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ABSTRACT

Sparse representations, where one seeks to represent a
vector on a redundant basis using the smallest number of ba-
sis vectors, appears to have numerous applications. The other
extreme, where one seeks a representation that uses all the ba-
sis vectors, might be of interest if one manages to spread the
information nearly equally over all of them. Minimizing the
ℓ∞-norm of the vector of weights is one way the find such a
representation. Properties of this solution and dedicatedfast
algorithms allowing to find it are developed. Applications are
to be found in robust data coding and improving achievable
data rates over amplitude constrained channels.

Index Terms— anti-sparse representations, fast algorithms

1. INTRODUCTION

A (full rank) under-determined system of linear equations has
infinitely many solutions and recently much interest has been
given to finding the sparsest among them. Because the spars-
est solution has many applications, dedicated, more or less
fast algorithms have been developed to approximate this goal
which indeed can only be attained by an exhaustive and hence
generally unfeasible search.

All the remaining solutions are indeed non sparse and
generally use all the basis vectors. It is known that expan-
sions on such redundant bases withstand noise and quantiza-
tion on the coefficients better [1] than orthogonal expansions.
A category of such anti-sparse solutions that presents an inter-
est a priori consists in the solutions for which the information
content is somehow evenly spread on all vectors. Ideally one
could search for the solution for which the absolute values of
the components occupy the smallest range, say(xmax−xmin).
Since this is a difficult non convex problem, one often simply
seeks a solution for whichxmax is small.

These representation where all the coefficients are of the
same order of magnitude or more precisely where the range
of the coefficients is small, are of high interest in coding and
compression. They are known to withstand errors in their co-
efficients in a strong way [2]. One can show that the rep-
resentation error due to quantification, transmission errors or

losses, gets bounded by the average, rather than the sum, of
the errors in the coefficients.

Representations in which the range of the coefficients is
small, have already been considered and are known as Kashin’s
representation [2]. Minimizing theℓ∞-norm of the solution
pushes the same idea even further since one explicitly mini-
mizes the range of the coefficients while in the Kashin’s this
is only done in a loose way. For this optimality to be worth-
while the additional computational cost has to be small, hence
the need for fast and dedicated algorithms that are developed
below.

2. THE MODEL

Let A be a (n,m) full rank matrix withm > n and columns
normalized to one in Euclidean norm. For anyb ∈ Rn, the
linear systemAx = b has then infinitely many solutionsx
where generically all components are non zero. Those having
the smallest dynamical range are remarkable and have inter-
esting properties in terms of coding or compression. If the
range is measured by‖x‖∞ = maxi |xi|, theℓ∞-norm ofx,
one should indeed consider solving

min ‖x‖∞ under Ax = b. (1)

It appears to be advantageous to replace the arbitrary matrix
A by a tight frame matrixU whose rows are orthonormal and
for which one therefore hasUUT = In. The basic frame
representation is then associated withx = UT b and is such
that‖x‖2 = ‖b‖2 .

Quite generally, with‖b‖2 the energy in the vectorb to
be represented by a vectorx with ‖x‖2 = ‖b‖2 on a m-
dimensional redundant basis formed by the columns of a tight
frame, the best one can attain, when the energy is equally
spread is that each componentxi has absolute value‖b‖2/

√
m.

Hence the following definition:
Kashin’s representation with level K:
An expansion ofb in terms of them columnsui of U , is

called a Kashin’s representation with levelK of b if

b =
m∑

1

xi ui, with max
i

|xi| ≤
K√
m
‖b‖2.
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From our previous observation, it follows that one can expect
that K ≥ 1 be close to one. In the next section, we briefly
sketch part of the work presented in [2] related to this area,
we then develop an algorithm that allows to obtain the solu-
tion to (1) in an iterative way before we conclude.

3. OBTENTION OF A KASHIN’S REPRESENTATION

Provided the frame matrixU satisfies some additional condi-
tions such as the uncertainty principle (UP) for matrices (see
below), it is possible to convert the basic frame representation
into a Kashin’s representation with allm coefficients guaran-
teed to be smaller than a fixed constant.

Uncertainty principle (UP) for matrices:
The (n,m) matrixU satisfies the uncertainty principle with

parametersη, δ both in(0, 1) if

|supp(x)| ≤ δm ⇒ ‖Ux‖2 ≤ η‖x‖2. 2

With ui the columns ofU , one can rewrite the principle as

‖
∑

i∈Ω

uixi‖2 ≤ η(
∑

i∈Ω

‖xi‖2)1/2

for any subsetΩ of cardinal smaller thanδm and the basic
idea in [2] is to improve iteratively upon the basic frame so-
lution by projection of the residual sequence on aℓ∞-cube in
Rm of decreasing radius so that the solution converges to a
Kashin’s representation.

One starts withb0 = b = Ux0 and truncates its coeffi-
cientsx0 = UT b0 at levelM = ‖b‖2/[

√
δm to build t(b0),

one then definesb1 = b0−t(b0) the first residual vector. With
this specificM , it has a sparse representation with support of
cardinal smaller thanδm and applying (UP) it follows that

‖b1‖2 = ‖b0 − t(b0)‖2 ≤ η‖b‖2 = η‖b0‖2.

One now representsb1 and truncates its coefficients at level
ηM and the same reasoning now applies tob2 = b1 − t(b1)
and one iterates the procedure. The process converges since
‖bk‖2 = ηk‖b0‖2 and the residual thus tends toward zero.
From b =

∑
k t(bk) and the slightly decreasing truncation

level, it follows that all the coefficients in this representation
of b have absolute value smaller thanM/(1 − η) and thus a
Kashin’s representation of levelK = δ(−1/2)/(1 − η).

The problem with this approach is that one needs to dis-
pose of a frame matrix with known (and certified) constants
(δ, η) from which one then deduces a conservative Kashin
constantK that is used to tune the algorithm that turns the
basic frame solution to a Kashin’s solution. These are quite
restrictive prerequisites that limit the feasibility and the per-
formance of the approach. It is fair to say that for reasonable
redundancy factors, sayλ = m/n < 2, the potential gains are
only attainable by the optimal strategy (1) described below
and are only a theoretical perspective in Kashin’s approach.

4. MINIMIZING THE INFINITE NORM

4.1. Generalities

The optimization problem (1) can be transformed into a lin-
ear program and solved using the simplex or interior point
methods. One can also consider the optimization problem,
parametrized byh ∈ R+:

min
1

2
‖Ax − b‖2

2 + h‖x‖∞, (2)

which can be transformed into a quadratic program. Its opti-
mum sayx∗(h) converges to the optimumx∗ of (1) whenh
decreases to zero. From this last observation, an optimization
algorithm that converges to the solution of (1) in a number
of steps much smaller than the number of steps required by,
say, the simplex algorithm, will be developed. It is a path-
following method similar to the one presented in [2] and is
also related to the continuation techniques, which have been
studied in the optimization literature [3].

Though it will not be used in the sequel, it is interesting
to note that using basic Linear Programming theory, one can
establish the following result.

Proposition: Generically, the optimumx∗ of (1) has
m−n+1 components equal to±‖x∗‖∞ and then−1 remain-
ing ones in between these two extreme values. 2

This result makes sense since then equalities inAx = b
allow to fix then degrees of freedom consisting in‖x∗‖∞ and
the n−1 components in between these two extreme values.
Indeed if one wants to further diminish the spread, one might
think about solving

min
x,v,u

v − u, under Ax = b, 0 ≤ u ≤ |x| ≤ v

but this problem is not convex and difficult to solve one thus
replaces it by

min
x,v,u

v − u, under Ax = b, 0 ≤ u ≤ x ≤ v

that is convex and from LP theory, it follows that generically
there aren−2 components strictly in between the two extreme
valuesu andv. A result that again makes sense and can be
deduced from the same reasoning as above.

4.2. Optimality conditions

The problem (2) is a convex program that can be transformed
into a quadratic program. One can rewrite it as

min
1

2
‖Ax − b‖2

2 + ht

s.t. x = x+ − x−, 0 ≤ x+, x− ≤ t1

whose dual can be shown to be

min ‖Ax‖2
2 s.t. ‖AT (Ax − b)‖1 ≤ h. (3)



Note the dual of (1) ismaxd bT d under‖AT d‖1 ≤ 1.
To be able to characterize easily the conditions satisfied by

the optimum of (2), we introduce∂f(x) the sub-differential
of a convex function [5]f at a pointx, it is a set of vectors
called the sub-gradients off atx. Forf(x) = ‖x‖∞ one has

∂‖x‖∞ = {v| |xi| = ‖x‖∞ ⇒ xivi ≥ 0, |xi| < ‖x‖∞ (4)

⇒ vi = 0; ‖v‖1 = 1 if x 6= 0, ‖v‖1 ≤ 1 else}

Note that iff is differentiable atx then∂f(x) reduces to the
gradient.

Since (2) is a convex program the first order optimal-
ity conditions (zeroing the sub-differential) are necessary and
sufficient conditions for optimality and one thus gets

Lemma 1. The optimum of (2) isx iff the vector0 is a
sub-gradient of the criterion atx, i.e., iff :

AT (Ax − b) + hv = 0 for some v ∈ ∂‖x‖∞ ⋄ (5)

4.3. Some specific notations

To exploit these conditions in which some parts ofv are not
uniquely defined, we need to introduce some notations. Let us
denotex∞ the theℓ∞ norm ofx. To take care ofv ∈ ∂‖x‖∞,
we partition the optimalx into x̄ its q middle-components
associated with̄v = 0 and ¯̄x the remaining components that
are equal to± x∞ associated with̄̄v. For non-zerox one
then has‖¯̄v‖1 = 1, ¯̄xT

i
¯̄vi ≥ 0, ¯̄vT ¯̄x = ‖x‖∞ and thus

generically sign(̄̄v)=sign (̄̄x). The above defined partition of
x induces similarly the partition ofv, we already introduced
but also the partition of the (columns of) matrixA into Ā and
¯̄A. One then has, for instanceAx = Āx̄ + ¯̄Asign(¯̄v)x∞

One can observe, that, provided its partition is known,x
has onlyq + 1 degrees of freedom theq components in̄x and
‖x‖∞ we denotex∞ for short.

One can now rewrite (5) in a more usable way as

AT (Āx̄ + ¯̄Asign(¯̄v)x∞ − b) + hv = 0,

which can be divided into two parts

ĀT (Āx̄ + ¯̄Asign(¯̄v)x∞) = ĀT b (6)
¯̄AT (Āx̄ + ¯̄Asign(¯̄v)x∞ − b) = −h¯̄v. (7)

4.4. Development

ProvidedĀ is a full (column) rank matrix, the relation (6)
yields an expression of̄x in terms ofx∞ of the form, say,

x̄ = X1 + X2x∞. (8)

Pre-multiplying then (7) by sign(¯̄v)T and replacinḡx by (8),
yields an expression ofh in terms ofx∞ of the form, say,

h = H1 + H2x∞, (9)

with

H2 = −sign(¯̄v)T ¯̄AT (I − Ā(ĀT Ā)−1ĀT ) ¯̄A sign(¯̄v),

a negative real scalar. There is thus a one-to-one relation be-
tweenh andx∞ and ash decreases,x∞ increases which is
what one would expect. Replacing similarlyx̄ in (7) yields a
relation of the form,

h¯̄v = V1 + V2x∞. (10)

The three expressions (8, 9, 10) are all one needs to ex-
tend an optimalx valid for a fixedh to its neighborhood. In-
deed to extend the optimalx ash -or equivalentlyx∞- varies,
we need to guarantee that the quantitiesx̄(x∞), ¯̄v(x∞) and
h(x∞) we propose, satisfy (5) or equivalently (6) and (7).

And the three expressions we have obtained do exactly
that as long as they are valid, i.e., as long as the components
in x̄ are smaller thanx∞ and as long as in̄̄v no components
becomes zero.

As x∞ increases the first value ofx∞ for which one of
these two events happens defines the upper bound of the in-
terval inx∞, and similarly lower bound of the interval inh,
in which one can extend the current optimum.

It remains then to start the procedure, i.e., to get the opti-
mal triplet in a first interval and to indicate how to cross such
a boundary, i.e., how to get these same optimal expressions
within the next interval.

4.4.1. The initial step

For h large, the optimalx is at the origin. Indeedx = 0 and
v = AT b/h satisfies (5) as long ash ≥ ‖AT b‖1 which is thus
the first boundary value, we denoteh0. These observations
follow trivially from the dual (3) problem of (2). From the
expansion of the criterion in (2) around the origin

f(x) ≃ −bT Ax + h‖x‖∞,

it also appears that the most efficient way to diminish the cost
which is equal tobT b/2 for x = 0 is to takex =sign(AT b)α
and that taking the scalarα positive and small is beneficial
only if h ≤ ‖AT b‖1.

For h within the first interval[h1, h0], with h1 yet to be
defined, one has sign(x) =sign(v)=sign(AT b) andx = ¯̄x =
sign(¯̄v)x∞. In this very specific first interval the only possible
event that can happen is a component in¯̄v becoming zero.
From (7) withĀ missing, one gets (10) andx1

∞
is the smallest

component in the vector−V1./V2 that is greater thanx0
∞

= 0.
One then deducesh1 from (9) and if it is ¯̄vj1 that became
zero, one must change accordingly the partition, i.e., remove
columnaj1 from ¯̄A and introduce it intoĀ which was empty
so far. The numberq of middle components in the optimalx is
now equal to one. And we enter the general step unlessh1 is
smaller than, sayhd , theh for which one seeks the solution.



4.4.2. The standard step

As x∞ increases from its current (boundary) value sayx−

∞
,

we seek the event that happens first among
⋄ a component in̄x in (8) becomes equal to±x∞ or
⋄ a component in̄̄v in (10) becomes zero,

and denotex+
∞

the value ofx∞ for which it happens. In
the first case, one seeks the smallest component in the vec-
tor X1./(1 − X2) or in −X1./(1 + X2) that is greater than
x−

∞
in the second case one similarly inspects−V1./V2. The

new boundary value is the smallest of these three values. One
then computes the associated value ofh+ using (9).

If h+ is smaller thanhd, one deduces the associatedx∞

using (9) and replaces it into (8) to build̄x and thus the op-
timal x(hd), otherwise one changes the partition, in the first
caseq decreases by one and one moves one column fromĀ
to ¯̄A and adds the sign of this new component of¯̄x to sign(̄̄v),
in the second caseq increases by one and one moves a col-
umn the other way. This concludes the standard step and the
description of the dedicated algorithm

As a matter of fact, one can ignore the initialization step
by simply initializing the standard step with̄̄A = A, Ā = [],
sign(¯̄v) = sign(AT b), h− = ‖AT b‖1 andx−

∞
= 0.

5. CONCLUSIONS

Besides their robustness against noise, representations with
limited dynamical range are well adapted to improve the achiev-
able data rate over amplitude constrained channels. Indeed
while power constrained channels are well investigated, itmight
be more realistic to consider constraints on the amplitude to
avoid the damaging effects of non linearities often present
at higher amplitudes. Since, on the other hand, redundancy
causes a direct loss in the data rate, only low redundancy
factors are of interest and this is precisely where the optimal
strategy considered here is the only one that allows to achieve
the potential gains.

Indeed it appears that even this ’optimal’ strategy fails
to make this approach viable. So while the application of
such models in robust data coding and in improving achiev-
able data rates over amplitude constrained channels seems to
be wishful thinking, its use in indexing techniques appears
to be quite promising. In this context, one further replaces
the optimal vector by its sign vector (potentially associated
with a re-evaluated scalar weight) to get a binary vector that
is not only cheap to store and (somehow) easy to search for
but also allows for an explicit reconstruction unlike all other
Hamming embedding functions used to map real vectors into
binary vectors [6, 7].
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