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Abstract: A set of robots arbitrarily placed on the nodes of an anonymous graph have to meet
at one common node and remain in there. This problem is known in the literature as the gathering.
Robots operate in Look-Compute-Move cycles; in one cycle, a robot takes a snapshot of the current
configuration (Look), decides whether to stay idle or to move to one of its neighbors (Compute),
and in the latter case makes the computed move instantaneously (Move). Cycles are performed
asynchronously for each robot. Moreover, each robot is empowered by the so called multiplicity
detection capability, that is, a robot is able to detect during its Look operation whether a node
is empty, or occupied by one robot, or occupied by an undefined number of robots greater than
one. The described problem has been extensively studied during the last years. However, the
known solutions work only for specific initial configurations and leave some open cases. In this
paper, we provide an algorithm which solves the general problem, and is able to detect all the
non-gatherable configurations. It is worth noting that our new algorithm makes use of a unified
and general strategy for any initial configuration.
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Comment rassembler robots asynchrones et inconscients sur
les anneaux anonymes

Résumé : Un ensemble de robots placés arbitrairement sur les sommets d’un graphe anonyme
doivent se rencontrer sur un sommet commun. Ce problème est connu dans la littérature comme
le gathering. Les robots utilisent des cycles Look-Compute-Move; dans un cycle, un robot prend
un instantané de la configuration actuelle (Look), décide de rester inactif ou de se déplacer sur
l’un de ses voisins (Compute), et dans ce cas, fait le déplacement (Move). Les cycles sont exécutés
de manière asynchrone pour chaque robot. Chaque robot possède la capacité de multiplicity
detection: un robot est capable de détecter au cours de son opération Look si un sommet est
vide, occupé par un robot, ou occupé par un nombre indéfini de robots. Le problème décrit a été
largement étudié au cours des dernières années. Toutefois, les solutions connues ne sont valides
que pour des configurations initiales spécifiques. Nous fournissons un algorithme qui résout le
problème général, et est capable de détecter toutes les configurations initiales pour lesquelles
le problème est impossible. Il est intéressant de noter que notre nouvel algorithme utilise une
stratégie unifiée et générale pour chaque configuration initiale.

Mots-clés : distributed algorithm, asynchronous system, gathering, oblivious robots
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1 Introduction

We study one of the most fundamental problems of self-organization of mobile entities, known in
the literature as the gathering problem (see e.g., [7, 8, 14] and references therein). In particular,
we consider oblivious robots initially located at different nodes of an anonymous ring that have
to gather at the same common node (not determined in advance) and remain in there. Neither
nodes nor links have any labels. Initially, some of the nodes of the ring are occupied by robots
and there is at most one robot in each node. Robots operate in Look-Compute-Move cycles.
In each cycle, a robot takes a snapshot of the current global configuration (Look), then, based
on the perceived configuration, takes a decision to stay idle or to move to one of its adjacent
nodes (Compute), and in the latter case it moves to this neighbor (Move), eventually. Cycles are
performed asynchronously for each robot. This means that the time between Look, Compute,
and Move operations is finite but unbounded, and it is decided by the adversary for each robot.
Hence, robots may move based on significantly outdated perceptions. The only constraint is that
moves are instantaneous, and hence any robot performing a Look operation sees all other robots
at nodes and not on edges.

Robots are all identical, and execute the same deterministic algorithm. Moreover, they have
the so called multiplicity detection capability (see e.g. [15]), that is the ability to perceive during
the Look operation whether a node is empty, or occupied by one robot, or occupied by an
undefined number of robots greater than one. Without this capability the gathering would be
impossible [17].

1.1 Related Work and Our Results

The problem of let meet mobile entities on graphs [2, 9, 17] or open spaces [5, 8] has been
extensively studied in the last decades. When only two robots are involved, the problem is
usually referred to as the rendezvous problem [1, 4, 6, 9, 19]. Under the Look-Compute-Move
model, many problems have been addressed, like the graph exploration and the perpetual graph
exploration [3, 10, 12, 13], while the rendezvous problem has been proved to be unsolvable on
rings [17].

Concerning the gathering, different types of configurations have required different approaches.
In particular, periodicity and symmetry arguments have been exploited. A configuration is called
periodic if it is invariable under non-trivial (i.e., non-complete) rotation. A configuration is
called symmetric if the ring has a geometrical axis of symmetry, that reflects single robots into
single robots, multiplicities into multiplicities, and empty nodes into empty nodes. A symmetric
configuration with an axis of symmetry has an edge-edge symmetry if the axis goes through two
edges; it has a node-edge symmetry if the axis goes through one node and one edge; it has a
node-node symmetry if the axis goes through two nodes; it has a robot-on-axis symmetry if there
is at least one node on the axis of symmetry occupied by a robot.

In [17], it is proved that the gathering is not solvable for periodic configurations, for those
with edge-edge symmetry, and if the multiplicity detection capability is removed. Then all
configurations with an odd number of robots, and all the asymmetric configurations with an
even number of robots have been solved by different algorithms. In [16], the attention has been
devoted to the symmetric cases with an even number of robots, and the problem was solved when
the number of robots is greater than 18. These left open the gatherable symmetric cases of an
even number of robots between 4 and 18. Most of the cases with 4 robots have been addressed
in [18]. The remaining ones, that is when there is an axis of symmetry of type node-edge and
the odd interval cut by the axis is bigger than the even one, are, in general, not gatherable. As
outlined in [16], it is very easy to see the impossibility to provide a successful strategy for a
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Figure 1: a) The intervals between robots y, z and y′, z′ are the supermins, while the supermin
configuration view is (1, 2, 1, 2, 1, 3). b) Black nodes represent multiplicities.

configuration of 4 robots on a five nodes ring. More complicated, and formally proven in [11], is
the case provided by instances with the described property of 4 robots on a seven nodes ring. In
what follows, we refer to all such ungatherable configurations as the set SP4. Finally, the case of
6 robots with an initial axis of symmetry of type node-edge, or node-node has been solved in [7].

Besides the cases left open, a unified algorithm that handles all the above cases is also missing.
In this paper, we present a new distributed algorithm for solving completely all the gatherable
configurations. Our technique introduces a new approach and for some special cases makes use of
previous ones. In particular, existing algorithms are used as subroutines for solving the basic
gatherable cases with 4 or 6 robots from [18] and [7], respectively. Also, we exploit:

Property 1.1 [17] Let C be a symmetric configuration with an odd number of robots, without
multiplicities. Let C ′ be the configuration resulting from C by moving the robot on the axis to any
of its adjacent nodes. Then C ′ is either asymmetric or still symmetric but aperiodic. Moreover, by
repeating this procedure a finite number of times, eventually the configuration becomes asymmetric
(with possibly one multiplicity).

For all the other gatherable configurations, we design a new approach that has been suitably
unified with the used subroutines. Our result answers to the posed conjectures concerning the
gathering, hence closing all the cases left open, and providing a general approach that can be
applied for all the initial configurations. The main result of this paper can be stated as follows.

Theorem 1.2 There exists a distributed algorithm for gathering any initial configuration of more
than two robots on a ring, provided that it does not belong to the set SP4, it is aperiodic, it does
not admit an edge-edge axis of symmetry.

2 Definitions and Preliminaries
We consider an n-nodes anonymous ring without orientation. Initially, k nodes of the ring are
occupied by k robots. During a Look operation, a robot perceives the relative locations on the ring
of multiplicities and single robots. The current configuration of the system can be described in
terms of the view of a robot r. We denote a configuration seen by r as a tupleQ(r) = (q0, q1, . . . , qj),
j ≤ k− 1, that represents the sequence of the numbers of free consecutive nodes broken up by
robots when traversing the ring in one direction, starting from r. Unless differently specified, we
refer to Q(r) as the lexicographical minimum view among the two possibilities. For instance, in
the configuration of Fig. 1a, we have that Q(x) = (1, 2, 1, 3, 1, 2). A multiplicity is represented
as qi = −1 for some 0 ≤ i ≤ j, regardless the number of robots in the multiplicity. For
instance, for any robots in y of Fig. 1b, Q(y) = (−1, 1, 1, 1,−1, 0, 1, 3, 1, 0). Given a generic
configuration C = (q0, q1, . . . , qj), let C = (q0, qj , qj−1, . . . , q1), and let Ci be the configuration
obtained by reading C starting from qi, that is Ci = (qi, q(i+1) mod j+1, . . . , q(i+j) mod j+1). The
above definitions imply:

Inria



How to gather asynchronous oblivious robots on anonymous rings 5

Property 2.1 Given a configuration C, i) there exists 0 < i ≤ j such that C = Ci iff C is
periodic; ii) there exists 0 ≤ i ≤ j such that C = (Ci) iff C is symmetric; iii) C is aperiodic and
symmetric iff there exists only one axis of symmetry.

The next definition represents the key feature for our algorithm since it has a twofold advantage.
In fact, based on it, a robot can distinguish:

• If the perceived configuration (during the Look phase) is gatherable;

• If it is one of the robots allowed to move (during the Compute phase).

Definition 2.1 Given a configuration C = (q0, q1, . . . , qj) such that qi ≥ 0, for each 0 ≤ i ≤ j, the
view defined as CSM = min{Ci, (Ci), | 0 ≤ i ≤ j} is called the supermin configuration view. An
interval is called supermin if it belongs to the set IC = {qi | Ci = CSM or (Ci) = CSM , 0 ≤ i ≤ j}.

The next lemma, based on Definition 2.1, is exploited to detect possible symmetry or periodicity
features of a configuration:

Lemma 2.2 Given a configuration C:

1. |IC | = 1 if and only if C is either asymmetric and aperiodic or it admits only one axis of
symmetry passing through the supermin;

2. |IC | = 2 if and only if C is either aperiodic and symmetric with the axis not passing through
any supermin or it is periodic with period n

2 ;
3. |IC | > 2 if and only if C is periodic, with period at most n

3 .

Proof Let C = (q0, q1, . . . , qj),
1.⇒) If |IC | = 1, then if C is symmetric, there exists at least an axis of symmetry. This axis

must pass through the supermin, as otherwise there exists another interval of the same size of
supermin to which the supermin is reflected with respect to the axis. However, the same should
hold for every neighboring interval of supermin and so forth. Since by hypothesis, supermin is
unique, there must exist at least 2 intervals of different sizes that are reflected by the supposed
symmetry, and hence C results asymmetric.

If C is asymmetric then it must be aperiodic, as otherwise there exists 0 < i ≤ j such that
C = Ci and this implies more than 1 copy of the supermin.

1.⇐) If C is asymmetric and aperiodic, then Ci 6= (Ci), Ci 6= C` and Ci 6= (C`), for each
i and ` 6= i and hence must exist a unique supermin. If C admits only 1 axis of symmetry
passing through a supermin, then there exists a unique 0 ≤ i ≤ j such that CSM = Ci = (Ci)
as, otherwise, by Property 2.1, it would imply the existence of other axes of symmetry, each 1
corresponding to 1 supermin.

2.⇒) If |IC | = 2 and C is asymmetric, then by Property 2.1, it is periodic and the period
must be of n

2 . If |IC | = 2 and C is aperiodic and symmetric, the axis of symmetry cannot pass
through both the supermins. In fact, if it does, CSM = (CSM ) = (CSM )j/2 = (CSM )j/2 that
implies (CSM )bj/4c = (CSM )dj/4e, i.e., there exists another symmetry orthogonal to the other 1
that reflects the supermin into the other supermin. Hence, C would be periodic.

2.⇐) If C is aperiodic and symmetric with the unique axis not passing through any supermin
then each supermin must be reflected by the axis to another 1. Moreover, there cannot be more
than 2 supermins, as by definition of supermin, these would imply other axes of symmetry and
hence C would be periodic by Property 2.1. If C is periodic with period n

2 , then any supermin
has an exact copy after n

2 intervals, and there cannot be other supermins, as otherwise the period
would smaller.

RR n° 7963



6 D’Angelo & Di Stefano & Navarra

3.⇒) If |IC | > 2, then there are at least 3 supermins, and this implies a period of at most n
3

for C.
3.⇐) If C is periodic with period at most n

3 , then a supermin is repeated at least 3 times in
C. �

2.1 A first look to the algorithm

The above lemma already provides useful information for a robot when it wakes up. In fact,
during the Look operation, it can easily recognize if the configuration contains only 2 robots, or if
it belongs to the set SP4, or if |IC | > 2 (i.e., the configuration is periodic), or in case |IC | = 2, if
the configuration admits an edge-edge axis of symmetry or it is again periodic. After this check,
a robot knows if the configuration is gatherable, and proceeds with its computations. Indeed, we
will show in the next chapter that all the other configurations are gatherable. From now on, we
do not consider the above non-gatherable configurations.

The main strategy allows only movements that affect the supermin. In fact, if there is only
one supermin, and the configuration allows its reduction, the subsequent configuration would
still have only one supermin (the same of before but reduced), or a multiplicity is created. In
general, such a strategy would lead asymmetric configurations or also symmetric ones with the
axis passing through the supermin to create one multiplicity where the gathering will be easily
finalized by collecting at turn the closest robots to the multiplicity.

For gatherable configurations with |IC | = 2, our algorithm requires more phases before creating
the final multiplicity where the gathering is realized. In fact, in this case there are two supermins
that can be reduced. If both are reduced simultaneously, then the configuration is still symmetric
and gatherable. Possibly, it contains two symmetric multiplicities. In fact, this is the status that
we want to reach even when only one of the two supermins is reduced. In general, the algorithm
tries to preserve the original symmetry or to create a gatherable symmetric configuration from an
asymmetric one. It is worth to remark that in all symmetric configurations with an even number
of robots, the algorithm always allows the movement of two symmetric robots. Then it may
happen that, after one move, the obtained configuration is either symmetric or it is asymmetric
with a possible pending move. In fact, if only one robot among the two allowed to move performs
its movement, it is possible that its symmetric one either did not start its Look-Compute-Move
cycle, or it is taking more time. If there might be a pending move, then the algorithm forces it
before any other decision.

In contrast, asymmetric configurations cannot produce pending moves as the algorithm allows
the movement of only one robot. In fact, we reduce the unique supermin by deterministically
distinguish among the two adjacent robots, until one multiplicity is created. Finally, all the other
robots will join the multiplicity one-by-one. In some special cases, from asymmetric configurations
at one “allowed” move from symmetry (i.e., with a possible pending move), robots must guess
which move would have been realized from the symmetric configuration, and force it in order to
avoid unexpected behaviors. By doing this correctly, the algorithm brings the configuration to
have two symmetric multiplicities as above, eventually. From here, a new phase that collects all
the other robots but two into the multiplicities starts. Still the configuration may move from
symmetric configurations to asymmetric ones at one move from symmetry. Once the desired
symmetric configuration with two multiplicities and two single robots is reached, a new phase
starts and moves the two multiplicities to join each other. The node where the multiplicities join
represents the final gathering location.

Inria
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multiplicity-creation collect

convergenceseven-nodes

mult.-convergence

Figure 2: Phases interchanges.

3 Resolution algorithm and its correctness

The algorithm works in 5 phases that depend on the configuration perceived by the robots,
see Fig. 2. First, it starts from a configuration without multiplicities and performs phase
multiplicity-creation whose aim is to create one multiplicity, where all the robots will
eventually gather, or two symmetric multiplicities. In the former case, phase convergence is
performed to gather all the robots into the multiplicity. In the latter case, phases collect and
then multiplicity-convergence are performed in order to first collect almost all the robots
into the two multiplicities and then to join the two multiplicities into a single one. After that,
phase convergence is performed. Special cases of 7 nodes rings and 6 robots are considered
separately in phase seven-nodes.

We can show how robots interchange from one phase to another until the final gathering is
achieved. In each phase we can distinguish the type of configuration and provide the algorithm
to be performed by robots for each of these types. The way how a robot can identify the type of
configuration will be outlined later.

3.1 Phase multiplicity-creation

The main idea in this phase is to reduce the supermin by enlarging the largest interval adjacent
to it as follows:

Definition 3.1 Let Q(r) = (q0, q1, . . . , qj) be a supermin configuration view, then robot r performs
the reduction if the obtained configuration after its move is (q0 − 1, q1, . . . , qj + 1).

The pseudo-code of reduction is given in Fig. 1. The procedure, first checks whether the
robot perceives the supermin configuration view by comparing the configuration C perceived by
the robot with CSM . Note that, in asymmetric configurations, the robot that perceived C is the
one among the two robots at the sides of the supermin allowed to move. In fact, the robot on the
other side would perceive the configuration C and, by definition of CSM , we have CSM = C < C,
as the configuration is asymmetric. Then, the procedure moves the robot towards the supermin.
In symmetric configurations, the test at line 1 returns true for both robots adjacent to the unique
supermin or for the two symmetric robots that perceive CSM in case that |IC | = 2.

It is worth to note that, from a symmetric configuration, always two robots can perform
the reduction when it is possible to perform it. If only one of them does it, the obtained
configuration will contain exactly one supermin. However, if the perceived configuration contains

RR n° 7963



8 D’Angelo & Di Stefano & Navarra

Procedure: reduction
Input :C = (q0, q1, . . . , qj)

1 if C = CSM then move towards q0;

only one supermin and it is not symmetric, the robots are able to understand whether there
might be a pending move to re-establish the original symmetry or not. This constitutes one of
the main results of the paper and it is obtained from the following lemma.

Lemma 3.1 Let C be a configuration with more than 2 single robots and let C ′ be the one
obtained from C after a reduction performed by a single robot. Then: If C is asymmetric then
C ′ is at least at two moves from a symmetric configuration; if C is symmetric then C ′ is at least
at two moves from any other symmetric configuration with an axis of symmetry different from
that of C.

Proof By Lemma 2.2, 2 cases may arise: there exists only 1 supermin in C or the configuration
is symmetric and contains exactly 2 supermins.

We now show that in the case that there exists only 1 supermin in C, then C ′ is at least
2 moves from any axis of symmetry different from that passing through the supermin. By
Lemma 2.2, it is enough to show that C ′ requires more than 1 move to create another supermin
different from that of C. Let us consider the supermin configuration view CSM = (q0, q1, . . . , qj).
For the sake of simplicity, let us assume that, for each i = 1, 2, . . . , j, (CSM )i < (CSM )i, the
case where, for some i, (CSM )i > (CSM )i is similar. The case that (CSM )i = (CSM )i cannot
occur as, otherwise, there exists an axis of symmetry passing through qi, but, by Lemma 2.2, as
|IC | = 1, the possible axis of symmetry can only pass through q0. By definition of supermin,
for each (CSM )i, i = 1, 2, . . . , j, there exists ki ∈ {0, 1, . . . , j} such that: q` = q(i+`) mod j+1,
for each ` < ki; and qki < q(i+ki) mod j+1. Note that (i + ki) mod j + 1 6= 0 as otherwise
it contradicts the hypothesis of minimality of q0. Moreover, ki 6= j as otherwise

∑j
`=0 q` =∑ki

`=0 q` <
∑ki

`=0 q(i+`) mod j+1 =
∑j

`=0 q(i+`) mod j+1, that is a contradiction. From C ′, the
supermin configuration view is C ′SM = (q′0, q

′
1, . . . , q

′
j) = (q0 − 1, q1, . . . , qj + 1) and we have

that, for each i = 1, 2, . . . , j, 2 cases may arise: if ki > 0, then q′0 = q0 − 1 < qi = q′i and
q′ki

= qki
< q(i+ki) mod j+1 = q′(i+ki) mod j+1; if ki = 0, then q′0 = q0 − 1 < qi − 1 = q′i − 1. In any

case, C ′SM differs from (C ′SM )i by 2 units. It follows that C ′ is at least 2 moves from any axis of
symmetry different from that passing through the supermin. In fact, in order to obtain another
axis of symmetry by performing only 1 move on C ′, (C ′SM )i has to differ from C ′SM by at most 1
unit. This is enough to show the statement for the case of symmetric configurations with exactly
1 supermin. Regarding the asymmetric case, it remains to show that C ′ is at least 2 moves from
the axis passing through the supermin. In an asymmetric configuration CSM = (q0, q1, . . . , qj)
there exists a qk, 1 ≤ k ≤ j

2 , such that q` = q(j+1−`) mod j+1, for each ` < k, and qk < qj+1−k.
From C ′, the supermin configuration view is C ′SM = (q′0, q

′
1, . . . , q

′
j) = (q0 − 1, q1, . . . , qj + 1) and

2 cases may arise: if k > 1, then q′1 = q1 = qj < qj + 1 = q′j and q′k = qk < qj−1−k = q′j−1−k; if
k = 1, then q′1 = q1 < qj = q′j − 1. It follows that C ′ is at least 2 moves from the axis of symmetry
passing through the supermin.

Regarding the case of symmetric configurations with exactly 2 supermins, we use similar
arguments as above. Let us consider the supermin configuration view CSM = (q0, q1, . . . , qj) and
let us assume that h is the index such that CSM = (CSM )h. By definition, for each (CSM )i,
i ∈ {1, 2, . . . , j} \ {h}, there exists ki ∈ {0, 1, . . . , j} such that: q` = q(i+`) mod j+1, for each ` < ki,
and qki

< q(i+ki) mod j+1. As above we are assuming that (CSM )i < (CSM )i and we can show

Inria



How to gather asynchronous oblivious robots on anonymous rings 9

that ki 6= j, ki 6= (j + h) mod j + 1, (ki + i) mod j + 1 6= 0, and (ki + i) mod j + 1 6= h. From
C ′, the supermin configuration view is C ′SM = (q′0, q

′
1, . . . , q

′
j) = (q0 − 1, q1, . . . , qj + 1) we have

that, for each i ∈ {1, 2, . . . , j} \ {h} 2 cases may arise: if ki > 0, then q′0 = q0 − 1 < qi = q′i
and q′ki

= qki
< q(i+ki) mod j+1 = q′(i+ki) mod j+1; if ki = 0, then q′0 = q0 − 1 < qi − 1 = q′i − 1.

In any case, C ′SM differs from (C ′SM )i by 2 units. Similar arguments to the ones used for the
asymmetric case can show that C ′ is at least 2 moves far apart from the axis passing through the
supermin. �

Procedure: multiplicity-creation
Input :CT, C = (q0, q1, . . . , qj)

1 case CT =W1
2 if C = Cj then move towards q0;
3 case CT =W2
4 if gather-four-nodes(C) then reduction (C);
5 case CT =W3
6 if gather-six-nodes(C) then reduction (C);
7 case CT =W4
8 if Cj = Cj and qj is odd then move towards qj ;
9 if C = C and q0 is odd then move towards q0;

10 case CT =W5
11 if C = CSSM then move towards q0;
12 case CT =W6
13 Let k the index such that
14 (symmetric(q0, q1, . . . , qk + 1, qk+1 − 1, . . . qj) and qk + 1 is odd) or

(symmetric(q0, q1, . . . , qk − 1, qk+1 + 1, . . . qj) and qk+1 + 1 is odd);
15 if k = 0 or k = j then move towards qk;
16 if no such k exists then reduction (C);
17 case CT =W7
18 if symmetric(C) then
19 reduction (C);
20 else
21 (b, Ĉ) = checkreduction (C);
22 if b then
23 pending reduction (C);
24 else
25 reduction (C);

Figure 3: Procedure multiplicity-creation.

It follows that we can derive C from C ′ by enlarging the supermin of C ′. This equals to reduce
the largest adjacent interval (i.e., by performing the reduction backwards) hence deducing the
possible original axis of symmetry and then performing the possible pending reduction. Before
providing the designed procedures, we need the following definition:

Definition 3.2 Given a configuration C = (q0, q1, . . . , qj), the view defined as CSSM =

min{Ci, (Ci) | Ci 6= CSM and (Ci) 6= CSM , 0 ≤ i ≤ j} is called the second supermin con-
figuration view.

RR n° 7963
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Function: symmetric
Input :C = (q0, q1, . . . , qj)
Output : true if C is symmetric, false otherwise

1 for i = 0, 1, . . . , j do
2 if C = Ci then return true;
3 return false;

Function: check_reduction
Input :C = (q0, q1, . . . , qj)
Output : (true, Ĉ) if C is obtained from Ĉ by performing reduction, (false, ∅) if C has not been

obtained by performing reduction

1 Let k such that Ck = CSM or Ck = CSM ;
2 if q(k−1) mod j+1 > q(k+1) mod j+1 then
3 Ĉ := (q0, q1, . . . , q(k−1) mod j+1 − 1, qk + 1, . . . , qj);
4 else
5 if q(k−1) mod j+1 < q(k+1) mod j+1 then
6 Ĉ := (q0, q1, . . . , qk + 1, q(k+1) mod j+1 − 1, . . . , qj);
7 else return (false,∅);
8 if symmetric(Ĉ) then return (true, Ĉ);
9 return (false,∅);

As shown above, Procedure symmetric checks whether a configuration C is symmetric by
exploiting Property 2.1. Procedure check_reduction checks whether an asymmetric configu-
ration C has been obtained from some symmetric configuration Ĉ by performing reduction.
Procedure pending_reduction performs the pending reduction.

At line 1, Procedure check_reduction looks for the index k such that qk is the supermin,
as it is the only candidate for being the interval that has been reduced by a possible reduction.
Then, at lines 2–6, it computes the configuration Ĉ before the possible reduction. This is
done by enlarging qk and reducing the largest interval among q(k−1) mod j+1 and q(k+1) mod j+1.
If q(k−1) mod j+1 = q(k+1) mod j+1 or Ĉ is not symmetric, then C has not been obtained by
performing a reduction from a symmetric configuration. In this case, the procedure returns
(false, ∅).If Ĉ is symmetric, then C has been obtained by performing reduction on Ĉ and hence
the procedure returns (true, Ĉ).

Procedure pending_reduction uses check_reduction to check whether C has been
obtained by performing reduction on a configuration Ĉ (lines 1 and 2). At line 2 the procedure
checks whether the robot is at a side of one of the two supermins of Ĉ (min{Ĉ, Ĉj} = ĈSM ) and
if it has not yet performed reduction (min{C,Cj} 6= CSM ). In the affirmative case, the robot
has to move towards the supermin (line 2). The robot moves towards q0 also if it is at the side
of the second supermin of Ĉ (min{Ĉ, Ĉj} = ĈSSM ). This corresponds to a move different from
reduction that will be explained later in this section.

In general it is not always possible to perform reduction. In fact, there are cases where it
may lead to not gatherable configurations. These cases will be managed separately. However, we
will show that a robot is always able to understand that there might be a pending move also for
the other moves allowed by our algorithm from symmetric configurations.

When it is not possible to perform reduction, we either reduce the second supermin or we
perform the xn move that is defined in the following:
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Procedure: pending reduction
Input :C = (q0, q1, . . . , qj)

1 (b, Ĉ) = check_reduction (C) ;

2 if b and ( min{Ĉ, Ĉj} = ĈSM or min{Ĉ, Ĉj} = ĈSSM ) and min{C,Cj} 6= CSM then move
towards q0;

Definition 3.3 Let C be a configuration:

• If C is symmetric and there are no multiplicities, xn corresponds to move towards the axis
the two symmetric robots closest to the axis of symmetry that are divided by at most one
robot and are not adjacent to a supermin;1

• If C is symmetric and there is only one multiplicity, xn corresponds to move towards the
multiplicity the two symmetric robots closest to the multiplicity;

• If C is asymmetric and it has been possibly obtained by applying xn from a symmetric
configuration C ′ (that is, from C ′ only one of the two robots on the above cases has moved),
then xn on C corresponds to move the second closest robot towards the axis/multiplicity;

• If C is asymmetric with a multiplicity and it cannot be obtained by applying xn from a
symmetric configuration, then xn corresponds to move the robot lexicographically closest to
the multiplicity towards it.

Each time a robot wakes up, it needs to find out which kind of configuration it is perceiving,
and, if it is allowed to move, it needs to compute the right move to perform. We need to distinguish
among several types of configurations, requiring different strategies and moves. In this phase, as
there are no multiplicities, a robot must distinguish among the following configurations:

W1 Symmetric configurations with an odd number of robots;

W2 Configurations with 4 robots;

W3 Configurations with 6 robots;

W4 Symmetric configurations with an even number of robots greater than 6, only one supermin
of size 0 or with two supermins of size 0 divided by one interval of even size with no other
intervals of size 0;

W5 Symmetric configurations with an even number of robots greater than 6, only one supermin
of size 0 or with two supermins of size 0 divided by one interval of even size, and other
intervals of size 0;

W6 Asymmetric configurations with an even number of robots greater than 6 and:

a) only one interval of size 0, and it is in between two intervals of equal size

b) only two intervals of size 0, with only one in between two intervals of equal size

c) only two intervals of size 0, with one even interval in between

d) only three intervals of size 0, with only two of them separated by an even interval
1By Lemma 2.2, in gatherable configurations, the axis of symmetry cannot pass through two supermins hence

there are always two robots allowed to move.
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12 D’Angelo & Di Stefano & Navarra

e) only three consecutive intervals of size 0

f) only four intervals of size 0, with only three of them consecutive;

W7 Remaining gatherable configurations.

From configurations in W1, only the robot on the axis can move in one of the two directions,
arbitrarily. After this move either the configuration contains one multiplicity or it belongs to
W1 or W7. Configurations in W7 will be described later in this section and the configurations
with multiplicities will be described in the next section. Regarding configurations in W1, from
Property 1.1, we know that the number of times that the obtained configuration can belong again
to W1 after this move is bounded.

When the configuration is in W2 or W3, a modified version of algorithms in [18] and [7]
are performed, respectively. In particular, both the algorithms are able to manage symmetric
configurations and to check whether in an asymmetric configuration there is a possible pending
move. If the configuration is not symmetric and there are no pending moves, then reduction is
performed. The resulting configuration is still in W2 or W3 or at least one multiplicity is created.
From the correctness of algorithms in [18] and [7] and from the fact that performing reduction
results in reducing the supermin, it follows that eventually at least one multiplicity is created.

When the configuration is in W7 and it is symmetric, then the algorithm performs reduction
on two symmetric robots that leads to another symmetric configuration in W7, or to a configuration
with at least one multiplicity, or to an asymmetric configuration with a pending move. In this
latter case, by Lemma 3.1 the algorithm recognizes that the configuration is at one “allowed” move
from symmetry and performs the pending move (even though it was not pending, indeed). When
the configuration is asymmetric, again reduction is performed. By performing the described
movements, at least one multiplicity is created.

Configurations in W4–W6 correspond to the cases where reduction is not allowed to be
performed. In fact, if the configuration is symmetric and there is only one supermin of size 0, then
reduction may result in swapping the robots at the borders of the supermin, hence obtaining
infinitely many times the same configuration. Similarly, if the configuration is symmetric and
there are two symmetric supermins of size 0 divided by one interval of even size, then reduction
would produce two multiplicities divided by the interval of even size and we won’t be able to join
such multiplicities afterwards.

From W4, the algorithm performs xn, hence leading to configurations in W4, W6 or to
configurations with one multiplicity on the axis.

From W5, the algorithm performs reduction on the configuration obtained without consid-
ering the supermin (that is, it reduces the second supermin, according to Definition 3.2). Note
that, as in this case the second supermin has size 0, we obtain at least one multiplicity.

The asymmetric configurations in W6 are either asymmetric starting configurations or are
obtained from the symmetric configurations in W4 after performing xn. In this cases, the
algorithm checks whether the configuration is obtained after an xn move. This is realized by
moving backward the robot closest to the other pole of the axis of symmetry that is assumed to
pass through: The supermin in case a); The only interval of size 0 adjacent to two intervals of
equal size in case b); The even intervals mentioned in cases c) and d); the only interval of size 0 in
between other two intervals of size 0 in cases e) and f). If a backwards xn produces a symmetric
configuration, then the symmetric xn is performed, otherwise, reduction is performed and this
move creates a multiplicity.

For each configuration type, the algorithm checks whether the robot perceiving the configura-
tion C is allowed to move and eventually, performs the move.

Inria



How to gather asynchronous oblivious robots on anonymous rings 13

W1 W3 W5W2W7 W6 W4

Figure 4: Phase multiplicity-creation.

This phase of the algorithm is summarized in Fig. 4, and it is realized by means of Procedure
multiplicity-creation given in Figure 3. The next lemma states that multiplicity-creation
eventually finishes with at least one multiplicity and hence one of the other phases starts.

Lemma 3.2 Phase multiplicity-creation terminates with at least one multiplicity after a
finite number of moves.

Proof From the description it follows that the graph in Fig. 4 models the execution of phase
multiplicity-creation. We now show that all the cycles are traversed a finite number of times.
This implies that eventually at least 1 multiplicity is created.

From Property 1.1, and results in [18], and [7] follows that the self-loops in W1, W2, and W3,
respectively, are traversed a finite number of times.

The self-loop in W7 is traversed by performing reduction or pending_reduction. Each
time such moves are performed, the supermin decreases until, after a finite number of moves, it
either creates a multiplicity or leads to configurations in W4 or W6. The number of moves is at
most 2 times the size of the initial supermin and this is obtained for symmetric configurations
with the axis not passing through the supermin.

The self-loop in W4 and the cycle between W4 and W6 are traversed by performing xn. Each
time this happens, the interval between the 2 symmetric robots closest to the axis of symmetry
(excluding those adjacent to the supermin) is reduced until creating a multiplicity on the axis.
The number of moves performed equals the initial size of such an interval. �

3.2 Phase collect

Before proceeding with the description of this phase, we need to distinguish among the 2 poles of
an axis of symmetry in the case that there are 2, 3 or 4 multiplicities. We call one of the poles
north, according to the following definition.

Definition 3.4 In a symmetric, aperiodic configuration with 2, 3 or 4 multiplicities, if the axis
is of type

• node-edge, then the north is the middle node of the odd interval crossed by the axis;

• node-node or robot-robot, then let us consider the 2 sub-rings which are crossed by the
axis and between 2 symmetric multiplicities. The north is the middle node of the smallest
sub-ring, if the 2 sub-rings have different sizes. If the 2 sub-rings have the same size, in
case the symmetry is of type robot-robot, then the north is the node occupied by the robot
crossed by the axis from which by reading all the configuration 1 obtains the lexicographically
smallest string; in case the symmetry is of type node-node, then the north is the middle
node of the interval crossed by the axis from which by reading all the configuration 1 obtains
the lexicographically largest string.

The other node or edge crossed by the axis is called south.
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We assume that in symmetric configurations with multiplicities, a robot reads a configuration
starting from the northern interval between the 2 adjacent ones, we also assume that if the
robot belongs to a multiplicity the first interval q0 is equal to −1. For instance, robots x and
z of Fig. 1b, read (1, 1,−1, 0, 1, 3, 1, 0,−1, 1) and (0,−1, 1, 1, 1,−1, 0, 1, 3, 1), respectively. In
asymmetric configurations with multiplicities, we need to recognize the north of a possible
symmetric configuration from which the current configuration has been obtained. In case that
there is only 1 multiplicity, let us consider the configuration read by a robot in an arbitrary
order C = (q0, q1, . . . , qi, . . . , qj), where qi = −1. The robot first verifies whether there is
another symmetric multiplicity to be created by checking whether the configuration C ′ defined
as C ′ = (q0, q1, . . . , qi−1 − 1, 0, . . . , qj) if qi−1 > qi+1 or C ′ = (q0, q1, . . . , 0, qi+1 − 1, . . . , qj) if
qi−1 < qi+1 is symmetric. In the affirmative case, the robot chooses the proper reading between C
and Cj according to the minimal between C ′ and C ′j . Otherwise and in the case that qi−1 = qi+1,
it chooses C if

∑i−1
`=0 q` ≤

∑j
i+1 q` and Cj otherwise, i.e. the 1 towards the multiplicity. In

case there are 2 multiplicities, we need to define a north node allowing a robot to read the
configuration starting from the northern interval among its adjacent ones. To this aim, the robot
looks for an interval or a robot which is at the same distance from the 2 multiplicities. If there
exists an interval of even size at the same distance from the 2 multiplicities, then the middle edge
of such interval is identified as south and the node at distance bn2 c from the south is identified as
the north. In any other case, we compare the sizes of the 2 sub-rings between the 2 multiplicities.
If they are different, we consider the configuration obtained by removing all the single robots
adjacent to the multiplicities and the middle robot or the middle node of the middle interval of
the smallest sub-ring is identified as the north. If they are equal, the algorithm ensures that
there always exists an odd size interval or a robot at the same distance from the 2 multiplicities.
Therefore, we lexicographically compare the configurations read by such interval (robot, resp.)
with that read from the node at distance n

2 from the middle of this interval (from the robot,
resp.) and consider the largest (smallest, resp.) as the north (south, resp.) and the other as
south (north, resp.).

Phase collect is performed if one of the next configurations occurs:

Coll-a-1 Asymmetric configurations with more than 6 nodes occupied, 1 multiplicity at more than
1 move from the symmetry passing through the multiplicity and at one move from the
symmetry before performing reduction or reducing the second supermin;

Coll-s-2 Symmetric configurations with 2 multiplicities and

a) more than 6 nodes occupied;
b) 6 nodes occupied and more than 1 single robot at distance grater than 0 from any

multiplicity on the northern side;
c) 6 nodes occupied and more than 2 single robots at distance grater than 0 from any

multiplicity on the southern side;

Coll-a-2 Asymmetric configurations with 2 multiplicities and

a) more than 6 nodes occupied;
b) 6 nodes occupied and 0, 1 or 3 single robots adjacent to a multiplicity.

When the configuration is in Coll-a-1, then the algorithm leads to a symmetric configuration
within 1 move which is necessarily containing 2 multiplicities. In fact, the original configuration
was at more than 1 move from the symmetry passing through the multiplicity. After this move,
a configuration in Coll-s-2 is obtained. Then, the algorithm generates only configurations in
Coll-s-2 or in Coll-a-2.
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Coll-a-1 Coll-s-1 Coll-a-2

Figure 5: Phase collect.

When the configuration is in Coll-s-2 we need to distinguish among the types of symmetry.
In node-node and node-edge symmetries, we consider the 2 symmetric robots which are the closest
to the multiplicities among those in the nodes between the multiplicities and the north. The
algorithm moves this 2 robots symmetrically (generating again configurations in Coll-s-2 or in
Coll-a-2 if the symmetric robots move synchronously or not, respectively) until they join the 2
multiplicities. This operation is iteratively performed by all the robots between the multiplicities
and the north. The last 2 robots are allowed to join the multiplicities only if there are more
than 6 nodes occupied. Otherwise, these 2 robots are moved until they become neighbors of
the multiplicities. Then, the robots between the multiplicities and the south, except for the 2
southern symmetric robots, perform the same operation in turn, starting by the 2 symmetric
robots closest to the multiplicities.

In robot-robot symmetric configurations, the behavior is similar but it is realized by first
collecting the robots on the south and then those on the north, apart from the robots on the axis.
In both cases, the algorithm eventually leads to a symmetric configuration with six nodes occupied
by 2 multiplicities and 4 single robots, with at least 2 of them neighbors to the multiplicities.
If there are at least 2 single robots on the northern side, then 2 of them are neighbors to the
multiplicities. The pseudo-code of procedure collect is given in Fig. 6. The next lemma shows
that this phase eventually terminates in the described symmetric configuration.

Procedure: collect
Input :CT, C = (q0, q1, . . . , qj)

1 case CT =Coll-a-1
2 pending reduction (C);
3 case CT =Coll-s-2
4 if The symmetry is node-node or node-edge then
5 if qj−1 = −1 and qj > 0 then
6 move towards qj
7 if q1 = −1 and q2 = q4 = 0 and q5 = −1 and qj−2 6= −1 then
8 move towards q0
9 if The symmetry is robot-robot then

10 if q1 = −1 and qj−1 6= −1 then
11 move towards q0
12 if qj−1 = −1 and qj > 0 and qj−2 = qj−3 and qj−4 = −1 then
13 move towards qj

14 case CT =Coll-a-2
15 if q1 = −1 and ((q0 = 0 and symmetric(q1, q2, . . . , qj + 1)) or (q0 > 0 and

symmetric(q0 − 1, q1, . . . , qj + 1))) then
16 move towards q0;
17 if qj−1 = −1 and ((qj = 0 and symmetric(q0 + 1, q1, . . . , qj−1)) or (qj > 0 and

symmetric(q0 + 1, q1, . . . , qj − 1))) then
18 move towards qj ;

Figure 6: Procedure collect.
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Lemma 3.3 Phase collect terminates after a finite number of moves by reaching a symmetric
configuration with 6 nodes occupied by 2 multiplicities and 4 single robots, with at least 2 of them
neighbors to the multiplicities. If there are at least 2 single robots on the northern side, then 2 of
them are neighbors to the multiplicities.

Proof From the above description, it follows that the graph in Figure 5 models the execution of
phase collect. We now show that all the cycles are traversed a finite number of times until one
of the two configurations in the statement is created.

There are only 2 cycles in the graph: the self-loop in Coll-s-2 and the bidirectional edge
between Coll-s-2 and Coll-a-2. Each time that one of these 2 cycles is traversed, either the
distance between a multiplicity and a robot or the number of single robots is decreased until 6
nodes are occupied and 4 single robots with at least 2 of them are neighbors to the multiplicities.
In fact, if at least 2 of the 4 single robots reside on the northern side, then 2 of them must be
neighbors to the multiplicities, as otherwise the configuration would belong to Coll-s-2, and the
corresponding move can be performed, hence reducing the distance between single robots and
multiplicities. �

3.3 Phase multiplicity-convergence
Phase multiplicity-convergence is performed if one of the next configurations occurs:

Mc-s-x Symmetric configurations with

a) 2 multiplicities with more than 7 nodes and exactly 4 nodes occupied,

b) 2 multiplicities and 6 nodes occupied with at least 1 single robot adjacent to each
multiplicity;

c) 3 multiplicities or 2 multiplicities and exactly 5 nodes occupied;

d) 4 multiplicities;

Mc-a-x Asymmetric configurations with

a) 2 multiplicities, more than 7 nodes and less than 6 nodes occupied;

b) 2 multiplicities, 6 nodes occupied and at most 2 robots at distance grater than 0 from
the multiplicities;

c) 3 multiplicities;

Mc-a-1 Asymmetric configurations with more than 7 nodes, five nodes occupied, 1 multiplicity at
more than 1 move from the symmetry passing through the multiplicity and at one move
from a symmetry allowed by algorithm in [7].

From Mc-s-x, if there are 2 multiplicities, the algorithm moves them towards north if exactly
4 nodes are occupied, or if exactly 6 nodes are occupied with 1 single robot adjacent to the
northern side of each multiplicity. If exactly 6 nodes are occupied with 1 single robot adjacent
to the southern side of each multiplicity, the algorithm moves towards north the 2 symmetric
robots adjacent to the multiplicities, making such robots joining the multiplicities.

This operations may lead to configurations in Mc-s-x (with the northern side reduced), or in
Mc-a-x.

The configurations in Mc-s-x with 3 multiplicities or 2 multiplicities and exactly 5 nodes
occupied can occur only when the 3 multiplicities are consecutive or there are 3 consecutive
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nodes occupied with 1 single robot is in the middle of 2 multiplicities. In both cases, the middle
robot/multiplicity is crossed by the axis. In these cases, the algorithm moves the 2 external
multiplicities towards the middle robot/multiplicity leading to a symmetric configuration with
only 1 multiplicity crossed by the axis or to an asymmetric configuration with 2 multiplicities, at
one move from the symmetry passing through one of the two multiplicities.

If the configuration is in Mc-s-x and it has 4 multiplicities the algorithm moves the southern
multiplicities towards the 2 symmetric northern ones, hence obtaining a configuration still in
Mc-s-x with 4 multiplicities (but with less robots to move upwards), or in Mc-s-x with 2
multiplicities (but with a largest southern side), or to an asymmetric configuration in Mc-a-x
with 2 or 3 multiplicities.

From Mc-a-x, the algorithm allows only moves towards north that can re-establish the
symmetry. Note that, unless the configuration is made of just 6 robots, there will always be at
least 2 multiplicities. The case of 6 robots, instead, may lead to a configuration in W3 or in
Mc-a-x. The pseudo-code of Procedure multiplicity-convergence is given in Fig. 7.

Procedure: multiplicity-convergence
Input :CT, C = (q0, q1, . . . , qj)

1 case CT =Mc-s-x
2 if q0 = −1 and occupied(C) = 4 and |{qi = −1, 0 ≤ i ≤ j}| = 2 then
3 move towards q0
4 else
5 if q0 = −1 and C 6= C and (|{qi = −1, 0 ≤ i ≤ j}| = 3 or (occupied(C) = 5 and

|{qi = −1, 0 ≤ i ≤ j}| = 2)) then
6 move towards q0
7 else
8 if q0 = −1 and |{qi = −1, 0 ≤ i ≤ j}| = 4 and q1 = −1 then
9 move towards q0

10 else
11 if (q0 = 0 and q1 = −1) or (q0 = −1 and q1 = 0) then
12 move towards q0

13 case CT =Mc-a-x
14 if occupied(C) < 6 and

∑
qi≥0(qi + 1) > 7 and |{qi = −1, 0 ≤ i ≤ j}| = 2 then

15 if occupied(C) = 5 and ((q0 = 0 and q1 = −1) or (q0 = −1 and q1 = 0)) then
16 move towards q0
17 if occupied(C) = 4 and q0 = −1 and symmetric((−1, q1 + 1,−1, q3 − 1, q4, q5)) then
18 move towards q0
19 else
20 if |{qi = −1, 0 ≤ i ≤ j}| = 3 and q0 = −1 and q1 = −1 then
21 move towards q0
22 else
23 if (q0 = 0 and q1 = −1) or (q0 = −1 and q1 = 0) then
24 move towards q0

25 case CT =Mc-a-1
26 gather-six-nodes(C)

Figure 7: Procedure multiplicity-convergence.

Lemma 3.4 Phase multiplicity-convergence terminates after a finite number of moves with
a configuration composed of 1 multiplicity and between 1 and 4 further single robots.
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Mc-a-1 Mc-s-x Mc-a-x

Figure 8: Phase multiplicity-convergence.

Proof From the above description, it follows that the graph in Figure 8 models the execution
of phase multiplicity-convergence. We have already shown that all the cycles are indeed
traversed a finite number of times until a configuration as described in the statement is achieved.
In fact, for each described configuration, a set of robots is allowed to move towards north,
reducing the northern part, or enlarging the southern part, or decreasing the number of robots
that have to move towards north. The only exception is given by the 6 robots case, which however
is guaranteed to converge to the desired symmetric configuration by means of the arguments in
[7]. �

3.4 Phase convergence

Phase convergence is performed if one of the next configurations occurs:

Conv-a-s Asymmetric configurations with 1 multiplicity at one xn move from configurations also
achievable when gathering from six robots, as described in Figure 9. Formally, the configura-
tions are: (−1, q1, q1−1, 0, q4, q4+2), (−1, q1, q2, q1−2, 0, q5), and (−1, q1, q2, q1−1, 0, q5, 0).

Conv-s-1 Symmetric configurations with 1 multiplicity having a number of nodes different from 7 or
a number of nodes occupied different from 5;

Conv-a-1 Asymmetric configurations with 1 multiplicity;

a) at one xn move from the symmetry passing through the multiplicity and different from
the configurations in Conv-a-s;

b) at more than 1 move from any symmetry.

In this phase, the idea is to gather all the remaining single robots to the only multiplicity by
performing xn. However there might occur some exceptions that must be carefully considered. In
fact, whenever the gathering leads to configurations with only 5 nodes occupied, these might be
“confused” with configurations in phase multiplicity-convergence obtainable when initially
only 6 robots occur. In order to address such occurrences, we better avoid these situations. In
particular, the algorithm do not perform an xn move whenever it leads to configurations to 1
move from a symmetric configuration with 2 multiplicities achievable when gathering from 6
robots (shown in Figure 9). These are the configurations in Conv-a-s: in this case we perform
another move. That is, we allow again an xn move, but without considering the original robot
which was supposed to move. In practice, this equals to move the first robot on the other side of
the 1 planned to move with respect to the multiplicity. It is worth to note that the configurations
in Conv-a-s are the only ones to take care of. The other 2 possible configurations are shown in
Fig. 10. After the xn move, they led to a configuration to 1 move from a symmetric configuration
with 2 multiplicities, but, in this case, the algorithm in [7] would never generate it and then there
is no possible misclassification.

It must be observed that the above method applied from Conv-a-s decreases the number of
moves required to move the single robots to the only multiplicity.
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a) b) c)

Figure 9: The 3 special types of configurations. A white circle represents an empty node, a grey 1
a node with a robot, and a black 1 a multiplicity. A dashed arc indicates an arbitrary sequence of
empty nodes, a plain arc 2 consecutive nodes. If during the convergence phase a robot should
move towards the multiplicity, as indicated by the arrow, then the resulting configuration is at
one move from a symmetric configuration with 2 multiplicities achievable when gathering from
six robots. The symmetric configurations arise when, in each shown configuration, the 2 adjacent
robots join into a multiplicity.

a) b)

Figure 10: The 2 other special asymmetric configurations. After the moves indicated by the arrows
the resulting configuration is at one move from a symmetric configuration with 2 multiplicities,
but this symmetric configuration is never generated by the algorithm in [7].
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From Conv-s-1, the algorithm allows by an xn move the 2 closest single robots to the
multiplicity (or the only remaining 1) to move towards the multiplicity. If both make synchronously
the move, then the obtained configuration is still in Conv-s-1, but with 1 move less before the
final gathering. If only 1 robot performs the allowed move, then the configuration is in Conv-a-1.
From Conv-a-1a, either there is only 1 single robot left, which will be the only 1 allowed to move
towards the multiplicity until the gathering is completed, or there are at least 2 single robots,
each of which has no other robots in between itself and the multiplicity. If the farthest among
those 2 robots re-build the symmetry by 1 move towards the multiplicity, then it will be the only
1 allowed to move and the obtained configuration is in Conv-s-1, otherwise the other single robot
is the only 1 allowed to move towards the multiplicity and the obtained configuration might either
remain in Conv-a-1 or move to Conv-s-1. Also from Conv-a-1b, the xn move is performed.

In any case, the property that less moves remain is preserved until the final gathering. The
pseudo-code of Procedure convergence is given in Fig. 11.

Procedure: convergence
Input :CT, C = (q0, q1, . . . , qj)

1 case CT =Conv-a-s
2 if q1 = −1 and q0 > q2 then
3 move towards q0
4 case CT =Conv-s-1
5 if q1 = −1 then
6 move towards q0
7 case CT =Conv-a-1
8 if q1 = −1 then
9 if q0 = q2 + 1 and symmetric(q0,−1, q2 + 1, q3 − 1, q4, . . . , qj) then

10 move towards q0
11 else
12 if C < C2 then
13 move towards q0

Figure 11: Procedure convergence.

Lemma 3.5 Phase convergence terminates after a finite number of moves finalizing the
gathering or in a configuration in Coll-a-1.

Proof From the above description, it follows that the graph in Figure 12 models the execution
of phase convergence. We have already shown that all the cycles are indeed traversed a finite
number of times until the gathering is completed. In fact, for each described configuration, 1 or 2
robots are allowed to move towards the multiplicity, reducing the number of moves necessary for
each single robot to reach the multiplicity. Eventually the gathering is necessarily accomplished.
The only exception occurs when a configuration in Conv-a-b with more than 6 nodes occupied

Conv-s-1 Conv-a-1 Conv-a-s

Figure 12: Phase convergence.
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leads, after a reduction, to a configuration in Coll-a-1. However this may happen only once.
�

3.5 Phase seven-nodes

Phase seven-nodes is performed if one of the next configurations occurs:

7N-2 Configurations with 2 multiplicities on a ring of 7 nodes;

7N-1 Configurations with 1 multiplicity and 5 nodes occupied on a ring of 7 nodes.

All the above configurations can occur only when there are 6 robots on a ring of 7 nodes. In
fact, for 7N-2 there cannot be initially more than six robots on a ring of 7 nodes, and no strategy
leads to have 2 multiplicities apart from the case of 6 robots. For 7N-1, it may only happen
starting from 6 single robots. In these cases, the algorithm for 6 robots from [7] is used.

3.6 Selecting the type of configuration

In this, section we show how to recognize the type of configurations among those described above.
We first show that all the above types are pairwise disjoint and that they cover all the possible

configurations achieved by the algorithm. Let CTP = {W1, W2, . . ., W7, Coll-a-1, Coll-a-2,
Coll-s-2, Mc-s-x, Mc-a-x, Mc-a-1, Conv-a-s, Conv-a-1, Conv-s-1, 7N− 2, 7N− 1} be the
set of all the possible configuration types above.

Corollary 3.6 Configurations in CTP covers all the possible configurations achieved by the
algorithm.

Proof It is easy to see that the configurations in W1–W7 cover all the possible initial configu-
rations, as by hypothesis, any initial configuration has no multiplicities. All the configurations
in phases collect, multiplicity-convergence, and convergence are generated by the
algorithm. In the description of the phases, it has been shown that from any configuration, the
configuration after the performed move is in CTP. Therefore, the statement follows. �

Lemma 3.7 Configuration types in CTP are pairwise disjoint.

Proof We compare only the configuration types with the same number of multiplicities and
degree of symmetry. The only configuration types with no multiplicities are W1–W7 and they
are clearly pairwise disjoint. The symmetric configuration types with 1 multiplicity are Conv-s-1
and 7N-1 which are disjoint as they differ for the number of nodes or the number of nodes
occupied. The symmetric configuration types with 2 multiplicities are Coll-s-2, Mc-s-a, Mc-s-b,
Mc-s-c, and 7N-2 which are disjoint as they differ for the number of nodes or the number of
nodes occupied, or the distance between the single robots and the multiplicities. The remaining
symmetric configuration types have 3 or 4 multiplicities.

The asymmetric configuration types with 1 multiplicity are Coll-a-1, Mc-a-1, Conv-a-1,
Conv-a-s, and 7N-1. Configurations Mc-a-1, Conv-a-s, and 7N-1 are disjoint with respect
to the others as they differ for the number of nodes or the number of nodes occupied. Among
them, 7N-1 has a different number of nodes from Mc-a-1 and it differs from Conv-a-s as it is at
one move from a symmetry with 2 multiplicities, whereas Conv-a-s needs at least 2 moves to
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generate a symmetric configuration with 2 multiplicities. For the same reason Mc-a-1 differs
from Conv-a-s.

It remains to compare configuration types belonging to Conv-a-1 and to Coll-a-1a and
Coll-a-1b (these latter configurations are clearly different). Configurations in Conv-a-1 are
at more than 1 move from the symmetry passing through the multiplicity, and this is not the
case for configurations in Coll-a-1a. Moreover, they are at one move from a symmetry whereas
Coll-a-1b are at more than 1 move from any symmetry.

The asymmetric configuration types with 2 multiplicities are Coll-a-2, Mc-a-a, Mc-a-b, and
7N-2 which are disjoint as they differ for the number of nodes or the number of nodes occupied,
or the distance between the single robots and the multiplicities. There is only 1 remaining
asymmetric configuration type with 3 multiplicities. �

By the proof of the above lemmata, follows that in order to distinguish among the configu-
ration types, it is sufficient to compute, given a configuration C = (q0, q1, . . . , qj), the following
parameters:

1. number of nodes in the ring, n(C);

2. number of multiplicities, m(C);

3. number of nodes occupied or number of robots in the case without multiplicities,
occupied(C);

4. distance between single robots and multiplicities;

5. if C is symmetric;

6. if C belongs to Conv-a-s;

7. if C is at one move from one of the symmetries allowed by the algorithm;

Parameters 1–3 can be computed by formulas n(C) =
∑

qi≥0(qi + 1), m(C) = |{qi = −1, 0 ≤
i ≤ j}|, and occupied(C) = j + 1 −m(C), respectively. The distance between single robots
and multiplicities is easily computed by summing the intervals between a single robot and a
multiplicity. The symmetry of a configuration is computed by procedure symmetric(C). If C
belongs to Conv-a-s can be easily checked by comparing all the intervals of Ci and Ci, for each
i ∈ {0, 1, . . . , j} to the configurations in Conv-a-s. To understand whether C is at one move
from a symmetry allowed by the algorithm, it is sufficient to perform such move backwards and
checking whether the obtained configuration is symmetric. As an example, to check whether C is
at one move from reduction, Procedure check reduction is used.

3.7 The complete algorithm
In this section, we show how the above phases interact and how the algorithm can switch from
1 phase to another. We show that starting from any initial configuration among W1–W7, we
necessarily end up with configurations in either Conv-a-1 or Conv-s-1 (possibly passing through
phases collect and multiplicity-convergence), hence finalizing the gathering.

By Lemmata 3.2–3.5, follows that the interaction between the phases is that given in the
graph in Figure 2. In what follows we show how the edges of such graph are traversed.

The starting configuration can only belong to W1–W7. By Lemma 3.2, follows that after a
finite number of moves any other phase can be reached. Moreover, once reached a configuration
with at least 1 multiplicity, the algorithm never goes back to configurations without multiplicities,
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but in the case of 6 robots. In this latter case in fact, the configurations can swap between those
in W3 and those in Mc-a-1 or in Mc-s-a. However, the number of times that this cycle can be
traversed is finite as each time the north interval is reduced, until creating 1 single multiplicity
on the final gathering node (that is, when the system moves to convergence).

By Lemma 3.3, follows that phase collect terminates after a finite number of moves in a
configuration in phase multiplicity-convergence. In particular, the algorithm can only move
from configurations in Coll-a-1, Coll-s-2-b, Coll-s-2-c and Coll-a-2-b, to configurations in
Mc-s-b.

By Lemma 3.4, follows that multiplicity-convergence terminates after a finite number of
moves in a configuration in phase convergence. In particular, the algorithm can only move
from configurations in Mc-s-a, Mc-s-c, Mc-a-a, and Mc-a-1, to configurations in Conv-s- and
Conv-a-a.

From [7], follows that configurations in seven-nodes terminates in configurations in con-
vergence.

Finally, from configurations in convergence, the algorithm terminates the gathering with
the only exception of the case where a configuration in Conv-a-b can lead, after a reduction, to
a configuration in Coll-a-1. Note that this case can occur only when there are more than 6 nodes
occupied. As the transition from phase multiplicity-convergence to phase convergence
can occur only when there are at most 6 nodes occupied, it follows that the edge between
convergence and collect can be traversed only once.

4 Conclusion
Our distributed algorithm answers to the posed conjectures concerning the gathering on the
studied model by providing a complete characterization for gatherable configurations. The
obtained result is of main interest for robot-based computing systems. In fact, it closes all the
cases left open while providing new analytical approaches. Our technique, mostly based on
the supermin concept, provides a powerful mean for investigating related distributed problems.
Moreover, the concept of supermin combined with the reduction move can be used to solve
other problems in the Look-Compute-Move model.
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