstractly in the previous
version of the theory.

• Propose two possible instantiations of the theory, both of them implemented by two prototype
tools [10]. The first instantiation accounts for a specification of the goal that the CONNECTor to
be synthesized has to achieve. The second instantiation concerns the ability to perform efficient
protocol mapping through the combination of semantic reasoning and constraint programming tech-
niques.

Considering the goal allows the synthesis approach to mediate only partial matching between the be-
havior of the considered NSs. However, when such a goal is not provided, this approach exhaustively
explores the whole matching. Therefore, the mapping-driven synthesis is well suited for the cases where
the goal is not specified as it considers the whole behavior of systems and checks that each possible
execution of one system can possibly be mapped to an execution of the other system. Moreover, the
mapping-driven synthesis checks the existence of the mediator by avoiding to perform expensive syn-
thesis steps when a mediator for two NSs does not exist. However, many-to-many mismatches with
asynchronous semantics cannot be handled effectively by the mapping-driven synthesis. The goal-based
approach, instead, bases its matching phase on a reachability problem hence accounting for both syn-
chronous and asynchronous behaviors and loops. On the other hand, the goal-based approach is able
to produce only subsets of the whole CONNECTor in those cases in which the interactions allowed by the
two NS protocols are infinite.

The developed prototypes and their respective CONNECTor synthesis methods have been validated
by means of a common case study that is introduced in Section 1.5. The two developed implementations
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has led us to devise a first concrete architecture for the CONNECTor synthesis enabler, which is one of the
key elements of the CONNECT architecture.

Finally, it is worthwhile mentioning that an overall challenge of the work carried out within WP3 is to
prevent human intervention as much as possible by making the CONNECTor generation process com-
pletely automated. The work mentioned above and described in this deliverable also addresses this
overall challenge.

This deliverable is organized as follows. In Chapter 2, we formalize the enhanced CONNECTor theory.
Chapters 3 and 4 describe the two instantiations of the revised theory that have been mentioned above.
The goal-based instantiation is described in Chapter 3 while the mapping-driven synthesis is discussed
in Chapter 4. Chapter 5 assesses the two instantiations with respect to their ability to address a common
set of protocol mismatches hence providing a comparison of them, and discusses related work. The
Synthesis Enabler architecture and its related API is described in Chapter 6. Chapter 7 concludes by also
outlining future research directions.

1.1 The Role of Work Package WP3

Here, we simply recall that the role of WP3 is to [1]: “devise automated and compositional approaches to
connector synthesis, which can be performed at runtime. Given the respective interaction behavior of NSs,
we want to synthesize the behavior of the wrapper(s) needed for them to interact. These wrappers have
to serve as mediators of the networked applications’ interaction at both the application- and middleware-
layer”. More specifically, WP3 has three main objectives that can be summarized as follows:

• Synthesis of application-layer conversation protocols. The goal here is to identify connectors
patterns that allow the definition of methodologies to automatically synthesize, in a compositional
way and at runtime, application-layer connectors.

• Synthesis of middleware-layer protocols. Our objective here is to generate adequate protocol
translators (mappings) that enable heterogeneous middleware to interoperate, and realize the re-
quired non-functional properties, thus successfully interconnecting NSs at the middleware level.

• Model-driven synthesis tools. In this subtask, we exploit model-to-model and model-to-code
transformation techniques to automatically derive, at runtime, a connector’s actual code from its
synthesized model. This step should guarantee the correctness-by-construction of the connectors’
implementations with respect to the functional and non-functional requirements of the networked
applications that are made interoperable through the connectors.

We recall that WP3 is organized into three tasks that correspond to the three objectives above. Sec-
tion 1.4 discusses what we did during the Year 3 of the project within the context of each specific task.

1.2 Brief Summary of Achievements in Year 2

During the second year of the project, the work of WP3 mainly focused on defining a comprehensive CON-
NECTor synthesis process together with supporting methods and tools, based on the theory of mediators
introduced in Deliverable D3.1 [7]. In particular, our previous work has led us to develop automated tech-
niques and tools to perform protocol abstraction, matching, and mapping, and code-generation techniques
to derive from the synthesized CONNECTor model its actual code.

In more detail, the challenges that have been addressed during Year 2, and the related achievements,
include the following, as detailed in Deliverable D3.2 [9]:

• Approaching the CONNECTor synthesis problem in a systematic way by adopting a pattern-
based solution. We have characterized the protocol mismatches that we intend to solve with our
CONNECTor synthesis process, as well as the basic mediator patterns that solve the classified prob-
lems.

CONNECT 231167 14/81



• Revising and extending the theory of mediators. In Year 1, we elaborated a theory of mediators,
which defined the associated matching and mapping relations over the interaction behaviors of NSs
abstracted as LTSs. During Year 2, we have revised the definition of the theory, which enables us to
introduce simpler definition of protocol matching and mapping.

• From theory to abstract CONNECTor synthesis. While our theory of mediators was defined over
protocols defined in terms of highly abstract observable actions, actual CONNECTor synthesis re-
quired dealing with the protocols that are executed by the NSs, which rely on communication actions
offered by the underlying middleware. Hence, the semantics of the protocols’ observable actions had
to account for the semantics of actions at both application- and middleware-layers.

• From abstract to concrete CONNECTor deployment. Translating the synthesized CONNECTor
model into an executable artifact that could be deployed and run required devising the runtime
architecture of CONNECTors; related to this, in Year 2 we investigated the issue of generation of
code versus interpretation of the CONNECTor model.

The software tools developed during Year 2 as companion prototypes of Deliverable D3.2 are reported
in [8].

1.3 Second Review Recommendations and Related Reactions for
Year 3

The following list of items report the reviewers’ recommendations for the work done within WP3 after the
second year of the project. For each recommendation, the reactions of the WP3 participants are also
reported.

• Recommendation 1: the reviewers still query how the intent to connect is expressed. In particular,
while affordances specify provisions to and requirements from an environment they do not express
the goal of connection. For what purpose does a set of entities interconnect? Where are these goals
and intents expressed in an overall CONNECT architecture consisting of agents/components and
connectors?

We believe that this specific question should not be posed to WP3 only, rather it is an issue that
impacts on the overall CONNECT architecture and it is overall addressed by WP1. However, within
the WP3 work, both our enhanced theory and its two described instantiations have a notion of
goal that can be either explicitly expressed by using a notation that is convenient for the particular
synthesis method or implicitly treated for the purposes of mediator synthesis. In particular the notion
of coordination policy, as defined by our enhanced theory, represents a relevant behavior exhibited
by a NS, in the sense that it corresponds to the achievement of a complex task. Thus, within
our theory, the goal that the mediator has to satisfy is to make the two considered NSs able to
interoperate on, at least, one common relevant behavior. This abstract notion of goal is instantiated
by the goal-based synthesis method by considering the goal explicitly specified as a formula in
some temporal logic formalism. Then, analogously to what the theory formalizes, it is sufficient to
synthesize a mediator that make the considered NSs able to interoperate just with respect to the
interactions expressed by the goal’s specification. Instead, within our mapping-driven instantiation
of the theory, no explicit goal specification is considered. However, for a synthesized mediator to
be correct, it is enough to match each possible behavior exhibited by one NS with, at least, one
behavior of another NS.

• Recommendation 2: also WP3 proposes a framework for compositional reasoning. The compatibility
between the WP2 and the WP3 settings is however unclear. Also, the approach sketched in WP3
(section 6 of the deliverable) looks rather naı̈ve, and not much is proposed to avoid combinatorial
explosion.

Our method to automatically secure connectors is based on partial model checking techniques that
have been just defined with the aim of avoid combinatorial explosion in mind.
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1.4 Challenges for Year 3 and Overview of the Related Achieve-
ments

During Year 3, the main overall challenge has been to concretely realize and automate the unified process,
devised during Year 2, for the synthesis of mediators at both application and middleware layer. The specific
per-objective (and, hence, per-task) achievements include the following. This deliverable describes in
details only some of them and, in particular, the ones that at present are mature enough to be discussed
in a project deliverable document.

• Objective/Task 1 and Objective/Task 2:

– revised version of the theory that both allows to consider protocol actions with data and rig-
orously characterizes the protocol abstraction and matching phases of the synthesis process
(described in this deliverable).

– Goal-based synthesis method as first instantiation of the revised theory; it allows to address sig-
nature mismatches, splitting of actions, extra-output mismatches, and, only for asynchronous
systems, merging and ordering of actions; it produces a complete CONNECTor only if the con-
sidered systems do not exhibit infinite looping behavior (described in this deliverable).

– Mapping-driven synthesis method as second instantiation of the revised theory; it allows to
address signature mismatches, splitting of actions, extra-output mismatches, and, only for in-
put actions that do not require output paramenters, merging of actions; it always produces a
complete CONNECTor (described in this deliverable).

– Two prototypal tools implementing the above goal-based and mapping-driven synthesis meth-
ods, respectively. We refer to Deliverable D3.3 - Protoype Appendix [10] for details concerning
these two tools.

– A theory for the automatic construction of secure connectors able to mediate and adapt net-
worked systems that have cryptographic primitives for exchanging messages. Basically, given
two networked systems, described through LTSs with enriched semantics for managing sym-
bolically cryptographic functions as encryption, decryption, hash, etc. and a security contract
expressing how messages should be correctly exchanged among those, it synthesizes a se-
cure connector, able to enforce the correct exchange of cryptographic messages and able to
resist to the presence of hostile attackers (not described in this deliverable).

• Objective/Task 3: we implemented two model-driven synthesis tools that implement the goal-based
and mapping-driven synthesis methods listed above.

1.5 Case Study

The GMES scenario demonstrates the applicability of the CONNECT approach in real-world settings and
highlights the integration of the different CONNECT enablers. In this deliverable we focus on the synthe-
sis of mediators and illustrate its benefits in dealing with a wide range of mismatches while comparing
it with existing approaches. Therefore, we used the Purchase Order Mediation scenario from Semantic
Web Service (SWS) Challenge1. It represents a typical real-world problem that is as close to industrial
reality as practical. It is intended as common ground to discuss semantic (and other) Web Service so-
lutions and make different solutions becoming comparable with respect to the set of features supported
for a particular scenario. This scenario highlights the various mismatches that can be encountered when
making heterogeneous systems interoperable. The Purchase Order Mediation scenario describes two
commercial systems that have implemented using heterogeneous industrial standards and protocols.

The first system, called Blue, is a customer ordering products. It initiates a purchase process by
starting an order and adding items to it. Then, it places the order giving its client identifier. Finally, it
expects a confirmation for each individual item belonging to the order. The exchanged information is

1http://sws-challenge.org/wiki/
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formatted using the RosettaNet2. RosettaNet is an XML-based standards for the global supply chain and
interaction across companies.

The second system, called Moon uses two backend systems to manage its order processing, namely
a Customer Relationship Management system (CRM) and an Order Management System (OMS). First,
a client contacts the Customer Relationship Management (CRM) System to obtain relevant customer
details. This details are used by the OMS to assess if the client is eligible, i.e. if the customer is known
and authorized to creating order. Then, individual items can be added to the order created. First an item
is selected, the needed quantity is specified and the the addition to the order is confirmed. Once all the
items have been submitted, the Moon proceed to payment using a third-party system and the order can
be closed.

A client developed for the Blue Service cannot communicate with the Moon Service due to the following
mismatches:

• Data mismatches: While Blue specifies its interface using the RosettaNet standard, Moon uses a
propriety legacy system in which data model and message exchange patterns differ from those of
RosettaNet.

• Behavioral mismatches: In the Blue implementation, the client provides its identifier while placing
the order whereas in the Moon implementation it has to login before performing any operation. In
addition, in the Blue implementation, an item is directly added and only once the order is placed
then confirmations are sent while in Moon, first the item is selected, the quantity is specified and
then confirmed. Hence, there is no need to send confirmations once the order has been closed.

SOAP-RPCBlue
Customer

Blue
Provider

Blue
Customer

Moon
Customer

Moon 
Provider

Moon 
ProviderMediator

RosettaNet

Blue System

Moon System

Blue - Moon System

Figure 1.1: The purchase order mediation scenario

The SWS-Challenge provides relevant information about the systems involved in two forms: using
current Web Service description (WSDL) and natural language text annotations. We interpreted the in-
formation, defines the ontology and annotated the description. Indeed, the SWS-Challenge participants
are asked to extend the syntactic descriptions in a way that their algorithm/systems can perform the nec-
essary translation tasks in a fully automatic manner. The Moon and the customer Web Services (Blue)
are provided by the SWS-Challenge organizers and can not be altered (although their description may be
semantically enriched).

2http://www.rosettanet.org/

CONNECT 231167 17/81

http://www.rosettanet.org/




2 Revised CONNECTor Theory
In this chapter we recall the unified CONNECTor Synthesis approach presented last year in Deliverable

D3.2 [9] that deals with both middleware and application layers and we provide a revised version of the
Theory supporting it.

2.1 Recalling Second Year Achievements

Figure 2.1 outlines our overall approach to support the dynamic synthesis of mediators given Networked
Systems (NSs) models and the ontologies describing the domain-specific knowledge.
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Figure 2.1: Overview of the CONNECTor synthesis

The Abstract CONNECTor Synthesis, as presented last year, is preceded by Functional Matching and
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Middleware Abstraction. The Functional Matching consists of checking whether, at a high level of ab-
straction, the functionality required by one system can be provided by the other (see Figure 2.1 ¶). This
is realized by checking the semantic compatibility of the NSs affordances using an ontology reasoning.
Instead, the Middleware Abstraction makes the behavior of NSs middleware-agnostic , i.e., it abstracts/-
translates (sequences of) middleware functions into input/output direction of application actions in order
to focus on the application-specific semantics (see Figure2.1 ·).

The Abstract CONNECTor Synthesis process is made up by three phases or steps: Identification of
the Common Language makes comparable the NSs behavior by identifying their common language and,
possibly, reduces their size thus allowing to ease and speed up the reasoning on them (see Figure2.1 ·).
The next step is the Behavioral Matching (see Figure2.1 ¹) that checks the NSs compatibility identifying
possible mismatches. Finally, the Mediator Synthesis (see Figure2.1 º) produces a mediator that address
the identified mismatches between the two NSs and allows them to communicate.

After the Abstract CONNECTor Synthesis, the synthesized mediator is concretized to be deployed in
the network in order to enable the NSs to interoperate.

In this deliverable we focus on the Abstract CONNECTor Synthesis (¸, ¹, º). For the middleware
abstraction, we rely on the approach devised in deliverable D3.2 [9] while the dual concretization process
is described in deliverable D1.3 [4]. The aforementioned conceptual view is supported by (a) a revised
CONNECTor theory for the application layer in Section 2.2, together with (b) two different prototypal imple-
mentations of it illustrated in Chapters 3 and 4 respectively.

2.1.1 Ontologies

An ontology is a shared, descriptive, structural model, representing reality by a set of concepts, their
interrelations, and constraints under the open-world assumption [12].

In the literature, [49, 48], ontologies and mappings between ontologies are formalized as follows:

• “an ontology is a pair O = (S,A), where S is the (ontological) signature describing the vocabulary
and A is a set of (ontological) axioms specifying the intended interpretation of the vocabulary in
some domain of discourse”.

• “A total ontology mapping from O1 = (S1, A1) to O2 = (S2, A2) is a morphism f : S1 → S2 of
ontological signatures, such that, A2 = f(A1), i.e., all interpretations that satisfy O2’s axioms also
satisfy O1’s translated axioms”.

Ontologies describe domains; therefore, they are not defined by the application developers but by
domain experts, to represent shared knowledge about a specific domain. The Web Ontology Language1

(OWL) is a W3C standard language to formally model ontologies in the Semantic Web. Many OWL
ontologies have been developed for specific domains, e.g., Sinica BOW2 (Bilingual Ontological Wordnet)
for English-Chinese integration. In addition, work on ontology alignment deals with the possible usage of
distinct ontologies in the modeling of different networked systems from the same domain, as illustrated
by the W3C Linking Open Data project3. OWL is based on description logics (DL), which is a knowledge
representation formalism with well-understood formal properties [13]. Concepts are defined as OWL
classes. Complex concepts can be constructed using intersection (∩), union (∪) and complement (¬).
Instances of a class are called OWL individuals and can be automatically classified in the corresponding
class. Relations between classes are called OWL properties. Ontology reasoners are used to support
automatic inference on concepts in order to reveal new relations that may not have been recognized by the
ontology designers. Traditionally, the basic reasoning mechanism is based on the subsumption relation
that is defined as follows [13].

Definition 1 (Subsumption) A concept c is subsumed by a concept d in a given ontologyO, written cv d,
if in every model of O the set denoted by c is a subset of the set denoted by d.

1http://www.w3.org/TR/owl2-overview/
2http://BOW.sinica.edu.tw/
3http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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Figure 2.2: The purchase ontology

Further, other relations may be defined between ontology concepts, e.g., part-whole relationship, and
the subsumption relation can be used to implement other inferences, such as satisfiability and equiva-
lence, using pre-defined reductions.

Figure 2.2 shows an extract of the purchase ontology. The ontology shows the relations holding
between the various concepts used by two purchase order systems. It specifies the attributes of each
concept; for example a PurchaseOrder is characterized using two properties: hasOrderID defined as an
OWL string and hasValidity specified using the OWL buit-in dateTime type. Note that the application-
specific ontology not only describes the semantics and relationships related to the data but also the
semantics of the operations performed on the data. The operation addItemToOrder is for example defined
as a union of the selectItem and setItemQuantity concepts.

2.1.2 Ontology-based Networked System Model

A networked system requires or provides an affordance to which it gives access via an explicit interface,
and realizes using a specific behavior [9].

The affordance describes the functionality encapsulated by a system and is specified as a tuple:
F=<type, c, in, out> where (i) Type stands for provided (noted Prov ) if the system is offering this function-
ality or required (noted Req) if it is consuming it, (ii) c gives the semantics of the functionality in terms of
an ontology concept; (iii) in (out resp.) specifies the set of inputs (outputs resp.) of the functionality, which
is defined as a set of ontology concepts.

All concepts belong to the same domain ontology O specifying the application-specific concepts
and relations, i.e., c, in, out ∈ O. As an illustration, the affordance of Moon service is defined as:
FMoon=<Prov, Order, ∅, ∅>. while that of the Blue client is defined as: FBlue=<Req, Order, ∅, ∅>.

The system interface defines the set of observable actions that the system requires/provides from its
running environment. An observable action is defined more formally as follows.

Definition 2 (Action) An action is a tuple <op,In,Out> where:

• op is an observable operation referring to an ontology concept or is an internal action denoted by τ ;
an action can have input/output direction denoted by an overbar or no overbar on the action, e.g. act
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or act. We call complementary actions two actions that are the same action with dual direction,
e.g., act and act.

• In, Out are the sets of input/output data that can be expected/produced whose elements refer to
ontology elements. One at a time of these sets might also be empty either because that dataset is
not necessary or because the synchronization of the input output is not atomic.

Consequently, we are able to describe the following actions with data:

1. output action with incoming parameters and outgoing return data:
<op, In, Out> where In is expected while Out is produced;

2. input action with outgoing parameters and incoming return data:
<op, In, Out> where In is produced while Out is expected;

3. output action with incoming parameters and no return data:
<op, In, ∅> where In is expected -and no Out is produced;

4. input action with incoming parameters and no return data:
<op, In ∅> where In is produced -and no Out is expected;

5. output action with outgoing return data and no incoming parameters:
<op, ∅, Out> where Out is produced -and no In is expected;

6. input action with incoming return data and no outgoing parameters:
<op, ∅, Out> where Outis expected -and no In is produced;

Note that the first kind of action illustrated above, <op,In,Out>, can be equivalently described by the
two following action primitives: <op,In,−> and <op,−,Out>. This applies similarly for the second kind of
action described above, i.e., <op, In, Out>.

The interface associated to the Moon service (abstracted from WSDL 2.0) is given below, where we
provide only the ontology concepts associated with the syntactic terms embedded in the interface.

IMoon ={
<Login, {CustomerID}, {SessionID}>,

<CreateOrder, {SessionID}, {PurchaseOrder}>,

<SelectItem, {OrderID, ItemID}, ∅>,

<SetItemQuantity, {ItemID, ItemQuantity}, ∅>,

<ConfirmItem, {OrderID, ItemID, ItemQuantity}, ∅>,

<CloseOrder, {OrderID, CreditCardNumber}, {OrderResult}>,

<PayThirdParty, {CreditCardNumber, Amount}, {OrderResult}>
}

The interface associated to the Blue client is shown in the following.

IBlue ={
<StartOrder,{CustomerID}, {OrderID}>,

<AddItemToOrder,{OrderID, ProductItem}, ∅>,

<PlaceOrder,{OrderID, CreditCardNumber}, ∅>,

<Quit,{OrderID},{OrderResult}>

<GetConfirmation,{OrderID, ProductItem}, ∅>,
}

The system behavior describes its interaction with its environment and defines how the actions of
its interface are used to achieve the specified affordance. We formalize the behavior through enhanced
Labeled Transition Systems that are Labeled Transition Systems [50] enhanced with explicit final states
and which labels are structured to explicitly model input/output actions. More formally:
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Definition 3 (enhanced Labeled Transition Systems) An enhanced Labeled Transition Systems
(eLTS) P is a quintuple (S,L,D, F, s0) where:

• S is a finite non-empty set of states;

• L is a finite set of labels describing actions with data (see Definition 2); L is called the alphabet of P :

• D ⊆ S × L× S is a transition relation;

• F ⊆ S is the set of final states;

• s0 ∈ S is the initial state;

We use the usual following notation to denote transitions: si
l−→ sj ⇔ (si, l, sj) ∈ D

Examples of eLTSs are the Blue application protocol and the Moon application protocol of our case
study that we copy here in Figures 2.3 and 2.4 respectively.

LTSs, and eLTSs, can be combined using the parallel composition operator. Several semantics have
been given in the literature for this operator, e.g. for CSP (Communicating Sequential Processes) [66],
or FSP (Finite State Process) [55], or also CCS Calculus of Communicating Systems [59] to mention
few. The one needed here is the one of CCS, recalled below, that applies after having aligned the eLTSs
alphabets into the same alphabet and having a language restricted to the mediator language.

Definition 4 (Parallel composition of protocols) Let P = (SP , LP , DP , FP , s0P ) and Q = (SQ, LQ, DQ,
FQ, s0Q) be eLTSs. Let m and m be actions.
The parallel composition between P and Q is defined as the LTS P ||Q = (SP × SQ, LP ∪ LQ, D, FP ×
FQ, (s0P , s0Q)) where the transition relation D is defined as follows:

P
m−→ P ′;Q

m−→ Q′

P ||Q τ−→ P ′||Q′
(where m ∈ {LP ∩ LQ})

P
m−→ P ′

P ||Q m−→ P ′||Q
(where m 6∈ {LP ∩ LQ})

Q
m−→ Q′

P ||Q m−→ P ||Q′
(where m 6∈ {LP ∩ LQ})

2.1.3 Background of the Mapping-driven Abstract CONNECTor Synthesis
We recall that last year we presented a first prototype of the Mapping-driven Abstract CONNECTor Synthe-
sis where the behavior of Networked Systems is given as Ontology-based Finite State Process (OFSP)
which gives formal semantics to the actions of an FSP process [55] by relating them to the ontology-based
specification of the interface αP = IP . The semantics of OFSP is given in terms of enhanced Labeled
Transition Systems (eLTS). The interface a ∈ IP represents the behavior of the eLTS P after it engages
in an action a. P a→ P ′ then denotes that P transits with action a into P ′. Then, P s⇒ P ′ is a shorthand for
P

a1→ P1
a2→ P2...

an→ P ′, s = 〈a1, a2, ..., an〉 , ai ∈ αP ∪ τ . The END state indicates a successful termination.
The OFSP specification of the Blue client is as follows:

1 Blue = (<StartOrder, {CustomerID}, {OrderID}>→ P1),

2 P1 = (<AddItemToOrder,{OrderID, ProductItem}, ∅>→ P1

3 | <PlaceOrder,{OrderID, CreditCardNumber}, ∅>→ P2),

4 P2 = (< GetConfirmItem,{orderID, productItem}, ∅>→ P2| <Quit,{OrderID},{OrderResult}>→ terminate→ END).
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<Quit,{OrderId},
{OrderResult}>

Figure 2.3: Blue client networked system.

The corresponding eLTSs is depicted in Figure 2.3. Blue starts an order and then adds one or many
items to it. Once the order is placed, the confirmation for each individual item is received.

The Moon OFSP specification is as follows:

1 Moon = (<Login, {CustomerID}, {SessionID}>→<CreateOrder, {SessionID}, {PurchaseOrder}>→ P1),

2 P1 = (<SelectItem, {OrderID, ItemID}, ∅>→<SetItemQuantity, {ItemID, Quantity}, ∅>
3 →<ConfirmItem, {OrderID, ItemID, Quantity}, ∅>→ P2

4 | <CloseOrder, {OrderID, CreditCardNumber}, ∅>
5 →<PayThirdParty, {CreditCardNumber, Amount}, {OrderResult}>

6 →<CloseOrder, ∅, {OrderResult}>→ terminate→ END).

Its semantics is given if the eLTS depicted in Figure 2.4. Moon, instead, expects a client to login, and
to create an order. Then it can loop on selecting an item, setting the quantity of that item and confirming
it. Finally, it closes, pays the order and terminates.
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SEnd S5
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{}>
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<CloseOrder,{},
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{}>

<ConfirmItem,
{OrderId, ItemId, ItemQuantity},

{}>

<PayThirdParty,
{CreditCardNumber, Amount},

{OrderResult}>

S6S6

<CloseOrder,
{OrderId,

CreditCardNumber},
{}>

Figure 2.4: Moon customer service networked system.

2.2 Updated CONNECTor Theory

In this section we present a refined version of the CONNECTor Theory to synthesize a CONNECTor be-
tween two protocols presented in the last year deliverable and in [43, 69, 42, 72]. The novelties of the
theory described in the reminder of this chapter with respect to the previous version are:
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1 - in the theory below, together with observable application actions, we also explicitly model the
data that the actions convey. Instead, in the previous formalization presented in Deliverable D3.2 [9], we
abstracted the NSs application behavior as LTSs expressing the order in which input and output (observ-
able) application actions have to be performed while interacting with the NS. Specifically, input actions
were used to model (i) methods that can be called, or (ii) the end of receiving messages from communica-
tion channels, as well as (iii) the return values from such calls. While output actions were used to model
(i) method calls, (ii) message transmission via communication channels, or exceptions that occur during
methods execution.

2 - In the theory presented below, we generalize the manipulations we need to do all along the ab-
straction (identification of the common language) and behavioral matching phases that are the costly and
hard ones while in the previous version they were more implementation specific.

We recall that our focus is the interoperability problem between heterogeneous protocols. For the sake
of simplicity, and without loss of generality, we limit the number of protocols to two but the work can be
generalized to an arbitrary number of protocols. With interoperability, we mean the ability of protocols
to correctly communicate and coordinate i.e., to correctly synchronize. In other words, two systems suc-
cessfully interoperate if they correctly exchange compatible conversations or compatible traces. The kind
of protocols we focus on is compatible protocols i.e., that can potentially interoperate despite they show
some differences. That is, communication and coordination between such protocols is possible in principle
since they are semantically equivalent and complementary, but cannot be achieved seamlessly because
of heterogeneity or diversities: mismatches [71, 70] and/or third parties conversations. Examples of mis-
matches are: protocol languages have (i) different granularity, or (ii) different alphabets; protocols behavior
have different sequences of actions with data (i.e., traces) because of (a.1) the order in which actions and
data are performed by a protocol is different from the order in which the other protocol performs the com-
plementary actions with data. Protocols behavior may have different sequences of actions also because
of (a.2) interleaved actions related to third parties conversations i.e., with other systems, the environment.
In some cases, as for example (i), (ii) and (a.1), it is necessary to properly perform a manipulation of the
two languages. In the case (a.2) it is necessary to abstract the third parties conversations that are not rel-
evant to the communication. Synchronization between protocols, thus, can be achieved under mediation
i.e., through a mediator that while managing mismatches and third parties conversations, allows protocols
to effectively exchange compatible traces (sequences of actions with data). A mediator is then a protocol
that allows communication and coordination among compatible protocols by mediating their differences.
Therefore, such a mediator serves as the locus where semantically equivalent and complementary actions
with data are correctly synchronized thus enabling (a mediated) interoperability among protocols.

We already proposed to automatically synthesize CONNECTors also called mediating connectors or
mediators, and we provided a theory to characterize and reason on the problem [43, 42, 72, 69]. In the
remainder of this chapter we revise our theory of mediators. By reasoning about the mismatches of the
compatible protocols, our theory automatically identify and synthesizes an emerging mediator that solves
them thus allowing protocols to interoperate.

To better illustrate the CONNECTor theory, in this chapter we will use the case study presented in Sec-
tion 1.5 that is constituted by applications Blue client networked system (Blue) and Moon customer service
networked system (Moon) with compatible protocols i.e., semantically equivalent and complementary,
that in principle might interoperate but that in practice cannot communicate and coordinate seamlessly
because of mismatches.

2.2.1 Detailing the Automated Synthesis of Emerging Mediators
This section provides a more detailed overview of our approach towards the automated synthesis of
emerging mediators. Figure 2.5 depicts the main elements.

1. Two application-layer protocols P and Q (e.g., Blue and Moon) whose behavioral representations
are given in terms of enhanced Labeled Transition System (eLTS), where the initial and final states
on the eLTSs define the sequences of actions that characterize the coordination policies(or traces)
of the protocols and where labels explicitly models the data conveyed by the application actions.

2. The application domain ontology O and two sub-ontologies of it, i.e., OP ⊆ O and OQ ⊆ O, de-
scribing the meaning of P and Q’s actions and input/output data, respectively (e.g., OP is Blue’s
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Figure 2.5: An overview of our approach

ontology and OQ is Moon’s ontology). The inferred emerging common abstraction OPQ is a kind of
intersection between P and Q’s ontologies (OP

⋂
OQ) and identifies the common language between

P and Q.

3. Then, starting from P and Q, and based on the common language OPQ, we build two abstractions
AP and AQ of P and Q, respectively, where the actions not belonging to the common language are
hidden by means of silent actions (τs). We store the abstraction information InfP and InfQ, which
include ontological mappings for instance solving granularity mismatches4. This information will be
exploited to synthesize the mediator in case of successful behavioral matching;

4. Then, we check the behavioral matching or compatibility of the protocols by looking for complemen-
tary traces (the set IPQ in figure), modulo mismatches and third parties communications, between
the sets of traces ofAP andAQ, respectively. If protocols are compatible, then we are able to synthe-
size a mediator that makes it possible for the protocols to communicate and we store the matching
information IM (i.e., used to make the behavioral matching) that will be exploited during the mediator
synthesis. Notice that with synchronization we mean a synchronization among two complementary
actions while for coordination we mean a sequence or a reordering of synchronizations needed to
synchronize complementary traces.

5. Finally, given two protocols P and Q, and an environment E, the synthesized mediator M issuch
that when building the parallel composition P ||Q||E||M , P and Q are able to communicate and
coordinate by reaching their final states under the hypothesis of fairness.

2.2.2 Auxiliary Definitions
In the following we provide some auxiliary definitions needed to describe the theory. The first definition
illustrates the conditions under which two actions <a1,In1,Out1> and <a2,In2,Out2>, labeled with onto-
logical concepts, are compatible. In particular, two complementary (input/output) actions are compatible
if and only if (i) for each input expected by the provided action, its data type is subtype of/equal to (⊆) the

4We solve granularity mismatches on sequences of transitions without branches on the minimal eLTS.
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type of some input data produced by the required action (In2 ⊆ In1); and (ii) for each output expected
by the required action, its data type is subtype of/equal to the type of some output data produced by the
provided action (Out1 ⊆ Out2). It is worth to notice that the following definition is intended to actions, with
data, with aligned (same) alphabet.

Definition 5 (Compatible Actions) Let <a1,In1,Out1> and <a2,In2,Out2> be two complementary ac-
tions where a1 = act and a2 = act. We say that a1 and a2 are compatible actions, denoted by a1 =C a2 iff
∀ij ∈ In2 ∃ii ∈ In1 | ij ⊆ ii ∧ ∀oi ∈ Out1 ∃oj ∈ Out2 | oi ⊆ oj .

We use the shorthand notation a1 =C a2 ⇔ In2 ⊆ In1 ∧ Out1 ⊆ Out2 to denote the same.
The initial state together with the final states, define the boundaries of the protocol’s coordination

policies or traces. A coordination policy or trace is indeed defined as any sequence of actions that
starts from the initial state and ends into a final state. It captures the most elementary behaviors which are
meaningful from the user perspective. Then, a coordination policy or trace represents a communication
(i.e., coordination or synchronization) unit and is formally defined as follows.

Definition 6 (Trace or Coordination Policy) Let P = (S,L,D, F, s0) be an eLTS. A trace t = l1 l2 . . .

ln ∈ L∗ is such that: ∃(s0
l1−→ s1

l2−→ s2 . . . sm
ln−→ sn) where {s1, s2, . . . , sm, sn} ∈ S ∧ sn ∈ F . We use the

usual compact notation s0
t⇒ sn to denote a trace, where t is the concatenation of labels of the trace.

We recall that, in our setting, protocols P and Q, in order to communicate, need to be composed in
parallel with a mediator M that let them interact by performing some mediation between them. Thus each
protocol will synchronize directly with the mediator that will perform the coordination between P and Q
by also taking into account the environment. This implies that the actual interaction happens between an
application protocol and a mediator, i.e., P , M and Q, M respectively.

2.2.3 Updated Theory
This section provides an updated formalization of our Abstract CONNECTor Synthesis including in partic-
ular: the Abstraction - Behavioral Matching - Mediator Synthesis process. We recall that we consider:
two systems in the same domain of interest with their respective eLTSs; a widely shared application do-
main ontology conceptualizing actions and data of the domain where each application action and data
refers/maps to some concept in the application domain ontology.

Abstraction: Identification of the common Language
The aim of this phase is to make models comparable and, if possible, to reduce their size thus allowing
to ease and speed up the subsequent reasoning on them. The subsequent step will check whether
the protocols we are considering, within the same application domain, are compatible. If the protocols
are compatible, this imply that at a given level of abstraction, there exists a common language that can
be identified. We recall that the input to this step are the application domain ontology and two NSs
models each including: its own ontology that is a subset of the application domain ontology; its own
eLTS that describing the ontology-based behavioral model. Hence identifying the common language
means checking the existence of a kind of intersection among the ontologies of the two NSs that, when
applied, makes them homogeneous. In particular, the check is about the existence of a concept o in the
application domain ontology O of protocols P andQ, that in the same time is in relationR with two subsets
of ontological concepts {oi . . . on} of P and {o1 . . . om} of Q. More formally:

Definition 7 (Common Language) Let:

• P and Q be protocols,

• O = (L,A) be the application domain ontology of both P and Q,

• OP ⊆ O and OQ ⊆ O be the ontologies of P and Q respectively;
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• R is a relation among ontology concepts;

The common language between P and Q is a set OPQ = {o ∈ O | ∃ SP = {oi, . . . , on} ∈ OP , |SP | ≥ 1 ∧
∃SQ = {oj , . . . , om} ∈ OQ, |SQ| ≥ 1 : SP R o ∧ SQ R o }

Note that in the definition above |SP | (|SQ| resp.) can be equal to 1. In this case the set {oi, . . . , on}
({oj , . . . , om}) is made up by one concept let us say oi (oj resp.) that may coincide with o.

Figure 2.6 shows the application domain ontology where the boxes with gray striped background high-
light the application ontology of Blue of our case study while the boxes with gray background highlight the
application ontology of Moon. In other words, the boxes show the result of the classification of the Blue’s
ontology and of the of Moon’s ontology.
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Figure 2.6: Classification of Blue and Moon application’s ontologies

Figures 2.7 and 2.8 show the abstract protocol of Blue and of Moon respectively.
Since the common language does not take into account the input/output direction of actions, an action

act belonging to the common language might be the outcome of several pairs of labels. For instance,
both pairs < act , In ,Out >, < act , In ,Out > and < act , In ,Out >,< act , In ,Out > would lead
to the action act. Still, since the common language identification does not take into account the actions
direction, the behavioral matching phase have to check that the protocols over the common language
have complementary traces.

Together with the identified common language, systems may possibly also have non-common lan-
guage. The non-common actions, e.g., interactions with third parties and extra actions have to be man-
aged by the mediator while common-actions have to be exchanged among systems -through the media-
tor. Nevertheless systems have the same language, they can still suffer of ordering mismatches and/or
incompatible traces due for instance to non-compatible actions direction input/output. For instance the
two actions <op,In,Out> and <op,In,Out> are clearly incompatible.

Thus, the aim of the subsequent step is to check whether the two abstracted protocols have at least a
complementary coordination policy, i.e., whether the abstracted protocols may in fact synchronize at least
on a trace.

Behavioral Matching
The behavioral matching step aims at checking the NS applications compatibility by identifying compatible
behavior (traces) modulo ordering mismatch, third parties interactions and extra actions. A successful
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s3

s4

<ItemConfirmation, {PurchaseOrder, ProductItem}, {}>

sEnd

<CloseOrder, {PurchaseOrder}, {OrderResult}>

s2
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start

<StartOrder, {CustomerId}, {PurchaseOrder}>

<AddItemToOrder, {PurchaseOrder, ProductItem}, {}>

<ItemConfirmation, {PurchaseOrder, ProductItem}, {}>

Figure 2.7: Abstract Blue protocol

matching implies that a mediator exists and is automatically synthesized by the subsequent phase. The
output of the matching includes: (i) the degree and direction of compatibility; (ii) the compatible set of
traces –identifying a sub-eLTS – labeled by actions and data concepts of the domain ontology including
τs for third parties actions; (iii) a mediator as an eLTS defined over the domain-specific ontology including
τ that realizes a skeleton that then needs to be refined to become a mediator. Figure 2.9 shows the
auxiliary mediator that is one of the output of the matching.

The formalization described so far is needed to: (1) characterize the protocols and (2) abstract them
into protocols on the same alphabet. Then, to establish whether two protocols P and Q can interoperate
given their respective abstract protocols AP and AQ based on their common language OPQ we need to
check that the abstracted protocols AP and AQ have complementary coordination policies. To do this, we
use the behavioral compatibility relation between AP and AQ, which succeeds if AP and AQ have a set
of pairs of complementary coordination traces, i.e., at least one pair.

Before introducing the behavioral compatibility relation, let us define the complementary coordination
policies based on complementary actions with data. Informally, two coordination policies are complemen-
tary if and only if they are two sequences of complementary actions with data possibly in different order
for which it exists a mediator that allows them to correctly synchronize by realizing the needed reordering.
That is, traces t and t′ are complementary if and only if: each action of t has its complementary action
in t′ and viceversa with switched roles among t′ and t and it exists a mediator that allows the traces to
successfully synchronize by reaching their final states. More formally:

Definition 8 (Complementary Traces or Coordination Policies) Let:

• P = (SP , LP , DP , FP , s0P ) and Q = (SQ, LQ, DQ, FQ, s0Q),

• AP , AQ be the abstracted protocols of P and Q respectively,

• TP and TQ be the set of all the traces of AP and AQ, respectively,
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Figure 2.8: Abstract Moon protocol
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• t = l1 l2 . . . ln ∈ TP and t′ = l′1 l
′
2 . . . l

′
m ∈ TQ.

Coordination policies t and t′ are complementary coordination policies iff the following conditions hold
(discarding the τs and extra actions):

(i) it exists a bijection among li ∈ t and l′j ∈ t′ : li and l′j are complementary actions;

(ii) it exists a mediator that allows t and t′ to synchronize successfully, i.e., managing reordering, extra
actions and τs allows the traces to reach their final states without deadlock while exchanging data
effectively.

Note that (i) and (ii) above do not take into account the order in which the complementary labels li and l′j
are within the traces because we work under the assumption of causal independence of actions. Hence,
two traces having all complementary labels (skipping the τs) but in different order are considered to be
complementary coordination policies (modulo a reordering). Therefore, while doing this check, we store
such information that will be used during the mediator synthesis in addition to other information, e.g., the
abstraction information.

As said above, we perform the complementary coordination policies check on the abstracted protocols
AP and AQ, which are expressed in the common language plus τs representing third parties synchro-
nization. We further use the behavioral matching relation or compatibility to describe the conditions that
have to hold in order for two protocols to be compatible. Formally:

Definition 9 (Behavioral Matching or Compatibility) Let:

• P and Q be protocols,

• AP and AQ be the abstract protocols(i.e., on the same alphabet) of P and Q respectively,

• ti be a coordination policy of AP and t′i be a coordination policy of AQ.

Protocols P and Q have a behavioral matching or are compatible iff there exists a set C of pairs (ti, t′i) of
complementary coordination policies of AP and AQ where |C| ≥ 1.

The behavioral matching relation defines necessary conditions that must hold in order for a set of NSs
to interoperate through a mediator. In our case, till now, the set is made by two NSs and the matching con-
dition is that they have at least a complementary trace modulo the τs. Such third parties communications
(τs) can be just skipped while doing the check, but have to be re-injected while building the mediator. They
hence represent information to be stored for the subsequent synthesis. Generally speaking, as mentioned
previously, protocols can have a set of pairs of complementary traces. We then define four different levels
of behavioral matching or compatibility, spanning from non-matching, to partial- and total-matching:

• Non-matching: describes the case in which the set of complementary traces of two protocols is
empty;

• Intersection: concerns cases where only a subset of the two protocols are complementary coordi-
nation policies (from one trace to many, but not all);

• Inclusion: refers to the case in which two protocols have a set of complementary coordination
policies and for one protocol this set coincides with the set of all its traces while for the other it
represents a subset of all its traces;

• Total Matching: refers to the case in which two protocols have a set of complementary coordination
policies and for both of them this set coincides with the set of all their traces.
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Mediator Synthesis

The Mediator Synthesis produces a mediator that addresses the mismatches found during the previous
phase so as to allow the NSs to communicate and coordinate. We recall that during the behavioral
matching phase mediators traces are found that all together represent the skeleton of the mediator to
be synthesized. During the mapping phase this skeleton of mediator needs to be refined thus producing
a mediator over the original protocols languages. The input of the synthesis is then the output of the
behavioral matching step and the output is a correct-by-construction mediator.

Given two compatible protocols P and Q and the set C made by their pairs of complementary coordi-
nation policies, we want to synthesize a mediator M such that the parallel composition P ||M ||Q||E where
E is the environment, allows P and Q (i.e., their portion C) to evolve to their final states. An action of P
and Q can belong either to the common language or the third parties language, i.e., the environment lan-
guage. We build the mediator in such a way that it lets P and Q evolve independently for the portion of the
behavior to be exchanged with the environment (denoted by τ action in the abstracted protocols) until they
reach a “synchronization state” from which they can synchronize on complementary actions. We recall
that the synchronization cannot be direct since the mediator needs to perform suitable manipulations as
for instance actions reordering or translation according to the ontology mappings used to align protocols
and to identify the common language.

As we said previously, we work on traces instead of working on protocols, hence producing a set of
mediating traces for C where we recall that the traces of C ’s pairs are traces on the abstract protocols AP
and AQ. Then, the mediator protocol AM for C can be easily obtained by merging the mediating traces.
AM can be considered an “auxiliary mediator” since it mediates between abstract protocols. To obtain the
corresponding “mediator”, we then need to translate each abstract action to its corresponding concrete
(sequence of) action(s), i.e., on the languages of P and Q.

Therefore, an auxiliary mediator is a protocol that, for each pair of complementary coordination policies
cpq = (cp, cq) in C, builds a mediating trace mpq such that, for each action <op,In,Out> or also τ in cp and
in cq it always first receive the action and then properly resend it. We recall that an action <op,In,Out>
can be equivalently expressed by the following two primitives <op,In,−> and <op,−,Out>. This applies
similarly for <op,In,Out>. An abstract mediator is thus more formally defined as follows.

Definition 10 (Mediator ) Let:

• AP and AQ be the abstract protocols of protocols P and Q respectively;

• cp = l1 . . . ln and cq = l1 . . . lm be traces over AP and AQ respectively;

• C be the set of pairs of complementary traces between AP and AQ and (cp, cq) ∈ C ;

The mediator M for C is defined as follows:
M = {mpq = l1 . . . lk, k ≥ n + m | trace mpq is such that ∃ {li = <op,In,−>, l′i = <op,In,Out>, l

′′

i =

<op,−,Out>}, 1 ≤ i < i′ < i
′′ ∀ pair of compatible actions lh, l′h : lh = <op,In,Out> ∈ cp (∈ cq resp.) ∧ l′h

= <op,In,Out> ∈ cq (∈ cp resp.) }

We recall that the auxiliary mediator described above is intended to mediate among the abstract proto-
cols AP and AQ. Thus, we need to translate each abstract action to its corresponding concrete (sequence
of) action(s), i.e., on the languages of P and Q to obtain the corresponding mediator.

Figure 2.10 illustrate the mediator for our case study. The mediator is logically made up of two separate
components: MC and MT . MC speaks only the common language and MT speaks only the third parties
language. MC is an eLTS built starting from the common language between P and Q whose aim is to
solve the protocol-level mismatches occurring among their dual interactions (complementary sequences
of actions) by translating and coordinating between them. MT , if it exists, is built starting from the third
parties language of P and Q and represents the environment. The aim of MT is to let the protocols evolve,
from the initial state or from a state where a previous synchronization is ended, to the states where they
can synchronize again.
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Figure 2.10: Mediator protocol
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2.3 Correctness

In order to informally state correctness of the WP3 synthesis process, we can directly exploit, and hence
refer to, the work done during Year 3 by Work Package WP2.

More specifically, as described in details in Deliverable D2.3 [6], the work carried on within WP2 during
Year 3 led to the definition of a component and connector specification theory. This theory allows us to
characterize the WP3 mediator synthesis problem as a suitable quotienting problem, in which ontological
constraints and an abstract goal specification are taken into account. In particular, in Deliverable D2.3,
relationships between the specification theory of WP2 and the mediator theory of WP3 are shown, thus
devising a suitable mapping from the mediator theory of WP3 to the WP2 specification theory. This allows
the work of WP3, described in this chapter, to inherit the interesting results of the WP2 specification theory.
More verbosely, as discussed in [6], it allows one to state that a mediator synthesized à la WP3 is correct,
i.e., it does not introduce inconsistencies, e.g., communication mismatches, deadlocks, etc., and is most
general, i.e., any other mediator is a refinement of it.

To show that the WP3 mediator theory fits in with the WP2 specification theory, the authors of Deliv-
erable D2.3 give a semantic preserving mapping from the former to the latter. As a direct consequence
of that, the two fundamental operations of mediator synthesis, protocol matching and protocol mapping,
can be abstractly characterized as a suitable quotienting problem and related synthesis algorithm, by
exploiting the notions of quotient, ontological constraints and goal as shown in Deliverable D2.3.

2.4 Conclusion

Interoperability problems between heterogeneous protocols are the focus of our work. In this chapter
we concentrated on the Abstract CONNECTor Synthesis, including three phases: Abstraction (Identifica-
tion of the Common Language), Behavioral Matching, and Mediator Synthesis. We provided a revised
CONNECTor Theory to synthesize a CONNECTor between compatible protocols that is supported by two
prototypal implementations illustrated in Chapters 3 and 4.

The theory, with respect to the one presented last year, (i) explicitly models the data that the observable
application actions convey and (ii) provides a general description of the manipulations needed all along
the abstraction and behavioral matching phases that are the costly and hard ones while in the previous
version they were more implementation specific.

The CONNECTor produced by our theory handles mismatches and third parties conversations consid-
ering the traces of each networked system as goals that have to be met through interactions with the other
NS. Hence, by performing the behavioral matching check, our approach let the goal of the communication
emerge. When working on infinite protocols, i.e. protocols with cycles, we handle a finite set of the the
infinite set of traces that can be generated by considering that cycles are executed at most a fixed number
of times.

For the future, we plan to investigate and extend the theory with the following aspects: to take as input
a goal specification together with the current input; to design refined behavioral matching and synthesis
algorithms; to try to build the common language on the fly instead of classifying ontologies a priori.

In the subsequent chapters, two different implementations of the Abstract CONNECTor Synthesis the-
ory are presented: Goal-based abstract CONNECTor synthesis (Chapter 3) and Mapping-driven Abstract
CONNECTor Synthesis (Chapter 4). The two approaches are then compared in Chapter 5, where their
differences and peculiarities are highlighted, while Chapter 6 provides a unified interface for them.
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3 Goal-based abstract CONNECTor synthesis
One of the main focuses of CONNECT is, as stated in Chapter 2, to develop the theory and the practice

needed to synthesize automatically a CONNECTor (i.e. a mediator) capable of enabling the communication
between two networked systems. In last year deliverable D3.2 [9] and in Chapter 2 of this deliverable, a
theory of mediators has been developed and refined.

In this chapter we propose a practical implementation for the abstract CONNECTor theory, presented
in Chapter 2. Our implementation tackles the problem of creating an abstract CONNECTor automatically,
given a pair of networked systems. The CONNECTor we produce is defined abstract since it needs to be
concretized, as described in Deliverable D1.3 [4], in order to be executed.

Literature has been tackling this problem in several ways in recent years, proposing a range of solu-
tions that go from those able to find mismatches between two components, without solving them (as for
instance [35] and [34]), to those capable of suggesting possible mismatches solution, but needing human
assistance in order to create a mediator (i.e. [40]), to more complete and automatic solutions (e.g. [20],
[56]). However the aforementioned solutions do not consider in the mediator synthesis process that two
networked systems are usually connected with a given goal in mind. This aspect is important in CON-
NECT, as user goals are used to discover and select the networked systems that should communicate
(see D1.3 [4] for details about goals and how they are used in discovery and selection).

The problem of implementing a framework for automatic mediator synthesis has been tackled also
in D3.2 [9], producing a solution that is able to handle simple mismatches (i.e. signature mismatches,
described in the mismatch models proposed in [28] and [71]). Also this preliminary solution, just like the
previously mentioned ones, does not consider the goal driving the connection of two networked systems.

In this chapter we provide a possible implementation of the CONNECTor theory, specifying an auto-
matic solution to the problem of synthesizing an abstract CONNECTor to enable the communication of two
networked systems, triggered by a user goal. The produced CONNECTor is defined abstract as it disre-
gards the middleware on which the two networked systems are actually implemented and considers only
their application protocols (see Chapter 2 and D3.2 for definitions and details).

The solution presented in this chapter is based on what proposed in [26, 15]. Here we extend what
presented in those works, introducing a well defined ontology matching process (see Section 3.3), adding
the support for goal-based CONNECTor synthesis (see Section 3.4), and extending the communication
model that allows us to synthesize mediators to take into account communication models different from
the client-server one, the only one considered in [26, 15] (see Section 3.4).

The rest of the chapter is organized as follows: Section 3.1 presents an overview of our approach, de-
tailing the inputs and the outputs and relating our implementation to the theory in Chapter 2, Section 3.2
presents the simplificative hypotheses we consider to implement the goal-based synthesis of abstract
CONNECTors, Section 3.3 describes how we implement the common language inference, introduced in
Definition 7, Section 3.4 describes how we perform the abstract CONNECTor synthesis phase, implement-
ing the Matching introduced in Section 2.2.3, while Section 3.5, we show how our technique works on the
case study described in Section 1.5. The tool we produced to evaluate the approach is explained in Sec-
tion 3.6, through a description of the framework in which we implemented the approach, finally Section 3.7
draws some conclusions and proposes some possible future research directions.

3.1 Synthesis Process Overview

The process for synthesizing an abstract CONNECTor, presented in this chapter, is an implementation of
what presented in Chapter 2. The current implementation restricts the theory considering only the syn-
thesis of connectors for a couple of networked systems (i.e. no third parties interactions are considered).
Our synthesis process takes the following inputs:

• A Connection = (Req,Concept,G, Prov) between a required networked system description Req and
a provided networked system description Prov, proposed by the discovery enabler (see Chapter
3 of Deliverable D.1.3 for details about discovery enabler and connections). A network system
description is defined as a tuple L×2Affordance, where L is defined as in Definition 3 Affordance =
OntologyConcept× eLTS. For the sake of simplicity, in the rest of the chapter we will refer to eLTS
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as affordance protocol or simply protocol. Moreover in a Connection, G is the user goals that the
given connection should satisfy and Concept is the affordance ofReq and Prov the connection refers
to.

• A domain specific ontology used to annotate each of the two affordance models. The annotations
associate each action in the set of actions with data of each protocol to an ontology concept. More-
over the annotations also associate each input and output parameter of an action to an ontology
concept. As previously defined in Deliverable D1.2 [3], we assume that annotations are provided
using SAWSDL [78].

Our abstract CONNECTor synthesis process goes through two main phases:

1. Common Language Inference: this phase partially implements the abstraction phase described
in Section 2.2.3, inferring a common language for the two input protocols, through an alignment
process on their alphabets (see Section 3.3).

2. Matching: this phase implements what theorized in Section 2.2.3, synthesizing an abstract CON-
NECTor M that enables the communication between the networked systems, represented by the
affordances in the Connection given as input to the approach. The abstract CONNECTor should
ensure that the communication between the two systems can take place (i.e. a feasible interaction
between the two systems is possible, as defined in Section 3.4). Moreover the CONNECTor should
ensure that the communication satisfies user goals in the Connection. This is achieved by ensuring
that Preq ×M × Pprov |= G. The synthesis phase is performed through SMT-based model checking
on the two ontology-aligned protocols, and is explained in Section 3.4.

In the rest of this chapter we are going to detail the two phases of our synthesis process, supporting the
explanation by the application of our technique to the case study in Chapter 1.5.

3.2 Simplificative Hypotheses and Case Study Refinement

Here we refine the case study introduced in Section 1.5. The refinement is necessary because, as
previously mentioned in this chapter, our implementation makes some restrictive hypotheses with respect
to the theory, introduced in Chapter 2.

The main hypothesis introduced by the goal-based abstract CONNECTor synthesis is that the process
will work on two networked systems only. This hypothesis was introduced to simplify the implementation
of the synthesis enabler. Consider for instance the networked system protocol reported in Figure 2.4.
The part in which the service handles the client payment presents a third party interaction. In the Moon
customer service representation in that Figure, the service receives the data from the client, but then it
needs to interact with a third party service (i.e. a payment hub) in order to validate the received data and to
proceed with the withdrawal of the needed amount of money from the customer credit card. This happens
through the invocation of the < PayThirdParty, {CreditCardNumber,Amout}, {OrderResult} > action.
In our approach third parties interactions are disregarded, consequently this interaction will be simplified,
as shown in Figure 3.1.

There is also a second hypothesis that is going to be taken into consideration in this chapter: a net-
worked system can only read data produced by the other system, and not by itself. The introduction of
this hypothesis is motivated by our reasoning mechanism to check the functional matching of networked
systems protocols traces (see Section 3.4), and will be explained in more details later in the chapter. Con-
sider for instance the < Login,CustomerId, SessionId > action in the Moon customer service, reported
in Figure2.4, and its successor < CreateOrder, {CustomerId}, {SessionId} >. The CreateOrder action
expects to receive as input the SessionId parameter, which is not sent by any action in the Blue client in
the example (see Figure 2.3). The parameter should come from the output of the Login action, however,
with our second simplificative hypothesis, the parameter cannot be read by those outputted by the same
networked system, so generating a CONNECTor in this case would not be possible. For this reason, we
disregard the SessionId parameter, as shown in Figure 3.1. In the rest of the chapter the protocol shown
in the latter figure will be used as reference for the Moon customer service.
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Start S1 S2 S3

<Login;{CustomerId};
{}>

SEnd S4

<CreateOrder;
{};

{PurchaseOrder}>

<SelectItem;{OrderId,
ItemId,

ItemQuantity};
{}>

<CloseOrder;
{OrderId,

CreditCardNumber};
{OrderResult}>

<ConfirmItem;
{OrderId, ItemId, ItemQuantity};

{}>

<SelectItem;{OrderId,
ItemId,

ItemQuantity};
{}>

Figure 3.1: Refined version of the Moon customer service networked system.

Finally we introduce a third simplification about the semantics of the received parameters: each re-
ceived parameter can be read just once by the networked system that receives it, and then is discarded
by the mediator. We introduce this conservative hypothesis, as the language introduced in last yeard de-
liverable D3.2 [9], does not distinguish at the moment the cases in which a parameter should be read only
once or can be read more times. This hypothesis calls for a refinement to be introduced in the Moon ser-
vice protocol. Consider for instance the sequence of actions < SelectItem, {OrderId, ItemId}, {} > and
< SetItemQuantity, {OrderId, ItemId, ItemQuantity}, {} > in the Moon service in Figure 2.4. Each of
the actions in that sequence requires to read an instance of each of its input parameter. When the param-
eter is read, following our hypothesis, The action that can provide instances of the same parameters in
the Blue client is the < AddItemToOrder, {OrderId, ProductItem}, {} > action. Since, as shown in the
ontology, the ProductItem input parameter of this action is composed of ItemId and ItemQuantity, it
provides enough input parameters to invoke the SelectItem operation, but, in our hypothesis, not enough
to invoke also the following SetItemQuantity operation on the Moon service. In order to avoid this prob-
lem, we refine the SelectItem in the Moon service as shown in Figure 3.1.

3.3 Common Language Identification

Common language identification is the process that aligns the alphabets Lreq and Lprov, to a common
alphabet, as specified in the theory, in Section 2.2.3. We here implement the common language identigi-
cation by taking as input the two alphabets Lreq and Lprov, and a domain specific ontology,identifying the
common alphabet LM , and substituting Lreq and Lprov, with the identified common alphabet (i.e. what
we call alignment process). In practical terms the alignment process is necessary because, in order to
perform model checking on Preq and Pprov, we need to have them defined on a common alphabet.

In order to be able to perform the matching on the domain specific ontology, we need that the latter
contains the two following relation types:

• subclass relations,

• part-whole relations existing between an element and its parts, represented by the hasPart and its
inverse partOf relations.

Existing OWL reasoners, usually, try to infer subclass relations from other existing ontology rela-
tions [68]. Anyway currently available reasoners do not take into account part-whole relations [62], as
stated in W3C best practice recommendation [79]. To effectively work-around this limitation we refer to
the latter recommendation, and we assume that the ontology comes with the hasPart and the partOf
relations.

The process of inferring a common language for the two input networked systems is composed of two
steps.
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• Action alignment: given an action A1 in Lreq this step tries to find a concept OC, in the domain
specific ontology used as input for the synthesis process, that can be used to align A1 to one or
more actions in Lprov.The alignment process considers the part-whole and the subclass relations in
the ontology in the following order.

1. Part-whole relations, A1 is involved in are considered in a first moment. In case A1 is in at least
one hasPart relation with ontology concepts A2, . . . , Ak, in Lprov, these actions are considered
for alignment. The alignment replaces the annotation A2, . . . , Ak with the annotation A1 .
Consider for instance the StartOrder action in the Blue client (as represented in Figure 2.3).
The concept annotating this action, as reported in the ontology in Figure 2.2, is in a hasPart
relation with the Login and CreateOrder concepts. These two concepts annotate two actions in
the Moon customer service. In this case we can align the actions annotated by the Login and
CreateOrder concepts, on the StartOrder concept. Consequently the first two annotations are
substituted by StartOrder.

2. Subclass relations are considered. In case no part-whole relation exists for a concept A1

annotating an action in Lreq we search for an ontology concept OC such that A1 v OC (to be
read as A1 is subsumed by OC, i.e. A1 is subclass of OC, according to the definition given
in [58]), and A2 v OC. It is worth nothing that several concepts OC1, . . . , OCk can exist, such
that A1 v OC1, . . . , A1 v OCk and A2 v OC1, . . . , A2 v OCk. In this case we consider the
hierarchy defined in the domain specific ontology for the classes A1, A2, OC1, . . . , OCk and we
chose the class OC, having the lowest distance in the hierarchy from A1 and A2.
If a concept OC exists, the annotations A1 and A2 are replaced by that concept. Consequently,
the two actions, previously annotated by concepts subsumed by OC, are now annotated by the
same concept, and are defined as aligned.
Consider for instance the action annotated by the GetConfirmation concept in the Blue client
alphabet. As reported in the ontology in Figure 2.2, the GetConfirmation is a subclass of the
ItemConfirmation concept. The latter concept has also another subclass in the domain spe-
cific ontology: the ConfirmItem concept. ConfirmItem annotates an action in the Moon cus-
tomer service alphabet. Consequently the actions respectively annotated byGetConfirmation
and ItemConfirmation can be aligned on the ConfirmItem concept.

At the end of this first step, the annotations of the actions in LReq and in LProv are aligned.

• Parameter alignment: given two actions annotated respectively byA1 andA2, aligned on an ontology
concept OC, this step considers their parameters. The alignment of parameters of two aligned
actions works in a way similar to the action alignment, with the only difference that we assume
that concepts representing parameters in the ontology can also have data properties, as shown in
Figure 2.2. The presence of data properties, implies that some data parameters of the actions in
Lreq and Lprov, can be annotated with those data properties, instead of the concepts. For instance,
in Figure 3.1, the unique input parameter of the output action Login is annotated with CustomerId,
which is a data property of the Customer concept, as shown in Figure 2.2. For what concerns our
approach, the latter case is treated as if a part-whole relation existed between the concept and its
data properties (e.g. in the aforementioned example there exists a part-whole relations between
Customer and CustomerID).

The parameter alignment process, similarly to the actions alignment process, is divided in two steps.

1. Considering a parameter of A1, annotated with the concept OC1, this step analyzes in a first
moment its data properties and the part-whole relations, OC1 is involved in. In case OC1

is in at least one hasPart relation with ontology concepts OC2, . . . , OCk (or respectively has
OC2, . . . , OCk as data properties), and if OC2, . . . , OCk annotate some of the parameters of
A2, the second step of the process considers them for the alignment. The alignment replaces
the annotation OC1 by the annotations OC2, . . . , OCk. In this way the OC1 is substituted by
those concepts that the ontology points out being its parts.
In order to complete the alignment, it is necessary to consider that the parameter’s semantics
is also determined by the action it belongs to. To allow the semantics of a parameter to be
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related to the actions it belongs to, during the alignment, a reference to the action concept
is added to the parameter annotation. Consequently, in the aforementioned case, the anno-
tation OC1 is replaced by OC.OC2, . . . , OC.OCk, where OC is the concept aligning A1 and
A2. In the same way, the OC2, . . . , OCk parameters of A2 are substituted by the annotations
OC.OC2, . . . , OC.OCk. At the end of this step the parameters OC1 and OC2, . . . , OCk, are
aligned on the annotations OC.OC2, . . . , OC.OCk.
Consider again the case study introduced in Chapter 1.5, and the actions GetConfirmation in
the Blue client alphabet and ConfirmItem in the Moon customer service alphabet. These
two actions were aligned on the ItemConfirmation concept. Let us consider their pa-
rameters. GetConfirmation, for instance has a parameter annotated by the ProductItem.
As shown in the ontology in Figure 2.2 the ProductItem has the following data properties,
ItemIdand ItemQuantity. Those two data properties, annotate two output parameters of the
action ConfirmItem. Following our procedure, we can align the annotation ProductItem and
the ItemId and ItemQuantity annotations, of the action annotated by ConfirmItem, with
ItemConfirmation.ItemId and ItemConfirmation.Quantity annotations.

2. In case the parameter annotated by OC1 is not in a part-whole relation, we consider OC1

super-classes in the ontology. Given OC1, and a parameter of A2,annotated with the concept
OC2, this step tries to find a concept OC3 such that OC1 v OC3 and OC2 v OC3. In case
OC3 exists, similarly to the previous case, the annotation OC1 is substituted by the annotation
OC.OC3, and the annotation OC2 is substituted by the annotation OC.OC3, where OC is the
concept aligning A1 and A2. At the end of this step the parameters OC1 and OC2, are aligned
on the annotation OC.OC3.
Differently than from what considered for actions, when aligning parameters to an ontology
superclass, there is a degenerative case that needs consideration, and in presence of which,
our approach does not produce an alignment . This case is the one in which an input parameter
OC1 of an actionA1 (i.e. A1 expects to receiveOC1), needs to be aligned on an input parameter
OC2 of a provided action A2 (i.e. A2 sends OC2), and OC1 v OC2, or that in which an output
parameter OC1 of an input action A1 (i.e. A1 expects to receive OC1) needs to be aligned
to the output parameter OC2 of a required action A2 (i.e. A2 sends OC2), and OC1 v OC2.
To understand why the alignment needs not to be produced in this case, consider that the
parameters identified by the ontology concepts OC2 in the previous statement, are sent by the
action they are parameters for, while those annotated by OC1 are expected to be received.
Now, since OC1 v OC2, according to the definition in [58], OC1 type “requires the same or
more” than OC2 type. Consequently, when OC2 has to be received in place of OC1, not all the
pieces of information in OC1 may be provided.
It is interesting to notice why this degenerative case does not occur for actions alignment.
Actions in our approach are considered to give a semantics to parameters, since they do not
exchange any piece of data by themselves. The exchange of data between two networked
systems, instead, takes place through the exchange of parameters. Consequently this case
needs to be considered when aligning parameters, while it does not occurr for actions.

Let us apply our mapping process to the case study reported in Chapter 1.5. The alignment for the
actions in the alphabets of theBlue client and the Moon customer service, are reported respectively in
Table 3.1 and 3.2.

At the end of the alignment process the two alphabets, LPprov
and LPreq

, are aligned on a common
alphabet LM . In Section 3.3 we will describe how we can synthesize a CONNECTor for Preq and Pprov
whose alphabets are aligned on LM . For the sake of simplicity, we are going to use the common language
reported in Table 3.1 and in Table 3.2, instead of the original annotations of the actions, to support the
explanation.

3.4 Abstract CONNECTor Synthesis

Let us define our problem of finding a CONNECTor M , such that, given a Connection composed of a
required protocol Preq, a provided protocol Pprov and some user goals (G1, . . . , Gu), we have that Preq ×

CONNECT 231167 41/81



<Action,{Input parameters},{Output parameters}> Alignment

< StartOrder, {CustomerID}, {OrderId} > StartOrder, {StartOrder.CustomerID}, {StartOrder.OrderId} >

< AddItemToOrder, {OrderId, ProductItem}, {} > < AddItemToOrder, {AddItemToOrder.OrderId,
AddItemToOrder.ItemId,AddItemToOrder.ItemQuantity}, {} >

< PlaceOrder, {OrderId, CreditCardNumber}, {} > < CloseOrder, {CloseOrder.OrderId, CloseOrder.CreditCardNumber}, {} >

< GetConfirmation, {OrderId, ProductItem}, {} > ItemConfirmation, {ItemConfirmation.OrderId, ItemConfirmation.ItemId,
ItemConfirmation.ItemQuantity}, {} >

< Quit, {OrderId}, {OrderResult} > < CloseOrder, {CloseOrder.OrderId}, {CloseOrder.OrderResult} >

Table 3.1: Common language inferred for the actions in the Blue client alphabet, reported in Fig-
ure 2.3.

< Action,{Input parameters},{Output parameters}> Alignment

< Login, {CustomerID}, {} > < StartOrder, {StartOrder.CustomerID}, {} >

< CreateOrder, {}, {PurchaseOrder} > < StartOrder, {}, {StartOrder.OrderId, StartOrder.HasV alidity} >

< SelectItem, {OrderId, ItemId}, {} > < AddItemToOrder, {AddItemToOrder.OrderId,AddItemToOrder.ItemId,
AddItemToOrder.ItemQuantity}, {} >

< ConfirmItem, {OrderId, ItemId, ItemQuantity}, {} > < ItemConfirmation, {ItemConfirmation.OrderId,
ItemConfirmation.ItemId, ItemConfirmation.ItemQuantity}, {} >

< CloseOrder, {OrderId, CreditCardNumber}, < CloseOrder, {CloseOrder.OrderId, CloseOrder.CreditCardNumber},
{CloseOrder.OrderResult} > {CloseOrder.OrderResult} >

Table 3.2: Common language inferred for the actions in the Moon customer service alphabet,
reported in Figure 3.1.

M × Pprov |=
∧
x∈[1,u]Gx.

A CONNECTor, is a piece of software that only allows feasible interactions between sequences of
required actions seqPreq

= (A1, . . . , Ai) and sequences of provided actions seqPprov
= (B1, . . . , Bq), where

seqPreq
is a sequence of i actions allowed in the Preq protocol, while seqPprov

is a sequence of q actions
allowed in the Pprov protocol.

The interaction between the two aforementioned sequences is feasible if:

• The input parameters expected by the actions in seqPprov
are a subset of the parameters provided

by the actions in seqPreq

• The output parameters provided by the actions in seqPprov
are a superset of the output parameters

expected by actions in seqPreq
.

The rationale of this informal definition can be understood thinking of how the communication between
two networked systems takes place. One of the two systems, the invoker, represented by seqPreq in our
case, performs a sequence of provided actions. Each action, as stated in Definition 5, has a set of input
parameters, which are provided by the invoker and sent over the network, and a set of output parameters,
which the invoker expects to receive as a response to the performed action.

The other system, the invoked, in order for the interaction to be completed successfully, should perform
a sequence of required actions, represented by seqPprov

in our case. Each of those required actions has
a set of input parameters, that should be received from the network before the action is performed. In our
model, consequently, a given action will produce the parameters contained in its output parameters set,
when all the input parameters of a given action have been received.

In this perspective, requiring that the input parameters expected by the actions in seqPprov
are a subset

of input parameters provided by the actions in seqPreq
means guaranteeing that the input parameters

of each action in seqPprov will be provided by an action in seqPreq . Moreover, requiring that the output
parameters provided by the actions in seqPprov are a superset of the output parameters expected by actions
in seqPreq

guarantees that the output parameters expected by the actions in seqPreq
will be provided by

the actions in seqPprov
. An interaction respecting the aforementioned conditions is called feasible, and
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represents the case in which there exists a functional matching between Preq and Pprov,as stated in
Definition 9 .

Feasible Interactions

Formally we can define the concept of feasible interaction, in the hypothesis that seqPreq is composed only
of required actions and seqCprov is composed only of provided actions, as follows1. For the trace seqPreq

we consider the sets DPreq
=
⋃

1≤k≤iDAk
and EPreq

=
⋃

1≤k≤iEAk
respectively representing the set that

contains all the annotations used to align Ak input parameter and the set containing all the annotations
used to align Ak output parameters, for each Ak in seqPreq

. We similarly consider DPprov
=
⋃

1≤h≤qDBh

and EPprov =
⋃

1≤h≤q EBh
, which represent the set containing all the annotations used to align Bh input

parameters and the set containing all the annotations used to align Bh output parameters, for each Bh in
seqPprov

.
Finally we define the two sets D = DPreq

∪ DCprov
and E = EPreq

∪ EPprov
, containing all the anno-

tations used to align input, respectively output, parameters that can be used in the two sequence, and
consequently representing respectively all the input and output parameters that can be exchanged during
an interaction.

For each action Ak in the required protocol, we define two sets of functions: InAk
: D → {1, 0},

and OutAk
: E → {1, 0}. InAk

(d) = 1, if d ∈ D is an input parameter for Ak , otherwise InAk
(d) = 0.

OutAk
(e) = 1, if e ∈ E is an output parameter for Ak , otherwise OutAk

(e) = 0. Similarly we can define the
InBh

and OutBh
for each action Bh in the provided protocol.

Considering the case study in Chapter 1.5 and the alignment reported in Table 3.1 and in Table 3.2, we
can, for example, say that for the < StartOrder, StartOrder.CustomerId, StartOrder.OrderId > of the
Blue client, InStartOrder(StartOrder.CustomerId) = 1, OutStartOrder(StartOrder.OrderID) = 1, while
InStartOrder and OutStartOrder assume the value 0 for any other parameter, in D and respectively E .

Given the definitions of the aforementioned sets and functions we can define a parallel composition of
two sequences seqPreq and seqCprov .

Definition 11 (Interaction (Parallel Composition)) The interaction (or parallel composition) of two se-
quences seqPreq

and seqPprov
is one of the possible R = seqPreq

‖ seqPprov
, where R =

R1, R2, . . . , Rg, . . . , Rz. For each 1 ≤ g ≤ z each pair Rg = (r1, r2), is such that:

r1 = Rg|1 ∈ P1 ∪ {ε}

r2 = Rg|2 ∈ P2 ∪ {ε}.

We can call R|1 (respectively R|2) the sequence obtained by projecting R on the first component (respec-
tively on the second component). Finally we can define the homomorphism 6 ε that deletes all the instances
of ε in the projections R|1 and in R|2, such that:

6 ε (R|1) = seqPreq

6 ε (R|2) = seqPprov .

Referring to the theory introduced in Chapter 2, the R defined here, corresponds to the concept of com-
plementary traces of Definition 8

In order to find out if the interaction between a sequence seqPprov
and a sequence seqPreq

is feasible,
we need to keep track of the input and output parameters exchanged. We keep track of this, introducing
two sets of functions on the parallel composition R :

seenPreq
(Rg, Dx) = seenPreq

(Rg−1, Dx) + (3.1)
InRg|1(Dx)− InRg|2(Dx)

with seenPreq (Rg, Dx) ∈ N, Dx ∈ D and seenPreq (R0, Dx) = 0.

1We here make this hypothesis only for simplyfing the presentation. This simplification will be overcome later in this section.
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neededPreq
(Rg, Ey) = neededPreq

(Rg−1, Ey) (3.2)
+OutRg|1(Ey)−OutRg|2(Ey)

with neededPreq
(Rg, Ey) ∈ Z, Ey ∈ E and neededPreq

(R0, Ey) = 0
Intuitively the seenPreq function keeps track of how many instances of a given input parameter have

been provided by actions in seqPreq , invoked so far, and not yet read by actions in seqPprov . The neededPreq ,
instead, keeps track of how many instances of a given output parameter, expected by the actions in seqPreq

invoked so far, have not yet been provided by actions in seqPprov
.

The seenPreq
(Rg, Dx) function is used to define a progress property on the R sequence.

Definition 12 (Progress1) The gth step of the sequence can be performed only if after its invocation
seenPreq (Rg, Dx) ≥ 0 for each Dx in D.

The neededPreq (Rg, Ey) is used to define a consistency property on the R sequence.

Definition 13 (Consistency1) The Consistency2 property holds in a sequence R if, after the sequence
seqPreq

reaches its last step, for each Ey in E , neededPreq
(Rg, Ey) ≤ 0 .

Intuitively an action in seqPreq
expects the invoked actions on seqPprov

to return those parameters
declared in the action in seqPreq

description as output parameters. In order for the communication to work,
seqPprov

should return at least all of the parameter instances that are required by the action in seqPreq
,

which means that eventually at the end of seqPprov the neededPreq functions should run to 0 for all the Ey.
In this chapter we are considering both the cases in which the invocation semantics is synchronous

(i.e. the invoker waits for the invoked reply before proceeding), or asynchronous (i.e. the invoker does
not need to wait for the invoked reply before proceeding). The latter case is the most general, and, is
naturally modeled by the progress and consistency properties introduced previously in this section. The
synchronous case needs us to introduce a synchronous progress notion:

Definition 14 ( SynchronousProgress1) once a pair Rg having a Rg|1 = ai,g 6= ε appears in the current
step of R, and seenPreq (Rg, Ej) > 0 for some Ey in E , then the following steps of R will be ε, Rg|2, until a
step Rg+c of R is performed, such that neededPreq (Rg+c, Ey) = 0.

Given the above definitions we can define our notion of feasible invocation.

Definition 15 (Feasible Interaction (simplified version)) An interaction between a sequence of re-
quired actions seqPreq

on the P1 protocol, and seqPprov
of provided actions on the P2 protocol, is defined

feasible if, given a possible R = seqPreq
‖ seqPprov

the Progress1 property holds for each step of R (in the
case of synchronous semantics the SynchronousProgress1 property, instead, holds for each step of R).
Moreover, the Consistency1 property eventually holds from a given step of R on and the latter property
holds when both P1 and P2 are in accepting states.

Intuitively, the defined concept of feasible interaction mandates that, when an action of seqC2 should
be invoked, the input data of the former action must have been provided by some already invoked ac-
tions of seqC1

(i.e. the Progress property holds). Moreover, an action of seqC1
successfully finishes its

computation if eventually all of its parameters are returned by some actions in seqC2
(i.e. the Consistency

eventually holds). This definition concretises the concept of compatibility introduced in Definition 9 and
allows caching of input and output parameters (i.e. respectively through the values of seen and needed)
and facilitates action re-ordering.

Extensions to the concept of feasible interaction

The formalization of feasible interaction presented so far specifies only the simplest case, in which one of
the networked systems involved in a Connection always acts as the invoker (i.e. performs only provided
actions) and the other always acts as the invoked (i.e. performs only provided actions). Normally this is
not always the case, as it is shown in the case study introduced in Chapter 1.5.

In order to take into account the aforementioned situation, our formalization of feasible interaction
notion needs to be extended.

CONNECT 231167 44/81



Going into details, we need to consider that when examining a sequence from an Interaction, pre-
viously defined in Definition 22, now we can find also couples composed of required actions of Pprov
and provided actions of Preq. To take those couples into account we have to introduce a seenPprov

and
a neededPprov functions, defined dually to seenPreq and a neededPreq (i.e. taking into account data ex-
changed by required actions in Pprov with provided actions in Preq). Then, similarly to properties defined
in Definitions 17 and 16, we can define Consistency2 and Progress2 properties, and use them to refine
the feasible interaction as follows:

Definition 16 (Progress2) The gth step of an interaction R can be performed only if after its invocation
seenPprov (Rg, Dx) ≥ 0 for each Dx in D.

Definition 17 (Consistency2) The Consistency2 property holds in a sequence R if, after the sequence
seqPprov

reaches its last step, for each Ey in E , neededPreq
(Rg, Ey) ≤ 0 .

Definition 18 (Feasible Interaction (generalization of Definition 15)) An interaction between a se-
quence of actions seqPreq on the P1 protocol, and seqPprov of actions on the P2 protocol, is defined feasible
if, given a possible R = seqPreq

‖ seqPprov
the Progress1 and the Progress2 properties holds for each

step ofR (in the case of synchronous semantics the SynchronousProgress1 and SynchronousProgress2
properties, instead, holds for each step of R). Moreover, the Consistency1 and the Consistency2 proper-
ties eventually hold from a given step of R on and these properties still hold when both P1 and P2 are in
accepting states.

CONNECTor formalization and synthesis

Given the definition of feasible interaction, we can give a formal definition of CONNECTor. To do so, we
need to introduce the notion of counter system and of counter transition system (see [41], [33] , [30]).

In practice counter transition systems are labeled transition systems, extended with the use of pos-
sibly unbounded counters. The transitions from a state to another of the system are guarded by
somePresburger arithmetic formula [64], which can modify the value of the counters. Presburger arith-
metic is a first order theory on the structure (Z,+), and consequently a Presburger formula is an arithmetic
formula on integers, including only addition and comparison.

Definition 19 (Counter system) A counter system S is a tuple (Q,n, δ), such that Q is a non-empty set
of states, n ≥ 1 is the dimension( i.e. the number of counters in the system which can be represented by
the variables x1, . . . , xn) and δ is the transition relation defined as a set of triples (q, Φ, q′), where q and q′

are states in Q and Φ is composed of a transition label l and a Presburger arithmetic formula ϕ.

For a counter system we can define the concept of a state configuration.

Definition 20 (Counter system state configuration) A configuration of the counter system S = (Q,n, δ)
is a pair (q,−→x ) ∈ Q×Zn.

In practical terms a configuration associates each state of the counter system to a tuple of n integer
values (one for each counter of the system). Given Definitions 19 and 20 we can finally define a counter
transition system

Definition 21 (Counter transition system) Given a counter system S = (Q,n, δ) its transition system
T (S) = (S,→) is a graph such that S = Q×Zn and→⊆ S × S is the transition relation, defined such that
(q,−→x ), (q′,

−→
x′ ) ∈→ if and only if there exists a transition t ∈ δ and (q,−→x )

t−→ (q′,
−→
x′ ). A run ρ of a transition

system S can be defined as a non-empty sequence ρ = (q1,
−→x1), . . . , (qk,

−→xk).

Given these definitions we can now define formally a CONNECTor for two protocols Preq and Pprov.

Definition 22 (CONNECTor) A CONNECTor for two protocols Preq and Pprov is a counter transition system
M = (SM ,

−→
M), defined on a counter system SM = (QM , n, δM ), whereQM is a set of tuples (a, b) such that

a ∈ SPreq
and b ∈ SPprov

, n = |D|+ |E|, and δM is a transition relation composed of tuples (qM , ΦM , q
′
M ). In

each tuple, qM and q′M are states in QM , and ΦM is composed of a label lM = (a, b) such that a ∈ LPreq
∪ε
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and b ∈ LPprov
∪ ε. The formula ϕM is a CLTLB(D) formula, where CLTLB(D) is a linear temporal logic

defined on Presburger arithmetic (see [16] and [15] for a detailed definition of CLTLB(D)).
A run of the CONNECTor, ρM = (q1,

−→x1)M , . . . , (qk,
−→xk)M is such that q1, . . . , qk are a feasible interaction

R of two action sequences seqReq and seqProv, on the invoker and invoked protocols respectively, while
−→xc, with c in [1, . . . , k], represent the values of seen and needed functions when the CONNECTor reaches
the state qc. The formula in ϕM defines the increments and decrements of the values that seen and needed
functions take in the possible state configurations following the present one, as described in formulas 3.1
and 3.2.

The CONNECTor synthesis problem imposes some constraints on the transitions that can be realised
from a given state configuration. In particular the CONNECTor synthesis problem has the purpose of
ensuring that the CONNECTor synthesised allows only feasible interactions of the client and server.

Definition 23 (CONNECTor Synthesis (without considering user goals)) Given two protocols Preq and
Pprov. we say that it is possible to build a CONNECTor MPreq,Pprov

, if there exist at least a run ρM repre-
senting a feasible interaction R, between Preq and Pprov.

CONNECTors and goals

Having defined the problem of CONNECTor synthesis we need to take into account the last of our require-
ments, which states that the communication between the two networked systems should satisfy some
goals specified by users.

Definition 24 (CONNECTor Synthesis (considering goals)) A connector MPreq,Pprov
can be synthe-

sised, considering that Preq×M ×Pprov satisfies some user goals G1, . . . , Gu, written Preq×M ×Pprov |=∧
x∈[1,u]Gx if there exists a run ρm (i.e. a feasible interaction on M ) in which the user goals are verified.

The concept of verification of a CLTLB(D) formula on a counter transition system run is defined in [16],
as a control state reachability problem on a counter transition system. We assume to express goals
CLTLB(D) formulas, that can be converted into Büchi automata, as shown in [15].

A goal G is verified on a run ρM when, given the counter system M , resulting from the synchronised
product [31] of M and of the Büchi automaton resulting from G, and its initial configuration q0,

−→xo, it is
possible to find a finite run ρM that starts from q0,

−→xo and reaches a final configuration of M . The finite run
ρM is the feasible interaction satisfying G.

Obviously, a CONNECTor M can allow several feasible interaction satisfying a Goal. The number of
feasible interactions contained into a CONNECTor is potentially infinite, if the protocol of at least one of the
analyzed networked systems contains a loop.

For finite state automata, there exists algorithms to compute repeated reachability in presence of infi-
nite behaviors [29]. Previous theoretical results about reachability problems on counter transition systems
with infinite behaviors, proved that this problem is undecidable for that class of systems [60]. Using a
model as expressive as a counter transition system is anyway desirable, since it allows us to take into
account parameters caching, which in turns allows us to solve complex mismatches (see Chapter 7 for
further discussion). Later advances in theory [16], proved that the reachability problems on counter tran-
sition systems with infinite behaviors can be solved considering a finite subset of that behavior. In order
to check the existence of a feasible interaction satisfying a goal G on a CONNECTor M , consequently,
we consider finite runs only. This gives us a partial model of the CONNECTor, but makes the problem
decidable and tractable.

Abstract CONNECTor synthesis in practice

A feasible interaction satisfying G, is produced by passing as input the ontology aligned, middleware-
agnostic protocols of ns1 and ns2, the goal G and the synchronization model explained in 3.4 to the Zot
model checker [54]. Zot produces as output a sequence of actions of Preq and Pprov representing a
possible feasible interaction on M , satisfying the goal G.

The produced solution, takes into account a single possible interaction between the two analyzed net-
worked systems. In order to produce a CONNECTor that can mediate more than one possible interaction,
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we collect the sequences produced by Zot, and we concatenate them. The result is a counter transition,
subset of M , which can be used as a CONNECTor at run-time, to mediate the interactions of ns1 with ns2.

In order to produce the CONNECTor we need to complete three main steps:

• Produce a Zot sequence fi0, representing a possible feasible interaction on M , running Zot

• Reinvoke Zot using as input: Pprov and Preq protocol models, the goal G, the synchronization model
explained in 3.4 and !fi0. This produces the Zot sequence fi1.

• Repeat the second step, so that at the nth repetition Zot produces the feasible interaction fin−1,
using as input: ns1 and ns2 protocol models, the goal G, the synchronization model explained in 3.4
and

∧
x∈[0,n−1]!fix

• The repetition ends when Zot cannot produce any other feasible interactions, or when nth repetition
is performed, where n is an upper bound fixed by the systems integrator.

The produced feasible interactions are then concatenated to produce a subset of M . The output of the
concatenation will be used at run-time as an abstract CONNECTor, capable of mediating some interactions
of Preq and Pprov.

Once the abstract connector has been produced, it is necessary to concretize it, realising the mapping
described in Section 2.2.3. The implementation of this last phase is not detailed here, and we refer the
reader to Chapter 4 of D1.3 [4] for an explanation about how concretization of an abstract CONNECTor
happens.

3.5 Solution at Work

Let us explain on the case study in Chapter 1.5 how we can synthesize a CONNECTor. We make the
hypothesis that the user goal for our case study predicates on the Blue client possibility of seeing the
order that it is sending to the customer service closed. Examining the client protocol, in Figure 2.3, we
can notice that the order is closed when the Result output parameter of the CloseOrder action is received.
In that language, the informally aforementioned goal can be expressed as follows: In CONNECT we make
the hypothesis that user goals are expressed in the language introduced in deliverable D1.3 [4]. The
CONNECT goal language uses the most common LTL operators (i.e. [] for globaly, <> for eventually, X
for next, etc.) and introduces three predicates:

• executed(c): meaning that the action represented by c has been invoked.

• received(c): meaning that the data represented by concept c have been received

• sent(c): meaning that the data represented by concept c have been sent.

The formula in the CONNECT goal language we want to specify for our example is the following:

<> (received(CloseOrder.Result)) (3.3)

In Formula (3.3) the <> operator is the classical LTL ♦ operator, while received(x) is a predicate
indicating that the argument x is expected to be sent. Since CloseOrder.Result is an output pa-
rameter, we can represent the Formula (3.3) in terms of our model, as the CLTLB(D) formula: (<>
(needed(CloseOrder.Result) = 1)||(needed(CloseOrder.Result) = −1)).

The meaning of this formula is that the piece of data represented
by the annotation CloseOrder.Result should be eventually required by Preq
(i.e. (needed(CloseOrder.Result) = 1), in which case, according to the rules of our model, if a feasible
interaction exists CloseOrder.Result will be eventually provided by Pprov), or should be provided by Pprov
(i.e (needed(CloseOrder.Result) = −1)).

This formula produces quite a simple Büchi automaton, which is depicted in Figure 3.2 According to
Definition 24, in order to find a mediator satisfying the goal in (3.3), we should build the synchronised
product of the mediator for those networked systems whose protocols are reported in Figure 2.3 (that
we will consider as Preq) and in Figure 3.1 (that we will consider as Pprov), and the Büchi automaton in
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B0 B1

needed(CloseOrder.OrderResult) != 1
&&

neededPreqCloseOrder.OrderResult) != -1

True

neededPreq(CloseOrder.OrderResult) = 1
||

neededPreq(CloseOrder.OrderResult) = -1

Figure 3.2: Büchi atuomaton for the goal in (3.3)

Figure 3.2, and solve, on the resulting counter transition system M , a reachability problem which can be
stated as follows: is there any final state, that can be reached from the initial configuration of M , with a run
ρM , such that the latter run is a feasible interaction. A possible run of M , realising a feasible interaction
is reported in Figure 3.3. In that figure we represent the feasible interaction using the common language
inferred in Table 3.1 and Table 3.2.

The run starts in the initial configuration of M , where all counters are set to 0. The
first step of the run ρM brings M from its initial configuration, into a configuration where the
counters seenPreq

(StartOrder.CustomerID) and neededPreq
(StartOrder.OrderId) have the value

1, through the invocation of the StartOrder required action (common language action for <
StartOrder, {CustomerId}, {OrderId} >) on the required protocol, performing no action (i.e.
ε) on the provided protocol, and having the neededPreq

(CloseOrder.OrderResult)! = 1 and
neededPreq

(CloseOrder.OrderResult)! = −1 formula, of the Büchi automaton, holding. We are here
assuming an asynchronous interaction, thus in the new configuration of M the Progress1 property of
Definition 16 should hold. This is true since all the seen counters have a value ≥ 0.

The second step of the run brings the system into a configuration where all the seenPreq
coun-

ters have the value 0, through an ε-move on Preq and the invocation of the provided action <
StartOrder, {StartOrder.CustomerId}, {} (common language action for < Login, {CustomerId}, {} >)
on Pprov. The invoked action takes as input an instance of StartOrder.CustomerID, consequently, ac-
cording to the seenPreq definition we gave in Formula 3.1, the value of seenPreq (StartOrder.CustomerID)
runs to 0. This meets the Progress1 property. It is worth nothing that, at the same time, since all
the seenPprov

counters are left set to 0, also the Progress2 property holds. The executed action on
Pprov has no output parameters, this will leave the values of all the neededPreq

counters unchanged.
Finally, we notice that the CloseOrder.OrderResult has still not been provided by Preq, consequently the
Büchi automaton stays in its B0 state. This latter condition will remain unchanged, until the value of the
neededPreq (CloseOrder.OrderResult) counter will not change.

The third step of ρM brings M into a configuration S1,S2,B0, through
a second ε− move on Preq and the invocation of the provided action <
StartOrder, {}, {StartOrder.OrderId, StartOrder.HasV alidity} > on Pprov (common language ac-
tion for < CreateOrder, {}, {PurchaseOrder} >). This action takes no input parameter and returns
and instance of StartOrder.OrderId and an instance of StartOrder.HasV alidity. This makes the
neededPreq

(StartOrder.OrderID) function run to 0, and the neededPreq
(StartOrder.HasV alidity)

function to run to -1. This means that an extra value of StartOrder.HasV alidity has been provided by
StartOrder on Pprov. The extra value can be cached by the mediator and, if needed, returned later to
Preq. The latter parameter is never used by Preq, as can be noticed from the representation of the the
Blue client, in Figure 2.3. Consequently it will be received by the mediator and never sent to the client,
and its counter will remain set to -1 for the rest of the feasible interaction. Also in this case the progress
property holds, since all the seen counters are set to 0.

The fourth step in the run brings M into a configuration S2,S2,B0, through the in-
vocation of < AddItemToOrder, {AddItemToOrder.OrderId,AddItemToOrder.ItemId,
AddItemToOrder.ItemQuantity}, {} > required action on Preq (common language ac-
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tion for < AddItemToOrder, {OrderId, ProductItem}, {} >). This sets the coun-
ters seenPreq(AddItemToOrder.OrderId), seenPreq(AddItemToOrder.ItemQuantity) and
seenPreq(AddItemToOrder.ItemId) to 1, leaving all the needed counters unvaried, since
it requires no output parameters. Considering the definition of progress given in Defini-
tion 16, the current configuration of M allows the invocation of some provided actions on
Pprov such as they take as parameters no more than an instance of AddItemToOrder.OrderId,
AddItemToOrder.ItemQuantity and AddItemToOrder.ItemId. This condition is realised by the
action on Pprov: < AddItemToOrder, {AddItemToOrder.OrderId,AddItemToOrder.ItemId,
AddItemToOrder.ItemQuantity}, {} > (common language action for <
SelectItem, {OrderId, ItemId, ItemQuantity}, {} >). This action brings M into a state S2, S3,
B0, in which all counters, but neededPreq (StartOrder.HasV alidity) are set to 0.

At this point the feasible interaction continues on PProv, with the invocation
of the < ItemConfirmation, {ItemConfirmation.OrderId, ItemConfirmation.ItemId,
ItemConfirmation.ItemQuantity}, {} > required action on Pprov (common language action for
< ConfirmItem, {OrderId, ItemId, ItemQuantity}, >).

The invocation of this action makes the counters seenPprov
(ItemConfirmation.OrderId),

seenPprov
(ItemConfirmation.ItemId) and seenPprov

(ItemConfirmation.ItemQuantity) run to 1, as
previously defined in Section 3.4.

This means that the CONNECTor M receives from Pprov instances of ItemConfirmation.OrderId,
ItemConfirmation.ItemId and ItemConfirmation.ItemQuantity, and can use them, if needed, to pro-
vide input parameters of some Preq provided actions, or to provide output parameters for required actions
of Pprov,as stated by the definitions of seenPprov and neededPprov given in Section 3.4.

The feasible interaction continues with the invocation of the <
CloseOrder, {CloseOrder.OrderId, CloseOrder.CreditCardNumber}, {} > required action on Preq
(common language action for < PlaceOrder, {OrderId, CreditCardNumber}, {} >, which makes also
the seenPreq counters for the input parameters of this action run to 1.

Preq, at this point, expects to receive the confirmation for the items previously added to the
order, through the ItemConfirmation, {ItemConfirmation.OrderId, ItemConfirmation.ItemId,
ItemConfirmation.ItemQuantity}, {} > provided action (common language action for
ReceiveConfirmation({OrderId, ProductItem}, {})). The three input parameters of this action will
make all the seenPprov

counters run to 0, respecting the Progress2 property.

In the next step of the example feasible interaction on M the
CloseOrder, {CloseOrder.OrderId, CloseOrder.CreditCardNumber}, {CloseOrder.OrderResult} >
provided action is performed on Pprov (common language action for
CloseOrder, {OrderId, CreditCardNumber}, {CloseOrder.OrderResult} >). This action makes
the seenPprov , ItemConfirmation.OrderId >,
seenPprov

, ItemConfirmation.OrderId > and seenPprov
, ItemConfirmation.OrderId > run to 0, this re-

spects the Progress1 property. Moreover, it makes the the counter neededPreq
(CloseOrder.OrderResult)

run to −1. This means that Pprov here sends to the mediator an instance of CloseOrder.OrderResult
not yet needed by Preq, and it also makes the Büchi automaton to go into the B1 state. It is interesting
to notice that from this transition on, the Büchi automaton will continue to perform the transition labeled
as “true”, since the goal presented in Formula 3.3 has been satisfied. In the reached configuration S4,
SEnd, B1, the Progress1 and Progress2 properties hold, as well as the Consistency1 and Consistency2
properties, since all the neededPreq

and the neededPprov
counters have a value ≤ 0. Anyway, it is not a

final configuration for M , since Preq is not in a final state.

The latter condition is met with the last transition of the feasible interaction, the invocation of the
< CloseOrder, {CloseOrder.OrderId}, {CloseOrder.OrderResult} > required action on Preq (common
language action for < Quit, {OrderId}, {result} >). This transition brings M in to a state in which both
the progress and the consistency properties hold, and Preq, Pprov and the Büchi automaton are all in a
final state. Consequently we can state that the interaction ρM that we illustrated is a feasible one and
satisfies the goal in Formula 3.3.
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3.6 Implementation Description

The Goal-based abstract CONNECTor synthesis, described in this chapter has been implemented in a
Java prototype framework, represented in Figure 3.4. The current implementation of the framework does
not consider the middleware abstraction phase, which we suppose is provided. Consequently it starts
from the description of two middleware-agnostic networked systems and a list of goals, representing the
CONNECTor intent (see Chapter 6 for details about the framework inputs).

The prototype takes as input the representations of a required and a provided affordance model pro-
tocols, Preq and Pprov, as shown in Figure 3.4.

The alphabets of the two middleware-agnostic affordance models are aligned using an alphabet aligner
component, that performs the task through ontology matching, as described in Section 3.3. The output of
this step, in the figure, is constituted of Aligned Preq and Aligned Pprov.

The aligned protocols are used as input of the Zot input file provider, together with the user goals. The
Zot input file provider produces an input file for the Zot model checker [54]. The latter, tries to find a feasible
interaction satisfying the goals, as previously specified in Section 3.4, through SMT-based bounded model
checking. Zot produces as output one of the possible feasible interactions, as a Zot trace. The latter is a
representation of the actions that the network systems should invoke and of the data they should provide,
in order to communicate with each other (i.e. what is defined as a CONNECTor run in 3.4).

In order to produce a CONNECTor for more than a possible feasible interaction, the Zot trace is collected
by a Trace Collector component, negated and passed as input to the Zot input file provider. The latter
produces a new input file for Zot (as explained in Section 3.4). In this way Zot output traces are collected
and concatenated into a CONNECTor. The traces generation process stops when Zot cannot find another
solution for the given input, or in case an upper bound specified by the systems integrator is reached. This
upper bound is needed in case the protocol of at least one of the two networked systems describes an
infinite language.

3.7 Conclusion

In this chapter we introduced a possible approach implementing the CONNECTor theory. The work pre-
sented in this chapter specializes the theory presented in Chapter 2 by introducing the following hypothe-
ses:

• The CONNECTor synthesis is driven by a goal, specified through a Connection. The goal expresses
user’s interest in making the two networked systems in the Connection communicate.

• The common language identification phase, described in the theory in Section 2.2.3, is obtained
through the alignment of the two networked systems alphabets, as described in Section 3.3.

• The CONNECTor synthesis happens on a per-trace base, as detailed in Section 3.4. This makes the
CONNECTor able to handle complex mismatches (see Chapter 5), but makes the CONNECTor pro-
duced partial, in presence of loops in the networked systems protocols, as explained in Section 3.4.

Our contribution builds on the previous work presented in [26, 15] by adding on top of it an ontology match-
ing process (presented in 3.3), the support for goal-based CONNECTor synthesis (see 3.4), and extending
the communication model that allows us to synthesize mediators to take into account communication mod-
els different from the client-server one. The approach has been implemented in a framework that provides
a specification of a possible CONNECTor between two given networked systems, given their specification
and a list of connection goals. Possible future work will investigate the possibility of integrating our current
work with the work carried on in CONNECT about dependability and security (see Deliverable D5.3 [11]).
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Figure 3.4: Goal-based abstract CONNECTor synthesis enabler implementation.
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4 Mapping-driven Abstract CONNECTor Synthesis
In Chapter 2 we specified the main steps of the Abstract CONNECTor synthesis while in Chapter 3

we presented an implementation of this theory making two main assumptions: (i) there is no third party
involved in the communication between the two considered networked systems, and (ii) the mediator does
not manage the data flow within the individual systems, i.e., the mediator does not receive the output of
one action and send it back to following actions of the same NS.

In this Chapter we relax this latter assumption by allowing the management of input/output flow in a
sequence of actions. In particular, we infer the correspondence between the actions of the interfaces of
the two NSs so as to generate the mapping processes that perform the necessary translations between
actions. Various mapping relations may be defined. They primarily differ according to their complexity and
inversely proportional flexibility. In Deliverable 3.2 [9], we proposed an approach for one-to-one mapping
between application-specific actions according to their ontology-based semantics, i.e., there is a direct
correspondence between actions based on the subsumption relation (a.k.a. is-a) defined over concepts
in the corresponding ontology. In this chapter we further consider (i) one-to-many, i.e., an action is mapped
to a sequence of actions; and (ii) many-to-many, i.e., a set of actions may correspond to a sequence of
actions. The corresponding mappings are generated according to the mediator capabilities, which include
receiving and sending messages, delaying the delivery of messages, and reasoning about the semantics
of messages in order to generate messages by transforming and composing the original ones. The
mediator can not create messages except for basic control messages, such as simple acknowledgments
which in this case are equivalent to owl:Nothing. We further assume that causally independent actions of
each NS are made concurrent in order to support acceptable re-ordering.

We propose an approach that combines ontology reasoning and constraint programming in order to
generate a mapping between the interfaces of these NSs. Then, we use the generated interface mapping
to automatically synthesize a mediator that ensures their safe interaction, i.e., it ensures deadlock-freedom
and the absence of extra output actions [84].

• Efficient interface mapping using semantic reasoning and constraint programming. We propose an
approach that combines semantic reasoning and constraint programming to identify the semantic
correspondence between NSs’ actions, i.e., the common language. Besides tackling the one-to-
one correspondence between actions [9], we consider the more general cases of one-to-many and
many-to-many mappings. Furthermore, we propose an encoding of the ontology that takes into
account subsumption and the union of classes in order to make reasoning more efficient at runtime.

• Automated synthesis of mediators to support interoperability between heterogeneous applications.
The interface mapping is performed at runtime and does not require a priori knowledge about the
NSs; they only need to adhere to the same ontology, which is defined to reflect the terminology of the
application domain. Consequently, this interface mapping may be ambiguous, i.e, one action may be
semantically matched to different sequences of action from the other NSs. During the synthesis step,
we explore the various possible mappings in order to produce a correct-by-construction mediator
that guarantees the safe interaction of the two systems, i.e., it ensures deadlock-freedom and the
absence of extra output actions in the interaction [84].

We further demonstrate the feasibility of our approach through the MICS (Mediator Synthesis to CON-
NECT Components) tool and evaluate its performance using various CONNECT scenarios t.

The rest of the chapter is structured as follows. Section 4.1 describes our approach to identify the
common language by mapping the actions of the interfaces of the two networked systems; and how this
mapping is used in the automated synthesis of mediators that promote the interaction of these systems.
Section 4.2 illustrates the functioning of the approach using the Purchase Order Scenario. Section 4.3
describes the implementation of the MICS tool. Section 4.4 provides preliminary evaluation of the MICS
tool. Finally, Section 4.5 concludes the chapter.
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4.1 Abstract CONNECTor Synthesis

4.1.1 Support for Efficient Interface Mapping to Identify the Common Language

The first step towards the synthesis of mediators is to identify the semantic correspondence between
the actions of the NSs’ interfaces. In this section, we introduce a constraint-based approach to infer
such correspondence by reasoning about the semantics of the interfaces’ actions. We briefly introduce
the principles of constraint programming and reduce the interface mapping to a Constraint Satisfaction
Problem that can be efficiently dealt with using constraint programming. Finally, we propose an ontology
encoding that considers subsumption and union in order to translate ontology reasoning into finite-domain
constraints and speed up the reasoning at runtime.

Constraint Programming in a Nutshell

Constraint programming (CP) is the study of computational systems by stating constraints (conditions,
properties) which must be satisfied by the solution [67]. Constraint programming allows to solve com-
binatorial problems modeled by a constraint satisfaction problem, which is formally defined as a triplet
(X,D,C):

• Variables: X = {X1, X2, ..., Xn} is the set of variables of the problem.

• Domains: D is a function which associates to each variable Xi its domain D(Xi), i.e., the set of
possible values that can be assigned to Xi.

• Constraints: C = {C1, C2, ..., Cm} is the set of constraints. A constraint Cj is a mathematical or
symbolic (global) relation defined over a subset Xj =

{
Xj

1 , X
j
2 , ..., X

j
nj

}
⊆ X of variables which

restricts their possible values. Constraints are used actively to deduce infeasible values and delete
them from the domains of variables. This mechanism is called constraint propagation. Efficient
algorithms specific to each constraint are used in this propagation.

Solving a constraint satisfaction problem involves finding a tuple (or tuples) v =
(
v1, ..., vnj

)
∈ D(X) on

the set of variables which satisfies all the constraints. It must be noted that the above definition of CP and
its solving techniques is suitable for variables of finite domains. However, CP has also been successfully
used for solving problems containing variables of other domains like real, rational numbers, or sets.

Using Constraint Programming for Interface Mapping

Let us consider two NSs C1 and C2 associated with interfaces I1 and I2 respectively. An interface mapping
MapI (I1, I2) is a relation between an action or a sequence of actions of I1 and a semantically equivalent
action or a sequence of actions of I2. The semantic equivalence is inferred by reasoning about the
semantics of actions described in a domain ontology O.

We reduce interface mapping to a constraint satisfaction problem and use constraint programming to
solve it. Therefore, we have to: (i) specify the problem’s variables, (ii) formulate the constraints over the
aforementioned variables, and (iii) define a strategy to enumerate the set of solutions.

Modeling. Mapping I1 to I2 consists of finding pairs (X,Y ) where X = 〈αi = 〈ai, Iai , Oai〉 ∈ I1〉i=1..m

and Y =
〈
βj =

〈
bj , Ibj , Obj

〉
∈ I2

〉
i=1..n

and such that X maps to Y , i.e., X and Y verify some constraint
C relating their actions, denoted X 7→ Y . Furthermore, this pair is minimal, that is, any other pair verifying
the constrain includes X and Y .

Since the interface is a finite set of actions, X (respectively Y ) can be modeled through a vector that
associates each action with its position in the sequence (0 indicates that the action is not included in the
sequence). Therefore, many actions might have the same position if there is no dependency between
their data. The interface mapping is then defined as follows:
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MapI (I1, I2) =
{ (X,Y )|

X = 〈αi = 〈ai, Iai , Oai〉 ∈ I1〉i=1..m

∧ Y =
〈
βj =

〈
bj , Ibj , Obj

〉
∈ I2

〉
i=1..n

∧ X 7→ Y
∧ 6 ∃ (X ′, Y ′) | (X ′ 7→ Y ′) ∧ (X ⊆ X ′) ∧ (Y ⊆ Y ′)
}

We distinguish between the following cases

• if m = 1 and n = 1, then it is a one-to-one mapping, denoted X
1−17−→ Y , and it simply states the

semantic equivalence of actions.

• if m = 1 and n > 1, then it is a one-to-many, denoted X
1−n7−→ Y , mapping and refers to actions

split/merge, i.e., when a required action from one NS is provided by a composition of actions from
the other.

• if m > 1 and n > 1, this is the most generic case and refers to many-to-many mapping, denoted
X

m−n7−→ Y . It is used to specify the case where a composition of actions corresponds to another
composition of actions.

The first case is straightforward although the concretization of the translation requires further treatment
through lifting and lowering techniques. These techniques allow us to rename and restructure the data to
eliminate the syntactical differences while preserving its semantics. The second case is the main focus of
this chapter as it handles a large number of mismatches. Finally, we provide an initial solution for the third
case, which can be easily extended in the future.

Constraints Specification. The constraints specify the requirements that the interface mapping should
satisfy in order to guarantee semantic compatibility between actions. They explicitly state the semantic
invariants that must be preserved by any mapping. We first give an intuitive definition in the one-to-one
case, which we then extend to the one-to-many and many-to-many case.

An input action α = 〈a, Ia, Oa〉 ∈ I1 maps to an output action β =
〈
b, Ib, Ob

〉
∈ I2 written α 1−17−→ β, iff:

• a v b

• Ib v Ia

• Oa v Ob

The intuition behind this mapping is that an input action can be mapped to an output one if the required
operation is less demanding, it provides richer input data and needs less output data.

An input action α = 〈a, Ia, Oa〉 ∈ I1 maps to a sequence of output actions〈
βi =

〈
bi, Ibi , Obi

〉
∈ I2

〉
i=1..n

, written α 1−n7−→
〈
β1, ..., βn

〉
, iff:

• a v
n⋃
i=1

bi

• Ib1 v Ia and Ibi v Ia
⋃(i−1⋃

k=1

Obk

)
• Oa v

n⋃
i=1

Obi

The first constraint states that the operation required by α can effectively be provided through the
operations bi. The second constraint ensures that actions can only be executed if all their input data have
been produced. The third one guarantees that the output produced by the execution of βi are at least
those α is expecting.

A sequence of input actions 〈αi = 〈ai, Iai , Oai〉 ∈ I1〉i=1..m maps to a sequence of output actions〈
βj =

〈
bj , Ibj , Obj

〉
∈ I2

〉
j=1..n

, written 〈α1, ..., αl, ..., αm〉
m−n7−→

〈
β1, ..., βn

〉
, iff:
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•
m⋃
i=1

ai v
n⋃
j=1

bj

• Ib1 v
l⋃
i=1

Iai and Ibj v
(

l⋃
i=1

Iai

)⋃(j−1⋃
k=1

Obk

)
• Ok = ∅ k = 1, l − 1 and Ok v

n⋃
j=1

Obj , k = l,m

The constraints state that since the actions α1, ..., αl do not require any output data, then progress
can be made. However, once an output is required then the output actions should be executable since
they have the necessary input data. They also ensure that actions can only be executed if all their input
data are available. These definitions cover only a subset of all the possible many-to-many mappings.
Nevertheless, the modularity of the approach allows us to add further mapping clauses without changing
the overall approach.

Enumeration Strategy. As stated above, the mapping pairs (X,Y ) can be modeled through a vector
that associates each action with its position in the sequence. Actions on the same position do not depend
on each other, and can be performed concurrently if this is allowed by the behavior of the NS. There-
fore, we can easily favor solutions that increase concurrent executions by simply stating an enumeration
strategy which minimizes the sum of positions.

Support for Ontology Encoding

In this section, we propose to associate numerical codes to ontology concepts in order to optimize the
subsumption testing required during interface mapping. The concept hierarchy is usually represented
by a directed acyclic graph where nodes are labeled with concept names and edges correspond with
subsumption relationships. The hierarchy always contains a top built-in concept owl:Thing and a bottom
concept owl:Nothing. Finally, the subsumption relation is both transitive and reflexive. Existing approaches
to ontology encoding [38, 65] consider the subsumption relation without encoding the union construct
needed for interface mapping. Therefore, we define an ontology encoding that expresses subsumption as
well as union.

Subsumption reduces essentially to subset inclusion between concepts. Therefore, we define a correct
and complete model1 of an ontology O regarding subsumption and union using sets, which will finally be
represented as bit vectors (see Algorithm 1). The algorithm initializes by assigning a unique element
to each concept (Lines 1−3). Then, it propagates this elements to all sub-concepts (Lines 4−8). It
then sorts the concepts declared through union axioms from the superconcept to subconcepts (Line 9).

For each concept a =
n⋃
i=1

ai, it considers the set difference and splits each of its elements over the

concepts ai (Lines 12−20). It further adds these elements to all the superconcepts in order to preserve
the subsumption relation(Lines 16−18). Finally, it encodes sets using bit vectors (Line 22): the size of
the vectors corresponds to the number of elements of all sets; then if an element belongs to the set it will

be represented by 1. Union is then represented by bitwise or as follows Code(
n⋃
i=1

ai) =
n∨
i=1

Code(ai), and

subsumption tested using bitwise and a v b⇐⇒ Code(a) ∧ Code(b) = Code(a).

4.1.2 Support for Mediator Synthesis
Given interface mappings returned byMapI (I1, I2) andMapI (I2, I1), where all input actions are involved
in one mapping at least, we need to generate a mediator M that allows protocols P1 and P2, associated
with the functionally matching NSs, to coordinate, i.e., the parallel composition P1‖M‖P2 successfully
terminates; or determines that no such mediator exists. Note that the mediator cannot generate a new
functionality, it is just able to transform actions according to their semantics as specified by the interface
mappings. If such a mediator exists, then we say that P1 and P2 are behaviorally compatible through a
mediator M , written P1 ↔M P2.

1Although we do not give the proof here for conciseness and lack of space

CONNECT 231167 56/81



Algorithm 1 EncodingOntology
Require: Classified ontology O
Ensure: Code[]: A bit-vector associated with each class c ∈ O

for all c ∈ Classes(O) do
Set[c]← {NewElement()}

end for
for all c ∈ Classes(O) do

for all d ∈ Descendants(c) do
Set[c]← Set[c] ∪ Set[d]

end for
end for
unionAxiomList = Sort(UnionAxioms(O))

for all (a =
n⋃

i=1
ai) ∈ unionAxiomList do

D ← Set[a] \
n⋃

i=1
Set[ai]

for all d ∈ D do
for all ai do

di ← {NewElement()}
Set[ai]← Set[ai] ∪ {di}
for all c ∈ Ascendants(ai) do

Set[c]← Set[c] ∪ di
end for

end for
end for

end for
SetsToBinaryV ectors(Set[c], Code[c])
return Code[]

The algorithm incrementally builds a mediator M by forcing the two protocols to progress consistently
so that if one requires some action(s) α, the mate must provide its (their) semantically equivalent action(s)
β. Given that an interface mapping guarantees the semantic compatibility between the actions of the two
NSs, then the mediator synchronizes with both protocols and compensates the differences between their
actions by performing the necessary transformations. This is formally described as follows.

if P1
α⇒ P ′1 and ∃P ′2,

(
α, β

)
∈MapI (I1, I2)

such that P2
β⇒ P ′2 and P ′1 ↔M ′ P ′2 (1)

then M β⇒Mt
α⇒M ′

if P2
α⇒ P ′2 and ∃P ′1,

(
α, β

)
∈MapI (I2, I1)

such that P1
β⇒ P ′1 and P ′2 ↔M ′ P ′1 (2)

then M β⇒Mt
α⇒M ′

The mediator further consumes the extra output actions so as to allow protocols to progress; which is
specified as follows.

if P1
β⇒ P ′1, and ∃P2 such that P ′1 ↔M ′ P2

then M β⇒M ′ (3)

if P2
β⇒ P ′2, and ∃P1 such that P ′2 ↔M ′ P1

then M β⇒M ′ (4)
Finally, when both protocols reach a terminating states, then the mediator also terminates.
END↔END END (5)

Note that the interface mapping is not necessarily a function, since an action (or a sequence of actions)
may be mapped to multiple actions (or sequences of actions). The synthesis algorithm (see Algorithm 2)
has to deal with this ambiguity. The algorithm selects the enabled mappings according to the actions
triggered in the other protocol (Line 5). Then, it non-deterministically chooses one of them, and verifies
that the selected mapping rule will lead to a successful termination using Algorithm 3 (Line 6) and compose
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these rules in parallel (Line 10). If there is no triggerable action, then Algorithm 2 fails (Lines 7-9). An
instance successfully terminates when it reaches an END state (Lines1- 2).

Each instance of Algorithm 3 maintains a link to all the mappings that have been applied (Line 4). An
instance fails if there is no possible mapping rule that can be applied, otherwise it returns a link to the
sequence of rules that have been applied in order to reach a terminating state.

Algorithm 2 FindMediator

Require: P1, P2

Ensure: M
1: if P1 = END and P2 = END then
2: return END
3: end if
4: M ← END
5: for all (α, P ′i ) | Pi

a→ P ′i and ∃β, (α, β) ∈MapI(Ii, I3−i) , i ∈ {1, 2} do
6: M ′ ←FindMappingTrace(i, α, P ′i , P3−i)
7: if M ′ = fail then
8: return fail
9: end if

10: M ←M‖M ′
11: end for
12: return M

Algorithm 3 FindMappingTrace

Require: i, α, P ′i , P3−i
Ensure: M

1: for all (β, P ′i ) | P3−i
β⇒ P ′3−i and (α, β) ∈MapI(Ii, I3−i) do

2: M ′ ←FindMediator(P ′1, P ′2)
3: if M ′ 6= fail then
4: return α→ β →M ′

5: end if
6: end for
7: return fail

Theorem 1 if P1 ↔M P2 then P1‖M and P2 are in total matching. Each transition α such that P1
α⇒ P ′1

is associated with some transition M
α⇒ Mt (Statement (1)), and each transition β such that P1

β⇒ P ′1

synchronizes either with (i) Mt
β⇒ M ′ if there exists a mapping involving it (Statement (2)), or (ii) with

M
β⇒ M ′ (Statement (3)). Consequently, α(P1‖M) = αP1 \ αM = αP2 (where \ refers to set difference).

In the first case, P1‖M can perform β, which is guaranteed to be enabled by construction P2. In the
second case, this means that an action α was required by P2. Finally, if an action β was enabled by P2,
then M will necessary perform the dual action β.

Theorem 2 if P1 ↔M P2 then the parallel composition P1‖M‖P2 is deadlock free. By construction, the
mediator is synthesized only if both P1 and P2 reach an END state. Furthermore, the mediator absorbs
all extra output actions so as to allow the processes to progress.

4.2 Solution at Work

As mentioned in the introduction of this chapter, our approach does not consider third-party interactions
and assumes that causally-independent actions are made concurrent. Therefore, we take variants of
the Moon and Blue systems by (i) abstracting communications with the payment system, and (ii) putting
independent actions in concurrence.
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Note also that, the Blue specification does not guarantee that the number of loops on AddItemToOrder
and that of ConfirmItem are the same. Since communication is initiated by input actions, then the number
of iteration on item confirmation should be the one of Blue.

Consequently, the Blue specification becomes as the following:

1 Blue = (<StartOrder, {CustomerID}, {OrderID}>→ P1),

2 P1 = (<AddItemToOrder,{OrderID, ProductItem}, ∅>→ P1

3 | <PlaceOrder,{OrderID, CreditCardNumber}, ∅>→<Quit,{OrderID},{OrderResult}> P2),

4 P2 = (<GetConfirmItem,{orderID, productItem}, ∅>→ P2| terminate→ END).

The specification of the Moon service is as follows:

1 Moon = (<Login, {CustomerID}, {SessionID}>→<CreateOrder, {SessionID}, {PurchaseOrder}>→ P1).

2 P1 = (<SelectItem, {OrderID, ItemID}, ∅>→<SetItemQuantity, {OrderID, ItemID, Quantity}, ∅>

3 | <CloseOrder, {OrderID, CreditCardNumber},{OrderResult}>→ P2),

4 P2 = (<ConfirmItem, {OrderID, ItemID, Quantity}, ∅>→ P2| terminate→ END).

Interface Mapping. The first solution given by the constraint solver for the purchase order systems is:

MapI (IBlue, IMoon) = {(< 1, 0, 0, 0, 0 >,< 1, 2, 0, 0, 0, 0 >), (< 0, 1, 0, 0, 0 >,< 0, 0, 1, 1, 0, 0 >), (<
0, 0, 1, 1, 0 >,< 0, 0, 0, 0, 0, 1 >)}

which corresponds to:
MapI (IBlue, IMoon) = {
< StartOrder, {CustomerID}, {OrderID} > 7→

<< Login, {CustomerID}, {SessionID}>, < CreateOrder, {SessionID}, {PurchaseOrder}>>
< AddItemToOrder,{OrderID, ProductItem}, ∅ > 7→

<< SelectItem, {OrderID, ItemID}, ∅>→<SetItemQuantity, {OrderID, ItemID, ItemQuantity}, ∅>>
<< PlaceOrder,{CustomerID, OrderID}, ∅>, < Quit,{OrderID}, {OrderResult}>> 7→

< CloseOrder, {OrderID}, {OrderResult}>
}

Consider for example the first mapping; it specifies that the StartOrder input action is equivalent to
the sequence of Login and CreateOrder output actions. Indeed, as specified by the purchase ontology
(see Figure 2.2) the CreateOrder concept subsumes the StartOrder concept. However, the CreateOrder
operation requires a SessionID as an input concept while StartOrder only provides the CustomerID.
Nevertheless, when composed with Login, the initial subsumption still hold, i.e., StartOrder v Login

⋃
CreateOrder. In addition, the input required by Login, i.e., CustomerID, is provided by the StartOrder and
the input of CreateOrder, i.e., SessionID, is provided as an output by the previous action, i.e., Login.

MapI (IMoon, IBlue) = {(< 0, 0, 0, 0, 1, 0 >,< 0, 0, 0, 0, 1 >)}

which corresponds to:
MapI (IMoon, IBlue) = {
< ConfirmItem,{OrderID, ItemID, ItemQuantity}, ∅ > 7→

<GetConfirmation, {OrderID, ProductItem}, ∅>
}

Mediator Synthesis. The interface mapping is used to synthesize the the following mediator:
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1 M1 = (<Login, {CustomerID}, {SessionID}>→<CreateOrder, {SessionID}, {PurchaseOrder}>

2 →< StartOrder, {CustomerID}, {OrderID} >→ M1| terminate→ END).

3 M2 = (<SelectItem, {OrderID, ItemID}, ∅>→<SetItemQuantity, {OrderID, ItemID, ItemQuantity}, ∅>

4 →< AddItemToOrder,{OrderID, ProductItem}, ∅ >→ M2| terminate→ END).

5 M3 = (< CloseOrder, {OrderID}, {OrderResult}>→< PlaceOrder,{CustomerID, OrderID}, ∅>

6 →< Quit,{OrderID}, {OrderResult}>→ M3| terminate→ END).

7 M4 = (<GetConfirmation, {OrderID, ProductItem}, ∅>

8 →< ConfirmItem,{OrderID, ItemID, ItemQuantity}, ∅ >→ M4| terminate→ END).

9 ‖M = (M1‖M2‖M3‖M4).

4.3 Implementation

As part of the CONNECT synthesis enabler, we implemented the MICS (Mediator synthesIs to CONNECT
componentS)2 tool to automatically generate the mediator model. This implementation is made up of three
modules: (i) The ontology-encoding module, (ii) The interface-mapping module, and (iii) The mediator-
synthesis module.

The ontology-encoding module (see Figure 4.1-¶) associates numerical codes to ontology concepts in
order to optimize the subsumption testing required during interface mapping. It further takes into account
union of concepts. It uses Pellet reasoner3 to classify the ontology. Pellet is an open-source java library
for OWL DL reasoning.
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Figure 4.1: Overview of the abstract architecture of the MICS tool

2http://www-roc.inria.fr/arles/software/mics/
3http://clarkparsia.com/pellet/
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The interface-mapping module (see Figure 4.1-·) identifies the semantic correspondence between
the actions of the NSs’ interfaces. We formalize interface mapping as a constraint satisfaction problem
for which we use Choco solver4 to find all the possible solutions. Choco is an open-source java library
for constraints solving and constraint programming. It is built on an event-based propagation mechanism
with backtrackable structures.

The mediator-synthesis module (see Figure 4.1-¸) relies on these mappings to generate the mediator.
In a first step, we generate the parallel composition of the mapping processes and verify that the overall
system successfully terminates using the LTSA5 (Labeled Transition System Analyzer) model checker.
LTSA is a free Java-based verification tool that automatically composes, analyzes, graphically animates
FSP processes and checks safety and liveness properties against them. In a second step, we are im-
proving the algorithm so as to deal with ambiguous mappings, i.e., when an action from one NS may
semantically be mapped to different actions from the other.

4.4 Evaluation

There is a lack of testbeds for extensive testing of mediation solutions. Therefore, to provide initial in-
sight into the benefits of using our approach to support interoperability between heterogeneous systems,
we used several scenarios described within the CONNECT project. They define various interoperability
problems with both process and data heterogeneities. In particular, we consider the example of hetero-
geneous instant messaging applications [3], which represent typical one-to-one mismatches. We also
experimented the tool with the photo sharing scenario presented in [45]. Besides the one-to-one mis-
matches, this scenario shows combined middleware and application heterogeneity–although we focused
on the abstract synthesis in this evaluation. We considered the travel agency scenario originally described
in [18]. This scenario goes one step further by introducing one-to-many mismatches. Finally, we consid-
ered the purchase order scenario used all through this deliverable. Note however that we didn’t consider
the re-ordering mismatch as putting causally-independent actions in concurrency in not implemented by
our tool for the moment.

We measured the time for each step to synthesize the mediator on a Mac computer with a 2,7 GHz
processor and 8 GB of memory.

Table 4.1 gives a succinct description of each scenario and shows the processing time (in milliseconds)
for each step of the approach.

Scenario Mismatches Encoding Mapping Synthesis

Purchase Order one-to-many, reordering and
loops

1476 41 <1

Travel Agency [18] one-to-many and combined
mdw-app heterogeneity

1512 16 <1

Photo Sharing [45] one-to-one and combined
mdw-app heterogeneity

2652 37 <1

Instant Messaging [3] one-to-one 300 6 <1

Table 4.1: Processing time (in milliseconds) for each step of mediation

One can note that the encoding phase is the most time consuming step as it necessitates reasoning
about the ontology and inferring the hierarchy of concepts. This time depends on the size of the ontology.
Nevertheless, existing ontology reasoners can efficiently handle very large ontologies. Pellet for example
classifies the NASA SWEET ontology (up to 6000 concepts) in less than 8s [68]. Since the interface
mapping and the subsequent synthesis rely on this encoding to test subsumption, which amounts to bit-
vector operations, their execution times are much less. Moreover, one can see that there is no correlation
between the time for encoding and the time for interface mapping. Indeed, the size of the ontology impacts
the encoding but not the synthesis.

4http://choco.emn.fr/
5http://www.doc.ic.ac.uk/ltsa/
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4.5 Conclusion

In this chapter we presented an approach to infer mappings between actions by reasoning about the se-
mantics of their data and operations. These mappings guarantee the substitutability of the data input/out-
put of the actions in order to allow their safe translation. We then use these mappings to automatically
synthesize a correct-by-construction mediator.

While we focus in this deliverable on the automated synthesis of abstract CONNECTors models (a.k.a.
mediators) as eLTSs, they need to be refined into concrete models, that is, a CONNECTor, and deployed
atop of Starling for actual interoperability achievement as presented in Deliverable D1.3 [4]. In particular,
a CONNECTor (i) intercepts the input messages of one networked system, (ii) parses them in order to
obtain an action, (iii) executes the mapping rules to translate the actions of one systems into actions of
the other, and (iv) forwards them to the other networked system.

An important aspect of our approach is that the mediator is made up of a set of mapping rules, which
facilitate integration with Starlink, which is the execution engine of CONNECTors [4].
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5 Assessment
The approaches presented respectively in Chapter 3 and Chapter 4, tackle the problem of instantiating

the CONNECTor theory introduced in Chapter 2 making different hypotheses, that make each of the two
approaches more suitable for a particular situation. The approach presented in Chapter 3 is based on
the hypotheses that the identification of the common language takes place as alphabets alignment, that
the CONNECTor is built through model checking on the networked systems protocols, whose alphabets
have been aligned, that the solution is synthesized on a trace-wise base and that the synthesis process
is driven by a user goal. The approach presented in Chapter 4, instead, assumes that the identification of
the common language takes place as the identification of some mapping rules, that are fed to a reasoning
mechanism, which produces a solution checked through a model-checker to prove its correctness, and
that a solution should be produced for the whole protocols.

In this chapter we first assess the implementations with respect to each other, by comparing them on
the base of the mismatch classification present in [71] (see Section 5.1), then we position our work with
respect to relevant related work (see Section 5.2).

5.1 Comparing Goal-based and Mapping-driven Abstract CON-
NECTor Synthesis

The goal-based approach relies on an alphabet alignment process for the common language identification.
The alignment substitutes the alphabets of the two networked systems, which the CONNECTor should
be built for, with a common alphabet. The aligned networked systems protocols are then fed as input
to a model checker, which searches one or more possible feasible interactions, using the user goal to
reduce the search space. The mapping-based approach, instead, implements the common language
identification as a set of mapping rules. These mapping rules are then applied to the product of the
networked systems protocols and a model checker is used to determine if a CONNECTor exists between
the two systems.

As it can be noticed from previous chapters, the different hypotheses the two approaches make are
strongly correlated to the way the abstract CONNECTor is generated. In the goal-based approach, the
CONNECTor is synthesized through the solution of a reachability problem on the product of the two net-
worked systems protocols. In order to solve the reachability problem, it is necessary that the two systems
have the same alphabet. The common alphabet is obtained by projecting the NS alphabets on least com-
mon concepts. Moreover, the solution in this case is produced one trace at a time. In order to be sure to
capture only those traces in the protocol product which are useful to the user, the goal-based synthesis
uses a goal to limit the search space.

The mapping-based implementation produces a set of mapping rules during the common language
identification phase. These mapping rules not only consider the data flow across the communicating
systems but also manages the input/output flow with individual systems hence injecting the outputs of one
action as inputs of following actions. Furthermore, the mapping rules guarantee the substitutability of data
by verifying that subsumption holds between input/output data. Then, it checks total behavioral matching
between the mediated systems, i.e., the parallel composition of the system and the associated mapping
processes. This solution allows the mapping-based approach to find a solution for the entire protocol, if
this exists.

However, mapping-driven synthesis succeeds only if each input action has all its outputs available at
time of occurrence, which is essential to prove the correctness of the mediator. Hence, many-to-many
mismatches with asynchronous semantics and loops cannot be handled effectively. The Goal-based
approach, instead, bases its matching phase on a reachability problem on a counter transition system.
This approach allows to consider both synchronous and asynchronous behaviors, loops and allows to
solve merge actions and re-ordering mismatches. On the other hand,The Goal-based approach is able
to produce only subsets of the whole CONNECTor in those cases in which the interactions allowed by the
networked systems protocols are infinite.

Table 5.1 evaluates the goal-based and mapping-driven abstract synthesis approaches against com-
mon mismatches [71]:
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• Signature mismatch: concerns actions with different naming, which is naturally treated in both ap-
proaches by considering the semantics of actions .

• Splitting of actions: relates to having an input action of one system realized by a number of output
actions of the other. Then, an input action may be split into a number of output actions of the
matching networked system if such a relation holds from the domain-specific ontology.

• Merging of actions: defines an output action of one system that realizes a number of input actions of
the other. The goal-based synthesis solves it if the input actions do not require any return parameter,
or use asynchronous invocations. This is necessary because, with a synchronous semantics, an
action of the output sequence would be blocked waiting for its output, that in general will not come
until the required action is performed. The mapping-driven synthesis handles it only in the case the
input action do not require output data.

• Extra send (or missing receive): During the synthesis of the mediator, both approaches ensure that
any extra parameters, sent and not freseen by the second party in communication, is consumed in
order to avoid deadlock.

• Extra receive (or missing send): a required action on one of the systems expects some input param-
eters are not provided by the other party involved in the communication. Both approaches do not
handle this mismatche as it violates the definition of Compatibility (see Definition 9). In general, a
solution to this kind of mismatches can be found if the missing parameters have default values that
can be used to hide their absence. Anyway the current implementations proposed in this deliverable
do not consider this case.

• Ordering mismatch: This concerns the re-ordering of actions so that networked systems may indeed
coordinate. While the mapping-driven synthesis does not handle this case unless the networked
systems models are made concurrent a priori. The goal-based one is able to manage this mismatch
assuming asynchronous semantics.

Goal-based Synthesis Mapping-driven Synthesis

Goals Yes No
Common Language Alphabets Alignment Mapping Rules
Mediator Synthesis Per trace Whole protocol
Signature mismatch Yes Yes
Splitting of actions Yes Yes
Merging of actions Yes, asynchronous semantics

needed
Only in the case input actions do not
require output parameters

Extra output Yes Yes
Extra input No No
Ordering mismatch Yes, if there is no extra output. Needs

asynchronous semantics.
No

Complete CONNECTor produced No, if eLTSs have loops Yes

Table 5.1: Comparing goal-based and mapping-driven abstract CONNECTor synthesis

5.2 Assessing against Related Work

Interoperability and mediation are very popular topics in the literature and have been investigated in sev-
eral contexts. Indeed, since the early days of networking, many efforts have been done in several di-
rections including for example formal approaches to protocol conversion [24, 52, 63], and their extension
towards reducing the algorithmic complexity of protocol conversion [51]. Interoperability and mediation of
protocols have received attention in many fields among which: integration of heterogeneous data sources
[82, 81], software architectures [37], architectural patterns [23], design patterns [36], patterns of connec-
tors [80, 73], Web services [14, 28, 75, 53, 47], and algebra to solve mismatches [32] to mention few.
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Many approaches support networked system interoperability using mediators [45]. Unlike most ap-
proaches in literature, in this deliverable we considered a communication model that goes beyond the
client/server one. The work we described in this deliverable is related mainly to the Synthesis of CON-
NECTors and to the Middleware Interoperability.

5.2.1 Synthesis of CONNECTors

The approaches to the synthesis of CONNECTors present in literature, can be categorized into those that
require human intervention in the definition of a mediator, and those that offer some automatic tool.

Manual or Semi-automated Approaches

Among the manual approaches, we mention here the ones in [14] and in [32] which offer a methodology for
a developer to manually develop mediators, and those in [34] and [35] which offer a model checking based
approach to detect networked system conversational protocol inconsistencies, but require a developer to
solve them.

Approaches that propose a semi-automatic methodology to synthesize CONNECTors feature Spitz-
nagel and Garlan [74], and, more recently, Chang et al. [27]. They propose to define some mismatches
and their solution at design time and a runtime framework that is capable of combining the mismatches
solution in order to solve more complex mismatches.

Other solutions [40] and in [61] propose a tool to assist humans in mediator development by providing
hints about possible mismatches and suggesting possible solutions. The suggestions are produced by
comparing the XML schemas of individual messages while taking into account their directions (in/out)
and considering the associated behavioral protocol. Then, they simulate the interaction protocol in order
to filter out the plausible mappings and requires the user to check the conflicting mappings. All of the
approaches, require still a substantial intervention of a human system integrator. The CONNECT project
aims at reducing this intervention and possibly make the CONNECTor generation process totally auto-
matic. For this reason the work presented in this deliverable goes beyond the manual or semi-automated
approaches, proposing a theory and two of its possible implementations that automate completely the
synthesis process.

Automated Approaches

Automated approaches fall into two main categories: generative approaches, that try to synthesize a
mediator inferring it from the specifications associated to networked systems, and restrictive approaches,
that try to restrict the networked system behaviors in such a way that mismatches are avoided. With
respect to this distinction, our approach can be considered generative, since it generates a CONNECTor
which mediates the interactions of the analyzed networked system.

In [25] a restrictive approach which proposes a formal framework and a tool to build mediators is
devised. This approach requires an adaptation contracts (i.e. mappings between names of different
actions) to be provided and translates the conversational protocols of networked systems involved in the
mediator construction into a Petri net model. Using this model the approach can handle complex cases
of protocol mismatches. The approach in [44] aims at creating mediators by enforcing some desired
properties out of a set of behaviors exhibited by the networked systems. This approach starts from
the behavior of networked systems to adapt and from the property to enforce, specified as a Message
Sequence Chart [46] and, through model checking techniques, generates some code cutting off those
behaviors not verifying the desired property. This work was also extended in [76] to enable mediators
to enforce some QoS constraints. The aforementioned solution are different from ours because they
consider that the networked system protocol is composed by a set of messages, but they neglect the
data-flow constraints, while our approach considers them.

In generative approaches to CONNECTors synthesis in literature we distinguish two phases that should
be present: the common language identification phase, and a protocol matching phase. Not all the
approaches support both phases. In particular the early works in the field assume the common language
synthesis phase as given. Among these approaches, pioneer work by Lam [52] uses image protocols
to reason about the existence of a CONNECTor. An image protocol is derived from a given protocol by
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partitioning its state set. Two protocols are then compatible if they can be projected onto a common
image protocol. However, the image protocol should be specified using an intuitive understanding of the
protocols. In their seminal paper, Yellin and Strom [84] propose an algorithm for automated synthesis of
CONNECTors based on unambiguous predefined interface mappings. An example of generative approach
based on a subset of π-calculus is introduced in [19]. The approach can deal with complex types of
mismatches but it requires a developer to provide an alignment between messages and data exchanged
by networked systems if they have different signatures. In our work we consider that both the common
language synthesis and the matching phases should be automated.

In some other automated approaches in literature, no rigorous protocol matching phase is supported.
For instance, WSMO [28] defines a formal description language that integrates ontologies with state ma-
chines for representing Semantic Web Services. It also proposes a runtime mediation framework, the Web
Service Execution Environment (WSMX), which mediates interaction between heterogeneous services by
inspecting their individual protocols and performs the necessary translation on basis of pre-defined medi-
ation patterns. However, the composition of these patterns is not considered, and there is no guarantee
that it will not lead to a deadlock. Vaculı́n et al. [77] devise a mediation approach for OWL-S processes.
They first generate all requesters paths, then find the appropriate mapping for each path by simulating
the provider process. This approach deals only with client/server interactions and is not able to generate
a CONNECTor if many mappings exist for the same action. Finally, Wu et al. [83] present an automated
approach to process mediation taking into account the semantics of services in terms of their input/out-
put data and preconditions and effects. The approach is based upon planning and requires predefined
patterns to manage some process constructs such as choice or loops.

Nevertheless, there is a growing interest towards having automated generative approaches that con-
sider both the common language synthesis and the protocol matching phases, and that are able to handle
complex mismatches. Approaches that develop mediators only for part of the networked systems’ behav-
iors are presented in [20] and in [56]. The latter was implemented in an open source tool.1. While both
these approaches appear to fulfill our need for supporting interaction protocol mapping, they may present
some shortcoming in terms of performances due to the high cost of exhaustive graph exploration algo-
rithms that could prevent their usage in on-the-fly mapping derivation. While no data about performances
are available for the approach in [20], some previous work of the authors presented in [26], exploited the
tool offered by [56] and showed that the mapping scripts building time required by [56] tool is remarkably
higher than the one obtained exploiting the approach in Chapter 3.

To the best of our knowledge the only approach capable to synthesize a mediator for two networked
systems considering also the goal that their communication should satisfy is the one in [17]. With respect
to this work, ours is different since it models the networked systems and their communication in a more
expressive and flexible way. This allows the approach in in Chapter 3 handle reordering mismatches,
that in [17] are not considered. Finally the work presented in this deliverable is different from the other
presented in literature, since the previous approach focus on building a mediator specifically for client-
server interactions, as this form of communication is typical in service oriented systems. Here we exploit
the middleware communication model proposed in last year’s deliverable D3.2 [9], in order to take into
account also other types of middleware. This model extension constitutes an innovation element with
respect to the rest of the existing literature, as, to the best of our knowledge, all the cited works consider
only client-server interactions.

5.2.2 Middleware Interoperability

Middleware stands as a conceptual paradigm to connect applications effectively despite heterogeneities in
the underlying hardware and software. Nevertheless, each middleware defines a specific message format
and coordination model making it difficult (or even impossible) for applications using different middleware
to interoperate. Therefore, solutions that bridge applications across different middleware systems have
been devised. Enterprise Service Buses [57] promote loose coupling by implementing protocol transla-
tion through a common intermediary protocol, while interoperability platforms enable protocol substitution
at runtime by exploiting reflection [39]. However, these solutions require bridges/adaptors to be cre-
ated beforehand, which necessitate a substantial development effort and considerable knowledge about

1http://sourceforge.net/projects/dinapter
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the application-domain. Therefore, solutions that reduce the effort of developing bridging solutions have
emerged [45]. Specifically, z2z [22] proposes a domain-specific language to describe the protocols to be
made interoperable as well as the translation logic to compose them and then generates the correspond-
ing bridge. However, this solution requires the developer to specify the translation to be made and hence
to know both protocols in advance whereas in our approach, each protocol is independently specified and
the translation is produced automatically. Furthermore, the abstraction and concretization are performed
at runtime while the binding to specific middleware instances is done by Starlink which takes care of the
middleware specificities, instantiates the appropriate parsers and composers and deploys the concrete
CONNECTor in the environment [4].
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6 Abstract CONNECTor synthesis enabler
In Chapter 2 we updated the CONNECTor theory, originally proposed in [42], while in Chapter 3 and 4

we presented two possible algorithm to implement the CONNECTor theory.
In this chapter we describe a concrete architecture that allows us to unify the two aforementioned

approaches into a common framework, the Synthesis Enabler. In Section 6.1, we describe the interface
that the Synthesis Enabler exhibits to the other CONNECT enablers while in Section 6.2 we present its
internal architecture, which includes the implementations described in Chapter 3 and in Chapter 4.

Figure 6.1 outlines the architecture of the synthesis enabler. The Discovery enabler calls the
synthesiseAbstractMediator method in order to initiate the synthesis process after finding a function-
ally compatible pair of NSs. The Synthesis enabler considers the models (eLTSs) of these networked
systems and generate a CONNECTor model that allow them to interoperate. Then, it verifies that this
CONNECTor model meets the non-functional requirements of the interaction between the two NSs by call-
ing the Analyze method as provided by the Connectability enabler. Finally, it sends this model to the
Deployment enabler in order to be executed on top of the Starlink framework [4].

While the synthesis enabler displays a unique interface, there are two approaches to the synthesis of
mediators that are implemented: goal-based and mapping-driven synthesis. The goal-based synthesis
maps the sets of actions (alphabets) of both systems into a common one and use it to re-write their models,
i.e., the alphabet aligner. Then it encodes both models and the goal as a satisfaction problem and solves
is using an SMT model checker. The model checker gives only one feasible interaction, therefore this
process is repeated until all the feasible interactions are found. The mapping-driven synthesis encode
the ontology and uses this encoding to formalize a constraint satisfaction problem between the interfaces
(alphabets) of the NSs. It uses then this mapping to construct a correct-by-construction mediator that
enable the interoperation of the two systems. Hence, the constraints between actions and their associated
input/output data are verified during the interface mapping and not during the model checking phase.

eLTS-Coloured 
Automata Transformer

Mapping-driven Abstract 
Synthesis

Goal-based Abstract 
Synthesis

Synthesis Selecter

Ontology Encoder

Interface Mapper

Mapping-based 
synthesiser

Alphabet Aligner

SMT Model Checking

Middleware Abstraction

DeployAnalyse

synthesiseAbstractMediator

Trace Collector

Figure 6.1: Overview of the architecture of the synthesis enabler

Both approaches relies on ontologies to reason about the semantics of actions and generate the me-
diator allowing heterogeneous NSs to interact properly. However, there are many differences that make
each approach more suitable for specific cases. First, considering the goal allows the synthesis approach
to mediate only partial matching between the behavior of the NSs. However, when such a goal is not
provided, this approach needs to test all the possible traces and collect them by the end. Therefore,
the mapping-driven synthesis is well suited for the cases where the goal is not specified as it consid-
ers the whole behavior of systems and checks that each possible execution of one system can possibly
be mapped to an execution of the other system. Moreover, the mapping-driven synthesis can detect
the impossibility of mediation while building the ontology-based action mapping thanks to the constraints
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that these mappings need to satisfy, and in this case avoid expensive behavioral checking. However,
mapping-driven synthesis succeed only if each input action has all its outputs available at time of occur-
rence, which is essential to prove the correctness of the mediator. Hence, many-to-many mismatches
with asynchronous semantics cannot be handled, whereas the goal-driven synthesis manages both syn-
chronous and asynchronous semantics for actions.

Both approaches relies on the same middleware abstraction and to transform the mediator model into
a k-coloured automaton, which can be executed by Starlink. A k-coloured automaton [21] is a refinement
of the mediator’s eLTS. In particular, it associates each state with a marking (aka colour) to differentiate
between the communication with each networked system. Furthermore, the actions are refined so as to
reflect the specificities of the middleware used by each system.

In the following sections, we define both the external API of the synthesis Enabler and its internal
architecture.

6.1 Synthesis Enabler API

The method to be invoked in order to synthesize the mediator is the synthesiseAbstractMediator of the
interface Syhthesise:

1 public interface synthesise{

2 /**

3 * Generates the mediator models , sends it to the deployment enabler.

4 * @param The eLTS representation of NS1

5 * @param The eLTS of NS2

6 * @param A list of LTL formulas that specifies the goals that the mediator should verify

7 * @return The The XML model of the mediator between NS1 and NS2

8 * @throws if fails to generate the mediator

9 */

10 public ColouredAutomaton synthesiseAbstractMediator(EnhancedLTS ns1 , EnhancedLTS ns2 ,

List <LTLFormula > goal)

11 throws NoMediatorException;

12 }

The EnhancedLTS and the ColouredAutomaton are the Java objects implementing the eLTS and the
k-coloured automaton respectively. If the synthesis is unable to generate the mediator or if the Con-
nectability analysis reveals possible failures regarding non-functional properties, then the enabler raises
a NoMediatorException exception.

6.2 Synthesis Enabler Internal Architecture

The internal architecture of the Synthesis Enabler follows the conceptual view of the abstract CONNECTor
synthesis presented in Figure 2.1. Based on that model, we propose a facade extensible architecture,
featuring an interface for each layer of the conceptual model. Figure 6.2 depicts the main classes used in
the implementation of the Syhthesise Interface. As the reader can notice the architecture presents four
interfaces that are used by the Syhthesise Interface:

• MWAbstractionProvider, which represents the Abstraction layer in Figure 2.1.

• OntologyMatchingProvider, which represents the Matching layer in Figure 2.1.

• MappingProvider, which represents the Mapping layer in Figure 2.1, and is used in those ap-
proaches that consider matching and mapping as two separate steps, just like the approach pre-
sented in Chapter 3.

• MatchingBasedMappingProvider, which represents the Matching and the Mapping layer in Fig-
ure 2.1, and is used in those approaches, like the one considered in Chapter 4, which consider
ontology matching and CONNECTor synthesis as parts of the same iterative process.
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One of the possible behaviors of the Synthesis Enabler is reported in Figure 6.3. The Syhthesise

Interface first invokes the performAbstraction method of MWAbstractionProvider, obtaining from it
an instance of MWAgnosticEnhancedLTS for each network system. A MWAgnosticEnhancedLTS in-
stance contains the information contained in an EnhancedLTS, augmented with the pieces of in-
formation needed to abstract the EnhancedLTS from its middleware implementation. After this
step, the Syhthesise Interface invokes performMatching, getMatchingForNS1 and getMatchingForNS2
methods of OntologyMatchingProvider, passing as input to the first method the instances of
MWAgnosticEnhancedLTS, obtained from the first step, and obtaining from the second and the third
invoked methods an instance of OntologyMediatedMWAgnosticEnhancedLTS for each of the network
systems. An instance of OntologyMediatedMWAgnosticEnhancedLTS for a network system ns1, is
an instance of MWAgnosticEnhancedLTS, whose alphabet has been replaced by an alphabet in com-
mon with ns2, and computed using the ontology. After these two steps, the Syhthesise Inter-
face can invoke the produceMapping method of MappingProvider, passing as input the instances of
OntologyMediatedMWAgnosticEnhancedLTS retrieved from OntologyMatchingProvider, and obtaining a
CONNECTor, described as an instance of ColouredAutomaton.

Since the implementations of the CONNECTor theory, presented in Chapters 3 and 4, present a main
difference in the way they expect to interact with the ontology, the Synthesis Enabler architecture should
take that difference into account. The approach in Chapter 3 expects the matching phase to be performed
before the mapping phase, while the approach in Chapter 4 the matching and the mapping phases are
seen as part of an iterative process that produces the CONNECTor. In order to consider this case, we
need to modify the behavior of the Synthesis Enabler as shown in Figure 6.4. In this case, the Syhthesise

Interface first uses MWAbstractionProvider, in order to obtain two instances of MWAgnosticEnhancedLTS
and then invokes the produceMapping method of MatchingBasedMappingProvider, in order to obtain a
CONNECTor.
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Figure 6.3: Behavior of the Synthesis Enabler, using OntologyMatchingProvider and
MappingProvider.

Figure 6.4: Behavior of the Synthesis Enabler, using MatchingBasedMappingProvider .
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7 Conclusion and Future Work
One of the core challenges of CONNECT is to automatically synthesize protocol mediators, at both the

application and middleware layer, in order to achieve interoperability among NSs. We recall that the role
of work package WP3 is to devise automated and efficient approaches for CONNECTor synthesis, which
can be performed at runtime.

7.1 Contributions

In this deliverable, we have presented the results achieved during Year 3 that have allowed us to define a
concrete architecture and related API, together with its actual implementation, for the Synthesis enabler.

This deliverable contributes the following achievements to CONNECT:

• As a first achievement we have revised the theory of mediators devised during the first two years of
the projects by introducing the handling of actions with data and by enhancing the formal definition
of protocol abstraction and matching.

• As a second major achievement of this deliverable is the implementation of the CONNECTor theory
in two different approaches, which were shown to be complementary in Chapter 5: a goal-based
approach and a mapping-based one. The goal-based approach considers the intent to connect
two systems to drive the synthesis of a CONNECTor, as suggested by the second review recom-
mendations, presented in Section 1.3. However, this approach produces partial models of the ab-
stract CONNECTor. This limitation is overcome by the mapping-based approach. Moreover, both
implementations model networked systems as automata with data, thus aligning with the work on
connector models in WP2 and on register automata in WP4.

• The third and last major achievement of this deliverable is the implementation of a synthesis frame-
work for the synthesis of mediators. The framework reunites the two implementations of the CON-
NECTor theory, and gives the possibility to select one or the other, according to the presence of an
intent to connect the two networked systems.

7.2 Future Work

As future work, we intend to finalize the implementation of the Synthesis enabler in order to cope with the
various possible mismatches identified by our theory of mediators. More specifically, we intend to enhance
our synthesis methods and their related implementations in order to support the extra receive/missing
send mismatch, which is the only one that our current implementations cannot handle. Furthermore, we
have so far concentrated on the synthesis of mediators from scratch, while the construction of mediators
by composing existing ones would enable more efficient synthesis and support self-adaptive emergent
middleware. Ongoing CONNECT research on the compositional specification theory and connector algebra
formalized within the work of WP2 [5, 6] will provide us the required foundations to enable the dynamic
adaptation of a synthesized CONNECTor to changes in the CONNECTed NSs or specified goal. Finally, by
referring to the work carried on WP5, we plan to enhance our CONNECTor synthesis methods to consider
non-functional aspects of the NSs interaction. The approach that we have in mind, by using non-functional
estimation and optimization techniques, shall produce the best connector with respect to specified non-
functional requirements for the system to be connected. In case more than one non-functional aspect is
considered, a trade-off analysis (based on multi-objective function optimization) needs to be executed.
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