
HAL Id: hal-00700066
https://hal.inria.fr/hal-00700066v2

Submitted on 24 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse direct solvers with accelerators over DAG
runtimes

Xavier Lacoste, Pierre Ramet, Mathieu Faverge, Yamazaki Ichitaro, Jack
Dongarra

To cite this version:
Xavier Lacoste, Pierre Ramet, Mathieu Faverge, Yamazaki Ichitaro, Jack Dongarra. Sparse direct
solvers with accelerators over DAG runtimes. [Research Report] RR-7972, INRIA. 2012, pp.11. �hal-
00700066v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49892742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00700066v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

72
--

FR
+E

N
G

RESEARCH
REPORT
N° 7972
27 April 2012

Project-Team Bacchus

Sparse direct solvers with
accelerators over DAG
runtimes
Xavier Lacoste, Pierre Ramet
INRIA
University of Bordeaux
Bordeaux, France
Email : {xavier.lacoste,pierre.ramet}@inria.fr

Mathieu Faverge, Ichitaro Yamazaki, Jack Dongarra
Innovative Computing Laboratory
University of Tennessee
Knoxville, Tennessee, USA

Email : {mfaverge,iyamazak,dongarra}@eecs.utk.edu

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

351, Cours de la Libération
Bâtiment A 29
33405 Talence Cedex

Sparse direct solvers with accelerators over DAG
runtimes

Xavier Lacoste, Pierre Ramet
INRIA

University of Bordeaux
Bordeaux, France

Email : {xavier.lacoste,pierre.ramet}@inria.fr

Mathieu Faverge, Ichitaro Yamazaki, Jack Dongarra
Innovative Computing Laboratory

University of Tennessee
Knoxville, Tennessee, USA

Email : {mfaverge,iyamazak,dongarra}@eecs.utk.edu

Équipe-Projet Bacchus

Rapport de recherche n° 7972 — 27 April 2012 — 11 pages

Résumé : Les architectures de calcul intègrent de plus en plus de coeurs de calcul partageant une même
mémoire nécessairement hiérarchique. Les algorithmes, en particulier ceux relatifs à l’algèbre linéaire,
nécessitent d’être adaptés à ces nouvelles architectures pour être efficaces. PASTIX * est un solveur
direct parallèle pour matrices creuses qui intègre un ordonnanceur dynamique pour des architectures
hiérarchiques de grande taille. Dans ce papier, nous étudions la possibilité de remplacer cette stratégie
interne d’ordonnancement par deux supports d’exécution génériques : DAGUE † et STARPU ‡. Ces
supports d’exécution offrent la possibilité de dérouler le graphe de tâches de la factorisation numérique
sur des noeuds de calcul disposant d’accélérateurs. Comme pour de précédents travaux réalisés pour les
noyaux denses de l’algèbre linéaire, nous présentons nos noyaux, pour des structures creuses, issus de la
librairie MAGMA et des algorithmes DAG utilisés par ces deux supports d’exécution. Nous présentons
une étude comparative des performances de notre solveur supernodal avec ces trois ordonnanceurs sur
des architectures multicoeurs et multigpus, et en particulier les gains obtenus sur les accélérateurs avec le
support d’exécution STARPU. Ces résultats montrent qu’une approche basée sur un DAG offre une
interface de programmation uniforme pour réaliser du calcul haute performance sur des problèmes
irréguliers comme ceux de l’algèbre linéaire creuse.

Mots-clés : Algèbre linéaire creuse, Calcul haute performance DAG, GPU

Sparse direct solvers with accelerators over DAG runtimes
Abstract: The current trend in the high performance computing shows a dramatic increase in the number of cores on the
shared memory compute nodes. Algorithms, especially those related to linear algebra, need to be adapted to these new computer
architectures in order to be efficient. PASTIX 4 is a sparse parallel direct solver, that incorporates a dynamic scheduler for
strongly hierarchical modern architectures. In this paper, we study the replacement of this internal highly integrated scheduling
strategy by two generic runtime frameworks : DAGUE 5 and STARPU 6. Those runtimes will give the opportunity to execute
the factorization tasks graph on emerging computers equipped with accelerators. As for previous work done in dense linear
algebra, we present the kernels used for GPU computations inspired by the MAGMA library and the DAG algorithm used with
those two runtimes. A comparative study of the performances of the supernodal solver with the three different schedulers is
performed on manycore architectures and the improvements obtained with accelerators are presented with the STARPU runtime.
These results demonstrate that these DAG runtimes provide uniform programming interfaces to obtain high performance on
different architectures on irregular problems as sparse direct factorizations.

Key-words: Sparse linear algebra, High performance computing, DAG, GPU

4. http ://pastix.gforge.inria.fr
5. http ://icl.cs.utk.edu/dague
6. http ://starpu.gforge.inria.fr

Sparse direct solvers with accelerators over DAG runtimes 3

I. INTRODUCTION

Solving a large sparse general or symmetric positive definite
linear system of equations, Ax = b, is a crucial and time-
consuming part in many scientific and engineering applica-
tions. Due to their robustness, direct solvers are often used
in industrial codes, despite their large memory consumption.
In addition, the factorization used in the recent direct solvers
can take advantage of the superscalar capabilities of the
processors using blockwise algorithms and BLAS primitives.
Consequently, many parallel techniques for sparse matrix fac-
torization have been studied and implemented. For a complete
survey on direct methods, we refer to [1]–[3]. The goal of this
paper is to design algorithms that can plainly take advantage
of the vast computing power found in modern heterogeneous
computer architectures. In our current work, we focused on
matrices with symmetric sparsity patterns (the sparsity patterns
of A + AT is used for unsymmetric cases), and focused on
the factorization with static pivoting. In this context, the block
structure of the factors and the numerical operations are known
in advance, and consequently, we can use a static (i.e. before
the actual numerical factorization) algorithm for scheduling
the communication and the computational tasks.

In previous works [4], [5], we have proposed a static
mapping and scheduling algorithm based on a combination of
1D and 2D block distributions for sparse supernodal factori-
zation with static pivoting. This algorithm achieves very good
performance by taking into account the communication and
computation requirements of each factorization as well as the
communication and computation capabilities of the parallel
architecture. In addition, we have developed a strategy to
control the memory overhead and to reduce the communication
volume needed for the message buffering. In PASTIX, this
buffering corresponds to the local aggregation approach in
which all local contributions for the same non-local block are
summed into a temporary block buffer before being sent. The
new strategy improves the mechanism of this local aggregation
that often lead to great reduction in the memory consumption,
especially for 3D problems.

Emerging supercomputers consist of many microprocessors,
each of which may have many computational cores. Hence,
these emerging architectures exhibit strongly hierarchical to-
pologies, both in terms of memories and processor intercon-
nect. Achieving good performance requires a mapping of the
algorithms on the computational resources, and scheduling
algorithms specifically designed for NUMA architectures.

In PASTIX the internal data structures of the solver, as well
as the communication patterns, have been modified for the
dynamic scheduling on these architectures [6]. A dynamic
scheduler based on a work-stealing algorithm has been also
developed to fill in communication idle times while preserving
a good locality for data mapping [7]. Furthermore, we have
integrated the dynamic adaptation of the computational task
grain to efficiently use multi-core architectures and shared
memory. Experiments on several numerical test cases have
been performed to prove the efficiency of these approach on

different architectures.
Modern GPUs can substantially outperform high-end multi-

core CPUs both in terms of data processing rate and memory
bandwidth. In the past, porting general purpose codes onto
GPUs required a considerable programming effort, mostly due
to the lack of tools and interfaces. However, API for GPUs
such as CUDA or OpenCL have been rapidly evolving in
the last few years, bringing accelerator programming into the
mainstream. Hence, GPUs are becoming a more and more
attractive alternative to traditional CPUs, in particular for
the more interesting ratio of cost-per-flop and watts-per-flop.
However, efficient GPU programming remains a laborious
challenge. In this paper, in order to exploit the computing
power of GPUs, we have integrated a runtime system into
the sparse direct solver. We divided the algorithm into com-
putational tasks, and use a Directed Acyclic Graph (DAG)
to represent the dependencies between these tasks. This DAG
representation of an algorithm enables a clear separation bet-
ween the flow of data between tasks and the data distribution.
Then, a runtime system is used to schedule these tasks while
respecting the dependencies. Since the runtime system offers
a uniform programming interface for a specific subset of
hardware or low-level software entities, applications can use
these uniform programming interfaces in a portable manner.
Furthermore, the runtime system can optimize application
requests by dynamically mapping the tasks onto resources
as efficiently as possible. The work presented in this paper
is part of the MORSE project 1 to design dense and sparse
linear algebra methods that achieve the fastest possible time
to an accurate solution on large-scale heterogeneous multicore
systems with GPU accelerators.

Concerning accelerator-based platforms for sparse direct
solvers, a lot of attention has been recently paid to design new
algorithms that can exploit the huge potential of GPUs. For
a multifrontal sparse direct solver, some preliminary works
have been proposed in the community [8], [9], resulting in
single-GPU implementations based on off-loading parts of the
computations to the GPU. The main idea is to treat some
parts of the task dependency graph entirely on the GPU.
Therefore, the main originality of these efforts was in the
methods and algorithms used to decide whether or not a
task can be processed on a GPU. In most cases this was
achieved through a threshold based criterion on the size of the
computational tasks. From the software point of view, most
of these studies have only produced software prototypes and
few sparse direct solvers exploiting GPUs have been made
available to the users, most of them being developed by private
software companies such as MatrixPro 2, Acceleware 3 and
BCSLib-GPU 4. As far as we know, there are no publications
nor reports where the algorithmic choices are depicted. A
recent progress towards a multifrontal sparse QR factorization
on GPU have been presented in [10].

1. http ://icl.eecs.utk.edu/morse
2. http://www.matrixprosoftware.com/
3. http://www.acceleware.com/matrix-solvers
4. http://www.boeing.com/phantom/bcslib/

RR n° 7972

http://www.matrixprosoftware.com/
http://www.acceleware.com/matrix-solvers
http://www.boeing.com/phantom/bcslib/

Sparse direct solvers with accelerators over DAG runtimes 4

The rest of the paper is organized as follows : In the next
section, we present the libraries and software used for our
current study. There, both DAGUE and STARPU runtimes are
introduced, and we summarize the main features of the PAS-
TIX solver. Then, in Section III, we describe the algorithms
and main ideas that have been implemented to optimize the
task scheduling and the granularity of the sparse factorization.
In Section IV, we present experiments we performed with
our sparse direct solver to validate our approach on industrial
challenging matrices. Finally, in Section V, we conclude with
some prospects of the current work.

II. RUNTIME AND SOLVER

DAGUE [11] is a distributed runtime system designed to
achieve extreme computational scalability by exploiting an
algebraic representation of Direct Acyclic Graphs that effi-
ciently captures the totality of tasks involved in a computation
and the flow of data between them. Its primary goal is to
maximize parallelism while automatically orchestrating task
execution so as to minimize both communication and load
imbalance. Unlike other available DAG-based runtimes, the
concise symbolic representation of the algorithm that DAGUE
uses minimizes the memory required to express the map
of tasks ; at the same time, it provides extreme flexibility
during the scheduling process. This algebraic representation
allows the DAG to be traversed at very high speed, while
tracking any flow of data from task to task. By combining this
underlying mechanism with an understanding of the specific
hardware capabilities of the target architecture, DAGUE is
able to schedule tasks in ways that creatively adapt alternative
work-stealing strategies to the unique features of the system.
These capabilities enable DAGUE to optimize data movement
between available computational resources, including both
different nodes of the full system and different accelerators
on the same node.

The DAGUE runtime aimed first at providing a scheduler
for large distributed system of multicore nodes and is able
to handle heterogeneous architectures to relocate the most
compute intensive kernel on GPUs. A full description of
DAGUE, and the implementation of classical linear algebra
factorizations in this environment, can be found in [11], [12].

STARPU [13] is a software tool aiming to allow program-
mers to exploit the computing power of the available CPUs and
GPUs, while relieving them from the need to specially adapt
their programs to the target machine and processing units. The
STARPU run-time supports a task-based programming model.
Applications submit computational tasks, with CPU and/or
GPU implementations, and StarPU schedules these tasks and
associated data transfers on available CPUs and GPUs. The
data that a task manipulates is automatically transferred among
accelerators and the main memory, so that programmers are
freed from the scheduling issues and technical details asso-
ciated with these transfers. STARPU takes particular care of
scheduling tasks efficiently, using well-known algorithms from
the literature. In addition, it allows scheduling experts, such

as compiler or computational library developers, to implement
custom scheduling policies in a portable fashion.

The main differences between DAGUE and STARPU are
the tasks submission process, the centralized scheduling and
the data movement strategy. DAGUE uses its own parametri-
zed language to describe the DAG in comparison to the simple
sequential submission loops used by STARPU. Therefore
STARPU relies on a centralized strategy which analyzes the
dependencies between tasks and schedules these tasks on the
available resources, while each computational unit of DAGUE
immediately release the dependencies of the completed task
solely using the local knowledge of the DAG. At last, STARPU
scheduling strategy exploits cost models of the computation
and data movements to schedule a task to the right resource
(CPU or GPU) in order to minimize overall execution time.
However it has no data movement policy on shared memory
systems resulting in lower efficiencies when no GPUs are used
compared to the data-reuse heuristic of DAGUE.

Hence, the research around STARPU has focused mainly
on the case of an heterogeneous multicore node enhanced
with multiple GPUs, while research around DAGUE has
more focused on scalability issues on a large number of
homogeneous nodes.

PASTIX is a scientific library that provides a high per-
formance parallel direct solver for very large sparse linear
systems. Numerical algorithms are implemented in single or
double precision (real or complex) using LLT or LDLT fac-
torizations for symmetric matrices, and LU factorizations with
static pivoting for non symmetric matrices having symmetric
patterns. Theres is a version of PASTIX for multicore node
architectures, which uses a hybrid MPI-thread programming
to fully exploit the advantage of shared memory and to reduce
the memory overhead. Direct methods are numerically robust
methods, but very large three dimensional problems may
require a large amount of memory, even with any memory
optimization. For this type of problems, PASTIX provides
an adaptive blockwise incomplete factorization that is much
more accurate (and numerically more robust) than the scalar
incomplete factorizations which are commonly used as precon-
ditioner for iterative solvers. Such incomplete factorization can
take advantage of the latest breakthroughs in sparse blocked
direct methods, and particularly should be very competitive
in CPU time (effective power used from processors and good
scalability), while avoiding the memory limitation encountered
by direct methods.

III. ALGORITHMS

In this paper, we study and design algorithms and parallel
programming models for implementing sparse supernodal di-
rect methods on an emerging computers equipped with GPU
accelerators. Our ultimate goal is to release a manycores
(CPU+GPU) version of the PASTIX solver [5]. In this paper,
we consider the Cholesky, LDLT , and LU factorization
algorithms which are already present in PASTIX.

The task dependencies of numerical factorization can be
represented by a tree whose nodes represent computational

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 5

tasks and whose edges represent transfer of data between
the tasks. The distributed memory version of PASTIX uses
a right-looking formulation which, having computed the fac-
torization of a column-block corresponding to a node of the
tree, immediately sends the data to update the column-blocks
corresponding to its ancestors in the tree. In the actual im-
plementation, we locally aggregate contributions to the same
block before sending the contributions. This can significantly
reduce the number of messages, and is known to limit the
memory overhead induced by the direct methods.

Either a static or dynamic scheduling of block computations
can be used, independently from these different approaches
described above. For homogeneous parallel architectures, it
is useful to have an efficient static scheduling scheme. For
the PASTIX solver, we have recently developed a dynamic
scheduling scheme, specifically designed for modern super-
computers, that have many microprocessors, each of which
consists of one or many computational cores, and induces a
strong hierarchical topology. To address the needs of dynamic
scheduling, the data structures of the solver, as well as the
patterns of communication, have been also modified [6].
Thanks to these efforts on the multicore implementation [14],
we have a platform ready to deal with bigger problem sizes
on today’s supercomputers.

The main contributions of our current paper can be subdi-
vided into three subtasks described hereafter :

– Kernels for sparse factorization. Our first step of de-
veloping a sparse direct solver for clusters of multi-GPU
nodes is to develop supernodal computational kernels
designed specifically for this purpose. In particular, one of
the most important kernels is the matrix/matrix-product
involved in the updates of the trailing matrix. In the
case of supernodes, data structures can be compacted in
order to improve the efficiency of the computations, but
we still need to improve the matrix-add operations that
correspond with each block of the sparse updates. This
kernel must also prefetch the data to minimize the data
transfers on the GPU devices.

– Scheduling of computations and data transfers. The
main aim of this paper is to evaluate the potential of re-
placing the current scheduler of PASTIX with two generic
runtime frameworks DAGuE and STARPU for executing
the task graph corresponding to a sparse factorization.

In the current scheduling scheme of PASTIX, a task
corresponds to a supernode (1D block distribution), see
Fig. 1. To improve the efficiency of the sparse factori-
zation on a multicore implementation, we introduced a
way of controlling the granularity of the BLAS operations
(referred to as an ESP option for Enhanced Sparse Paral-
lelism). This functionality dynamically splits a single task
of computing the contribution to the trailing submatrix,
using the current panel into subtasks, so that the critical
path of the algorithm can be reduced.

In this paper, for both DAGUE and STARPU scheduling,
one computational task corresponds to the computation

FIGURE 1: Task graph for supernodal factorization

of the contributions to a remaining column-block using
a single block in a panel. Hence, the number of tasks to
schedule is equal to the number of blocks in the factored
matrix.

– Sparse algorithms. In order to control the granularity
of the computational tasks, the automatic criteria used to
set adaptive block sizes has to be extended to heteroge-
neous architectures. Some references for benchmarking
dense linear algebra kernels are described in [15] and
show that efficiency could be obtained on GPU devices
only on relatively large blocks – that can be found on
top of the elimination tree. Similarly, the amalgamation
algorithm [16], reused from the implementation of an
incomplete factorization, is a crucial step to obtaining
larger supernodes and efficiency on GPU devices. The
default parameter for amalgamation has been slightly
increased ; we allow up to 12% more fill-in to build larger
blocks while keeping a good a high level of parallelism.

A. Sparse GEMM on GPU

Fig. 2a illustrates the data structure of PASTIX storing the
sparse matrix. The nonzero entries are grouped into supernodes
which are composed of several dense blocks. Each column
block is stored as a dense block - represented by S1 storage
in the figure. When we update the column block S2 facing the
first extradiagonal block of S1, all blocks of S1 are included
in the blocks of S2. Thus, in PASTIX, we first factorize the
diagonal block of S1, and we then update the off-diagonal
blocks of S1. Next, for each extradiagonal block Bi of S1,
we compute the contribution BkB

T
i to the (k, i)-th block for

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 6

S1 storage

S1

S2

(a) Sparse structure of the matrix

shared memory

global memory

a tile
a block update

(b) Shared memory to global memory

FIGURE 2: Data management

k > i, and store the contribution in a temporary buffer. Finally,
we update Si for each extradiagonal block Bi. On a GPU, the
computation is exactly the same except that our buffer is in
the shared memory of the GPU.

To have an efficient usage of the GPU during sparse
factorization, we wrote a new GPU kernel that takes the
sparsity of our matrix into account. Our kernel is based on the
framework proposed in [17], which also allows us to use an
auto-tuning script to select near-optimal block sizes for the ker-
nel. Specifically, this kernel computes C = αAB+βC, where
C is divided into a 2D grid of tiles (see Fig. 2b), and each
thread block computes a tile of the matrix-multiplication, AB,
which is stored in the shared GPU memory. Each thread is in
charge of computing several entries of this tile. Each of these
entries is computed one by one, and to compute each entry, the
corresponding row of A and the corresponding column of B
are loaded into the thread registers. Once the tile is computed,
it is added into C. In the supernodal solver PASTIX, C may
span several discontinuous supernodal blocks in a column-
block (see Fig. 2b). Hence, during the summation of αAB
into βC, we use an offset that specifies the row of C, to which
the computed values of αAB should be accumulated into. For
this, we added two pairs of integer arrays as input arguments
to the kernel, which store the first and last row indexes of each
blocks of A and C.

B. DAG scheduling

In this section, we describe the different approaches used to
describe the DAGs in DAGUE and STARPU. For both codes,
we define two kinds of tasks in our LLT factorization :

– panel(s) : factorization of the diagonal block of the
supernode s (POTRF) and update all the extradiagonal
blocks of this supernode (TRSM) ;

– gemm(b,s) : perform the GEMM product of all the blocks
beneath Bb in its supernode by BT

b and subtract the result

from the supernode s which has its diagonal block facing
Bb.

For the LU factorization, we are using the same tasks with
addition of the update of U in both kernels. The panel task
does one extra solve on the upper part, and the gemm task
does two matrix-matrix multiplications : one for the lower part
and one for the upper part. Finally, the LDLt factorization
follows the same scheme as Cholesky with different kernels to
integrate the storage and the computation of the diagonal. The
three factorizations have then the same DAG representation
with different kernels, LU having more dataflow to move the
upper part.

1) JDF representation of a DAG: In DAGUE, the data
distribution and dependencies are specified using the Job Data
Flow (JDF) format. Fig. 3 shows our JDF representation
of the sparse Cholesky factorization using the tasks panel
and gemm described previously. The second one is based
only on the block id parameter and computes internally the
supernode (fcblk) in which to apply the update. On Line 2 of
panel(j), cblknbr is the number of block columns in the
Cholesky factor. Once the j-th panel is factorized, the trailing
submatrix can be updated using the j-th panel. This data
dependency of the submatrix update on the panel factorization
is specified on Line 6, where firstblock is the block index
of the j-th diagonal block, and lastblock is the block
index of the last block in the j-th block column. The output
dependency on Line 7 indicates that the j-th panel is written
to memory at the completion of the panel factorization. The
input dependency of the j-th panel factorization is specified
on Lines 4 and 5, where leaf is true if the j-th panel is a
leaf in the elimination-tree, and lastbrow is the index of
the last block updating the j-th panel. Hence, if the j-th panel
is a leaf, the panel is read from memory. Otherwise, the panel
is passed in as the output of the last update on the panel.

Similarly, gemm(k) updates the fcblk-th block column

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 7

1. panel(j) [high priority = on]
2. j = 0 .. cblknbr-1
3. ... set up parameters for the j-th task ...
4. :A(j)
5. RW A ← (leaf) ? A(j) : C gemm(lastbrow)
6. → A gemm(firstblock+1..lastblock)
7. → A(j)

(a) Panel factorization

1. gemm(k)
2. k = 0 .. blocknbr-1
3. ... set up parameters for the k-th task ...
4. :A(fcblk)
5. READ A ← diag ? A(fcblk) : A panel(cblk)
6. RW C ← first ? A(fcblk) : C gemm(prev)
7. → diag ? A(fcblk)
8. → ((!diag) && (next == 0)) ? A panel(fcblk)
9. → ((!diag) && (next != 0)) ? C gemm(next)

(b) Trailing submatrix update

FIGURE 3: JDF representation of Cholesky.

using the k-th block, where fcblk is the index of the block
row that the k-th block belongs to, and blocknbr on Line
2 is the number of blocks in the Cholesky factor. The input
dependencies of gemm are specified on Lines 4 through 6,
where the cblk-th panel A is being used to update the fcblk-
th column C. Specifically, on these lines, diag is true if the
k-th block is a diagonal block, and it is false otherwise, and
prev is false if the k-th block is the first block in the fcblk-
th block row, and it is the index of the block in the block row
just before the k-th block otherwise. Hence, the prev-th block
updated the fcblk-th column just before the k-th block does.
Hence, the data dependency of gemm(k) is resolved once
the cblk-th panel is factorized, and the fcblk-th column
is updated using the prev-th block. Notice that the diagonal
blocks are not used to update the trailing submatrix, but it is
included in the code to have a continuous space of execution
for the task required by DAGUE. Finally, Lines 7 through 9
specify the output dependencies of gemm(k), where next is
false if the k-th block is a diagonal block, and it is the index
of the next block after the k-th block in the fcblk-th row
otherwise. Hence, the completion of gemm(k) resolves the
data dependency of the fcblk-th panel factorization if this
is the last update on the panel, or it resolves the dependency
of updating the fcblk-th block column using the next-th
block otherwise.

2) STARPU tasks submission: STARPU builds its DAG
following the tasks ordering provided by the user and by
using data dependencies. The following pseudocode shows the
STARPU tasks submission loop for the LLT decomposition.

1: for all Supernode S1 do
2: submit panel(S1) {update of the panel}
3: for all extra diagonal block bi of S1 do
4: S2 ← supernode in front of(Bi)
5: submit gemm(S1, S2) {sparse GEMM Bk,k≥i ×

BT
i substracted from S2}

6: end for
7: end for

By default, STARPU generates the tasks graph following
sequential consistency (Fig. 4a). Since the order in which
the facing supernode receives contribution is not relevant in
our factorization, we disabled STARPU sequential consistency
(Fig. 4b). Then, we notify the scheduler that a panel task

panel3

gemm2

gemm1

panel1

panel2

(a) with sequential consistency

panel3

gemm1

panel1

gemm2

panel2

(b) without sequential consistency

FIGURE 4: Task graph

depends on all the GEMM updates on the supernode and that
this task triggers the GEMM on the trailling supernodes.

We are not using a reduction on the target panel, because
for each update only a subarea is impacted. Moreover, a
reduction requires a copy of the destination supernode on
each computing device, that could represent a lot of memory
overhead. This allows only an out of order execution of
the updates while guarantying the mutual exclusion of the
computations. DAGUE in its actual release doesn’t allow
those reduction operations and keep the order defined by the
dependencies. As the order of the reduction is imposed by the
data dependencies, the potential concurrency is reduced but
the accuracy of the numerical results is maintained between
successive runs.

C. Sparse mapping

Our mapping algorithm is based on a static scheduling based
on a performance model. Thus, the partitioning and mapping
step generates a fully ordered schedule that can be used
in the parallel factorization. This schedule aims at statically
regulating all of the issues that are classically managed at
runtime. To make our scheme very reliable, we estimate the
workload and message passing latency by using a BLAS and
communication network time model, which is automatically
calibrated on the target architecture.

Unlike usual algorithms, our partitioning and distribution
strategy is divided into two distinct phases. The partitioning

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 8

algorithm is based on a recursive top-down strategy over the
block elimination tree provided by block symbolic factori-
zation. Pothen and Sun presented such a strategy in [18].
The partition phase splits column-blocks associated with large
supernodes, and then for each column-block, it builds a set
of candidate threads for its mapping. Once the partitioning
step is over, the task graph is built. In this graph, each task
is associated with the set of candidate threads for its column-
block. The mapping and scheduling phase then try to optimally
map each task onto one of these sets of threads. An important
constraint is that once a task has been mapped to a thread,
then all the data accessed by this thread are also mapped on
the process associated with the thread. This means that an
unmapped task that accesses a block that has already been
mapped should be mapped on the same thread to preserve the
data locality.

IV. RESULTS

To compare the factorization times of PASTIX using generic
runtime systems DAGUE and STARPU, with that using the
internal scheduler of PASTIX, we present experimental results
on challenging matrices from industrial applications. Some
properties of the three different test matrices used for our
scaling studies are shown in Table I. For all three approaches,
the same partitioning and mapping were used, while the fully
ordered schedule was used only for experiments using the
internal scheduler of PASTIX.

1 2 4 6 12 24 36 48
0

200

400

600

800

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

FIGURE 5: LLT decomposition on Audi (double precision)

1 2 4 6 12 24 36 48
0

200

400

600

800

1,000

1,200

1,400

1,600

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

FIGURE 6: LU decomposition on MHD (double precision)

1 2 4 6 12 24 36 48
0

10,000

20,000

30,000

40,000

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

PASTIX
PASTIX with STARPU
PASTIX with DAGUE

FIGURE 7: LDLT decomposition on 10M (double complex)

A. Experiments on multicores

The first set of experiments were conducted on the Romulus
machine at the university of Tennessee. Romulus has four
twelve-core AMD Opteron 6180 SE CPUs (2.5 GHz) with

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 9

Name N NNZA Fill ratio OPC Type Factorization Source
MHD 485,597 12,359,369 61.20 9.84e+12 Real LU University of Minnesota
Audi 943,695 39,297,771 31.28 5.23e+12 Real LLT PARASOL Collection
10M 10,423737 89,072,871 75.66 1.72e+14 Complex LDLT French CEA-Cesta

TABLE I: Matrices description

1 2 4 6 12 24 36
0

100

200

300

400

500

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(a) Audi LLT decomposition

1 2 4 6 12 24 36
0

100

200

300

400

500

600

700

800

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(b) MHD LU decomposition

FIGURE 8: GPU results on Romulus (single precision)

256GB of total RAM, and is equipped with two Tesla T20
GPUs.

Fig. 5 and 6 compare the performance of PASTIX using
DAGUE and STARPU runtimes, with PASTIX using its ori-
ginal scheduler on Audi and MHD test matrices. A good
scalability was obtained using all three approaches. On these
two test cases, generic schedulers behaved quite well, and
obtained the performances similar to the fine-tuned PASTIX
scheduler. On a small number of processors, we could even
obtain better results using the generic schedulers. DAGUE lost
some performance when more than a socket (12 cores) was
used, but recovered as soon as the computation spawned over
more than 2 sockets. The DAGUE scheduler seemed to not
be able to extract any performance gain between 12 and 24
cores.

With the 10 Millions test matrix (Fig. 7), the finely-tuned
scheduler of PASTIX outperformed the generic runtimes.
Specifically, STARPU showed its limitation as the number of
threads increased, while DAGUE maintained a good scalabi-
lity. This can be explained by the fact that STARPU does not
take data locality into account.

B. Experiments with GPUs

Fig. 8 and 9 show the results of using one and two GPUs.
For these experiments, we did not use all 48 available cores
for computation as one core was dedicated to each GPU.
The CUDA kernel gave good acceleration on both single
and double precision. The factorization time was reduced
significantly using the first GPU when the number of cores
was small. The speedups of up to 5 was obtained using one
GPU. However, the second GPU was relevant only with a
small number of cores (less than 4 threads in single precision
(Fig. 8), and less than 12 threads in double precision (Fig. 9)).
With one GPU, once the cores on a socket (12 core on
Romulus, and 6 on Mirage) were fully utilized, the GPU had
no effect on the factorization time.

We also conducted additional GPU experiments using a
compute node of the Mirage machine from INRIA - Bordeaux.
Mirage nodes are composed of 2 Hexa-core (Westmere Intel®
Xeon® X5650), with 36GB of RAM. The results on Mirage
(Fig. 10) were similar to the ones on Romulus.

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 10

1 2 4 6 12 24 36
0

200

400

600

800

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(a) Audi LLT decomposition

1 2 4 6 12 24 36
0

200

400

600

800

1,000

1,200

1,400

1,600

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(b) MHD LU decomposition

FIGURE 9: GPU results on Romulus (double precision)

1 2 4 8
0

100

200

300

400

500

600

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(a) Audi LLT decomposition

1 2 4 8
0

200

400

600

800

1,000

1,200

Number of Threads

Fa
ct

or
iz

at
io

n
Ti

m
e

(s
)

0 CUDA device
1 CUDA devices
2 CUDA devices

(b) MHD LU decomposition

FIGURE 10: GPU results on Mirage (double precision)

RR n° 7972

Sparse direct solvers with accelerators over DAG runtimes 11

V. CONCLUSION

In this paper, we examined the potential benefits of using
generic runtime systems, DAGUE and STARPU, in a parallel
sparse direct solver PASTIX. The experimental results using
up to 48 cores and two NVIDIA Tesla GPUs demonstrated the
potential of this approach to design a sparse direct solver on
heterogeneous manycore architectures with accelerators using
a uniform interface.

Through the study presented in this paper, we have identified
three potential research path, which we plan to continue to
investigate in the future.

First, in order to minimize the overhead induced by the
scheduler, we need to increase the granularity of the tasks at
the bottom of the elimination tree. These leaves or subtrees
may be merged into bigger tasks to achieve this goal.

Second, we would like to pursue a similar experiment in
distributed heterogeneous environments, composed by many-
cores nodes with multiGPUs. On such an platform, when
a supernode update another non-local supernode, the update
blocks are stored in a local extra-memory space (this is called
“fan-in” approach). In order to reduce communication time
overhead, we delay sending these updates until the last updates
to the supernodes are accumulated, trading latency for band-
width. We will study potential approaches to implement such
an challenging optimization using generic runtime systems,
STARPU and DAGUE.

More specifically, in the context of STARPU, for successive
solution steps, the performance models used by our direct
solver for the static mapping and scheduling step, could benefit
from an online model refined during the execution.

Finally, the availability of extra computational resources,
highlight the potential to dynamically build or rebuild the
supernodal structures according to the load on the cores
and the GPUs. A first approach will be to adjust the task
granularity at runtime. Simultaneously, we will work on the
distributed version of our solver, and on the challenging
problem of defining an initial mapping of the data compatible
with heterogeneous capabilities of the distributed memory
architectures.

ACKNOWLEDGMENT

The authors would like to thank the DAGUE and STARPU
teams for their support and assistance with this project. Special
thanks also go to Sam Crawford for the valuable comments
on our submitted manuscript and to Abdou Guermouche for
his advice.

RÉFÉRENCES

[1] I. S. Duff, A. M. Erisman, and J. K. Reid, “Direct methods for sparse
matrices,” Oxford University Press, London 1986.

[2] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng, “Sparse Cholesky
factorization on a local memory multiprocessor,” SIAM Journal on
Scientific and Statistical Computing, vol. 9, pp. 327–340, 1988.

[3] A. George and J. W.-H. Liu, Computer solution of large sparse positive
definite systems. Prentice Hall, 1981.

[4] P. Hénon, P. Ramet, and J. Roman, “PaStiX : A Parallel Sparse Direct
Solver Based on a Static Scheduling for Mixed 1D/2D Block Distribu-
tions,” in Irregular’2000, ser. LNCS, vol. 1800, Cancun, Mexique, May
2000, pp. 519–525.

[5] ——, “PaStiX : A High-Performance Parallel Direct Solver for Sparse
Symmetric Definite Systems,” Parallel Computing, vol. 28, no. 2, pp.
301–321, Jan. 2002.

[6] M. Faverge and P. Ramet, “Dynamic scheduling for sparse direct solver
on NUMA architectures,” in Proceedings of PARA’2008, Trondheim,
Norway, May 2008.

[7] ——, “Fine grain scheduling for sparse solver on manycore architec-
tures,” in 15th SIAM Conference on Parallel Processing for Scientific
Computing, Savannah, USA, Feb. 2012.

[8] T. George, V. Saxena, A. Gupta, A. Singh, and A. R. Choudhury,
“Multifrontal Factorization of Sparse SPD Matrices on GPUs,” 2011
IEEE International Parallel & Distributed Processing Symposium, pp.
372–383, May 2011.

[9] C. D. Yu, W. Wang, and D. Pierce, “A CPU-GPU Hybrid Approach for
the Unsymmetric Multifrontal Method,” Parallel Computing, vol. 37,
no. 12, pp. 759–770, Oct. 2011.

[10] T. Davis, “Multifrontal sparse qr factorization : Multicore, and gpu
work in progress,” in 15th SIAM Conference on Parallel Processing
for Scientific Computing, Savannah, USA, Feb. 2012.

[11] G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and
J. Dongarra, “DAGuE : A generic distributed DAG engine for High
Performance Computing,” Parallel Computing, vol. 38, no. 1-2, pp. 37–
51, 2012.

[12] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yar-
Khan, and J. Dongarra, “Flexible development of dense linear algebra
algorithms on massively parallel architectures with DPLASMA,” in 12th
IEEE International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC’11), 2011.

[13] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU :
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency Computat. Pract. Exper., 2010, (to appear).

[14] P. Hénon, P. Ramet, and J. Roman, “On using an hybrid MPI-Thread
programming for the implementation of a parallel sparse direct solver on
a network of SMP nodes,” in PPAM’05, ser. LNCS, vol. 3911, Poznan,
Pologne, Sep. 2005, pp. 1050–1057.

[15] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune Dense
Linear Algebra,” in Supercomputing’08 : Proceedings of the 2008
ACM/IEEE conference on Supercomputing, no. November, 2008.

[16] P. Hénon, P. Ramet, and J. Roman, “On finding approximate supernodes
for an efficient ILU(k) factorization,” Parallel Computing, vol. 34, pp.
345–362, 2008.

[17] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning gemm kernels for
the fermi gpu,” IEEE Transactions on Parallel and Distributed Systems,
2011.

[18] A. Pothen and C. Sun, “A mapping algorithm for parallel sparse
Cholesky factorization,” SIAM J. Sci. Comput., vol. 14(5), pp. 1253–
1257, Sep. 1993.

RR n° 7972

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

351, Cours de la Libération
Bâtiment A 29
33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Runtime and solver
	Algorithms
	Sparse GEMM on GPU
	DAG scheduling
	JDF representation of a DAG
	StarPU tasks submission

	Sparse mapping

	Results
	Experiments on multicores
	Experiments with GPUs

	Conclusion
	Références

