
HAL Id: hal-00701420
https://hal.archives-ouvertes.fr/hal-00701420

Submitted on 25 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A circuit uniformity sharper than DLogTime
Guillaume Bonfante, Virgile Mogbil

To cite this version:
Guillaume Bonfante, Virgile Mogbil. A circuit uniformity sharper than DLogTime. 2012. �hal-
00701420�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49892495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00701420
https://hal.archives-ouvertes.fr

A circuit uniformity sharper than DLogTime
(rapport interne LIPN - Mai 2012)?

Guillaume Bonfante1 and Virgile Mogbil2

1 LORIA – UMR7503, CNRS – Université de Lorraine
2 LIPN – UMR7030, CNRS – Université Paris 13

Abstract. We consider a new notion of circuit uniformity based on the
concept of rational relations, called Rational-uniformity and denoted
Rat. Our goal is to prove it is sharper than DLogTime-uniformity, the
notion introduced by Barrington et al. [3], denoted DLT , that is: 1)
Rational-uniformity implies DLogTime-uniformity, 2) we have NC0

Rat
NC0

DLT (NC1
Rat, 3) we have ∀k > 0, NCk

DLT ⊆ NCk+1
Rat , 4) Rational-

uniformity preserves separation results known with DLogTime-uniformity.
In other word, we obtain an interleaved hierarchy:

NC0
Rat (NC0

DLT (NC1
Rat ⊆ · · · ⊆ NCk

Rat ⊆ NCk
DLT ⊆ NCk+1

Rat ⊆ · · · ⊆ NC

which implies NCRat = NCDLT . We also prove that Reg 6= NC0
Rat. In

other words, circuit build by rational relations compute relations not
computable by rational relations. Finally, we consider circuit with un-
bounded fan-in, and we prove the standard result NCk

Rat ⊆ ACk
Rat ⊆

NCk+1
Rat for all k > 0.

1 Introduction

In [10], Cook has described boolean circuits as a computational model of par-
allelism. In these views, the depth of a circuit corresponds to the running time,
while its size corresponds to the number of processors. The class NC, that is
functions computed by circuits of polynomial size and poly-logarithmic depth,
plays a major role: it corresponds to the case for which there is an exponential
speed-up (up to a polynomial) between the parallel algorithm and the relative
sequential algorithm.

One of the issues with boolean circuits is that they intrinsically depend on
the number of bits of their inputs. Thus, since problems handle inputs of arbi-
trary size, they are not computed by a single circuit but by a family of circuits.
Without restrictions on the family, circuits may compute problems even not com-
putable by a Turing Machine. In other words, the computational power of the
model lies in the complexity of the family (the external computational power),
not in the circuit’s capabilities (the internal computational power). To tame this

? Work partially supported by the french project Complice (ANR-08-BLANC-0211-
01,3)

awkward external computational power, circuit families are described by a ”sim-
ple” mechanism depending on the number of inputs as its size measure, they are
said to be uniform.

With time, the notion of uniformity considered by the authors has been
sharper and sharper. It corresponds to polynomial time in Borodin [6], then log-
arithmic space in Cook [10], then alternating logarithmic time (ALogTime) in
Ruzzo’s seminal paper [21] and finally deterministic logarithmic time (DLogTime)
by Barrington, Immermann and Straubing [3] after Buss’s notion of problem re-
duction [8].

We propose to go one step further in the restrictions of the construction
of circuit families, and to consider a uniformity condition based on the notion
of (length preserving) rational relations. Predecessor gates are computed by a
multi-tape one-way finite state automaton. Let us make two remarks to mo-
tivate this notion of uniformity. First, length preserving rational relations are
quite robust: they are closed by union, intersection, complement, composition.
Thus, many manipulation of addresses can be done harmlessly which means that
the uniformity condition itself—though very sharp—is quite robust. Second con-
sideration, in [5], we have characterized each layers of the hierarchy (NCk)k>2

by means of some recursive schemas. The core recursion scheme, that is mip-
recursion (mutual in place recursion), involves computations by rational uniform
circuit of constant depth. The layers NCk are obtained by iterations of these con-
stant depth circuits. The present work is a first step toward a characterization
of rational uniform circuit families.

Our contribution splits in four parts. In a first step, we define the notion
of rational-uniformity of a family of circuit and we justify the definition. In
particular, we discuss its robustness. One of the main point of the definition
is that the size parameter of the connection language refers to the number of
inputs n written in binary, not to a witness word of size n. Such a choice already
appears in [2], it is however mandatory for rational uniformity due to the low
computability power of finite state automata. Then, we propose some alternative
descriptions for circuit based on a finite fan-in basis or constant depth circuits,
the latter being used for a separation theorem proof. In a second step, to relate
the rational uniform hierarchy to the deterministic logarithmic time hierarchy,
we establish the inclusion NCkRat ⊆ NCkDLT ⊆ NCk+1

Rat for all k > 0. It is based
on the internalization of the construction of the circuits within the computation,
an argument already present in Ruzzo’s work [21]. In a third step, we compare
the internal computational capabilities of rational circuit families with respect
to the external ones, we prove NC0

Rat 6= Reg. At the same time, we show that
at the first level there is a separation theorem: NC0

Rat (NC0
DLT . Finally, in a

last step, we consider rational circuit families based on unbounded fan-in gates,
and we prove the standard theorem NCkRat ⊆ ACkRat ⊆ NCk+1

Rat for all k > 0. To
sum up, we establish the hierarchy:

NC0
Rat (NC0

DLT (NC1
Rat ⊆ · · · ⊆ NCkRat ⊆ NCkDLT ⊆ NCk+1

Rat ⊆ · · · ⊆ NC

with a separation theorem at the first levels. In the remaining of the paper, we
study the hierarchy ACkRat, k > 0, and we prove the expected result NCkRat ⊆

ACkRat ⊆ NCk+1
Rat for all k > 0. We relate the hierarchy to the standard scale

with a proof that ACkDLT ⊆ NCk+1
Rat for all k > 0 with a separation theorem at

the first level.
As a by product of this work, we provide a new description of the class NC,

a class of problems which has been intensively studied in the past. Remarkably,
NC is characterized according the three main lines of implicit computational
complexity, that is in terms of descriptive complexity e.g. [3], with respect to
the Curry-Howard paradigm [24, 16], or by means of recursion theory, see the
work of Leivant [14], Oitavem [18] with Bellatoni [4].

2 Preliminaries

To begin with notations, ū denotes a sequence u1, . . . , un. Usually, n is under-
stood from the context. The complement set {SR , {x ∈ S | x 6∈ R} is abbreviated
to {R when S is clear from the context.

Given some alphabet Σ of letters, the set Σ∗ denotes the set of words over
Σ. The boolean alphabet is B = {0, 1}. The empty string is written ε and w ·w′
denotes the concatenation of two words w and w′. Given a word w, the k-th
concatenation wk is defined by the equations: w0 = ε, wk+1 = wk · w. The
length of a word is written |w|. Finally, the subset of words in Σ∗ of length
smaller than k ∈ N is denoted by Σ6k, those of length exactly k by Σk.

We let n be the usual binary encoding of the natural number n in |n| =
blog2(n)c+1 bits. We also denote it |n| when it is unambiguous. Actually, we do
not specify the order of the bits: read left to right, they may be sequenced from
less significant-bits to most significant ones (LH), or from most significant-bits to
less significant ones (HL). This will not make difference since rational languages
are closed by mirror. For k > |n |, n k denotes the padding of n with leading 0’s
so that |nk| = k. Naturally, for an encoding LH, the zero’s appear on the right,
for HL on the left.

An n-ary relation R ⊆ (Σ∗)n is said to be length preserving iff (w1, . . . , wn) ∈
R implies that |w1| = · · · = |wn|. For a function f : X → Y , dom(f) is its
domain, that is the set of x ∈ X such that f(x) is defined. A function f : Σ∗ → B
defines a language L(f) = {w ∈ Σ∗ | f(w) = 1} called the relative language of
the function.

2.1 Multi-tape finite state automata

We recall the some definitions concerning transducers and more generally multi-
tape one-way finite state automata, and some well known facts used in the sequel.
We refer the reader to the handbook [20] or to the book of Sakarovitch [22] for
the proofs of the statements presented in this section. Some constructions are
taken from Kaplan and Kay [13].

Definition 1 (Originally introduced by Rabin and Scott [19]). A multi-
tape one-way non writing finite state automaton (MONA) is a 5-tuple 〈Σ,Q, q0, F, δ〉

with Σ an alphabet, Q a (finite) set of states, q0 ∈ Q is called the initial state,
F ⊆ Q is the set of final states and δ ⊆ Q× (Σ∗)k×Q is the transition relation.
δ induces a relation δ∗ ⊆ Q×(Σ∗)k×Q defined as follows. (q, w1, . . . , wk, q

′) ∈ δ∗
iff (q, w1, . . . , wk, q

′) = (q, ε, . . . , ε, q) or (q, u1, . . . , uk, q
′′) ∈ δ∗, (q′′, v1, . . . , vk, q

′)
∈ δ and wi = ui · vi for all i 6 k.

A MONA T = 〈Q,Σ, Γ, q0, F, δ〉 induces the relation [T] ⊆ (Σ∗)k to be
(w1, . . . , wk) ∈ [T] iff there exists qf ∈ F such that (q0, w1, . . . , wk, qf) ∈ δ∗.

A relation S ⊆ (Σ∗)k is said to be rational if there is a MONA T such that
S = [T]. It is a rational function if the relation is a function (the last component
being the ”output”).

When k = 1, the definition corresponds to standard (non-deterministic) finite
state automata, when k = 2, it corresponds to transducers which have a common
input and output alphabet.

Example 1.

0 1

Σ : Σ

Σ : ε

0’ 1’

Σ : ε

Σ : Σ

The left transducer H0, re-
moves even letters from a word
on some alphabet Σ, while right
transducer H1 removes odd let-
ters.

We recall well known facts about rational relations. They are justified by
Nivat’s Theorem. In the present setting, it is formulated as follows.

Theorem 1 (Nivat [17]). Let Σ be a finite alphabet. R ⊆ (Σ∗)k is a rational
relation iff there is a finite alphabet Γ , a regular language S ⊆ Γ ∗ and k monoid
morphisms g1 : Γ ∗ → Σ∗,. . . , gk : Γ ∗ → Σ∗ and R = {(g1(w), . . . , gk(w)) | w ∈
S}.

First, rational relations are closed under union: given two MONA S and T ,
we let S∪T be the (a choice of a) MONA corresponding to the relation [S]∪ [T].
They are closed under composition:

Theorem 2. Given two MONA S and T , let (x̄, z̄) ∈ [S] ◦ [T] iff ∃ȳ | (x̄, ȳ) ∈
[T] ∧ (ȳ, z̄) ∈ [S]. Then, there is a MONA S ◦ T such that [S ◦ T] = [S] ◦ [T].

Proposition 1. Any projection of a MONA S is regular: that is for all i 6 k,
{xi | x̄ ∈ [S]} is a regular language. For any regular sets R1, . . . , Ri−1, Ri+1, . . . ,
Rk, the range set {xi | x̄ ∈ [S] ∧ ∀j 6= i : xj ∈ Rj} is a regular language.

Rational length-preserving relations are closed under intersection and com-
plementation. Again, given two MONA S and T , let S ∧ T denote the MONA
[S ∧ T] = [S] ∧ [T] and [{S] = {[S]. These two constructions can be actually
justified by the following Proposition (see for instance Sakarovitch [22]):

Proposition 2. For any rational length-preserving relation, there is a MONA
〈Σ,Q, q0, F, δ〉 such that (w1, . . . , wk) ∈ δ only if |w1| = · · · = |wk| = 1. Such a
MONA is called a letter-to-letter MONA.

Proposition 3. Given a rational relation R ⊆ (Σ∗)k and a permutation σ :
{1, . . . , k} → {1, . . . , k}, the relation Rσ , {w̄ | (wσ(1), . . . , wσ(k)) ∈ R} is a
rational relation.

Proposition 4. Consider a rational relation computed by a MONA [T] ⊆ (Σ∗)k.
If R ⊆ Σ∗ is a regular language then there is a transducer denoted by T|R,i such
that w̄ ∈ [T|R,i] iff w̄ ∈ [T] and wi ∈ R.

As a corollary of the closure by intersection and by complement, suppose
R,S and T be three MONAs representing length-preserving relations, then, the
following relation is rational (and length preserving): U(w̄) = {w̄ | w̄ ∈ [R] ∧
[T] or w̄ 6∈ [R] ∧ w̄ ∈ [S]}.

The relation U is computed by the MONA (R ∧ T) ∨ ({R ∧ S) next denoted
as follows: if R(w̄) then T (w̄) else S(w̄).

Example 2. In particular, any singleton language is regular, thus if a MONA
T computes a function (Σ∗)k−1 → Σ∗, a ∈ Σ∗ and two MONAs U, V compute
relations in (Σ∗)k, the relation R(w̄) = if [T](w̄) = a then [U](w̄) else [V](w̄)
is rational.

Example 3.

0 1

1 : 1 : 0

0 : 0 : 0

0 : 1 : 1

1 : 0 : 1

0 : 1 : 0

1 : 0 : 0

1 : 1 : 1

Addition (and thus subtraction by
permutation) and comparison can be
computed by length preserving MONA
(as long as the two numbers are en-
coded by words of equal length and
with an upper-bit equal to 0). We give
the example of addition, the states
contain the carry of the addition.

3 Rational-uniform circuits

In this section, we define circuit families and circuit complexity classes. We
refer the reader to the book of Vollmer [25] for a wide presentation of circuit
complexity. In a large extent, definitions, notations are taken from the book.

A circuit is a labelled directed acyclic graph whose nodes, called gates, output
values in booleans B = {0, 1}. Labels, also called the types, are elements of the
basis B0 = {∧,∨,¬, 0, 1, i,o}. Gate with type ∧,∨ have exactly two predecessors,
gates of type ¬ and o (that is output gates) have one predecessor. Gates typed
0 (rejecting gates), gates typed 1 (accepting gates), and input gates (with type
i) have no predecessors.

Inputs (resp. outputs) are supposed to be ordered from 0 to n−1 (resp. from
0 to m − 1), for some n,m > 0. Plugin the input x̄ = x0 · x1 · · ·xn−1 ∈ {0, 1}n
into a circuit C outputs an array of boolean of size m, denoted C[x̄]. Such a
circuit C computes the function {0, 1}n → {0, 1}m defined by λx̄.C[x̄]. A circuit
family is a sequence of circuits (Cn)n>0 such that, for all n ∈ N, the circuit Cn

has exactly n input gates. Such a family computes the function {0, 1}∗ → {0, 1}∗
defined by x̄ 7→ C|x̄|[x̄]. A circuit is said to be boolean if it outputs only one bit.
A family of circuit is said to be boolean if all circuits of the family are boolean.
In that case, the family defines a language, namely the set {x̄ | C|x̄|[x̄] = 1}.

Functions computed by circuit family are length respecting, that is |f(w)| =
|f(w′)| whenever |w| = |w′|. As argued by Vollmer, this is actually not a restric-
tion, since it is possible to pad the output with leading zeros. So, from now on,
all functions are supposed to be length respecting.

A path in a circuit is a pair (u, π) of a gate u and a word π ∈ {0, 1}∗. Given
a path (u, π), u[π] denotes the gate defined as follows if it exists. u[ε] = u and
u[π · b] is the b-th predecessor gate of u[π] if it exists.

For some circuit C, we denote by |C| its size, that is the number of gates in
C, and by ||C|| its height – or its depth –, that is length of the longest path from
an output gate to an input gate. The depth of a gate w is the maximal length
of a path from w to an input gate.

3.1 Rational-uniformity

We present a more restrictive notion of uniformity than DLogTime-uniformity
which we call Rational-uniformity. Gates are given identifiers, also called ad-
dresses, that is words in some given alphabet Σ ⊇ {0, 1}.

All along, we suppose that circuits have polynomial size, there is a polynomial
P such that |Cn| 6 P (n) for all n > 0. Consequently there are constants A,B > 0
such that all the gates can be encoded in less than |P (n)| 6 A × |n | + B bits.
Accordingly, input addresses are encoded i0 A×|n |+B , . . . , in− 1 A×|n |+B where

i is a letter different from 0,1. In the same way, output addresses are given
addresses o0 A×|n |+B , . . . ,om− 1 A×|n |+B with o a fresh letter. The addresses

of the other gates are also supposed to have length A×|n |+B. The size witness
is n A|n |+B . Actually, since A and B are fixed by the encoding, we will shorten
n A|n |+B in the following to n .

This rather restrictive discipline on the syntax of addresses help us to provide
some (more) precise descriptions of circuit families in the sequel. The syntax can
be for sure generalized, but we let this issue for further research.

Definition 2. A family of circuit (Cn)n>0 is said to be Rational-uniform iff:

1. let τ(−,−) be the function mapping any pair (n ,w) such that w denotes an
address of the circuit Cn to its type, that is in B0. Then, the function τ is
rational.

2. the predecessor function ϕ mapping any triple (n ,w, k) to the address of the
k-th predecessor of gate w is a rational function. We take the convention
that ϕ(n ,w, k) is not defined if there are no such k-th predecessor gate.

The underlying MONA corresponding to Item (1) is called the typing au-
tomaton and the one corresponding to Item (2) is the predecessor automaton.

The standard notion of uniformity is an efficient computation of a description
of each Cn from 1n (a word of size n). Formally this refers to the direct connection

language of the circuit family (Cn)n, that is the set made of the tuples (y, g , p, b)
such that: a) |y| = n, b) g is a gate address in Cn, c) p ∈ {ε, 0, 1} and d) if p = ε,
then b ∈ B0, otherwise b is the address of the p-th predecessor of g.

The major difference between the standard notion of uniformity and the
current one is that we use a size witness which has size O(log(n)) (that is the
argument n) and not n (the y’s in the tuples). This choice is due to an intrinsic
limitation on the relative size of components in rational relations. Indeed, con-
sider a MONA running on the input (y, w). By the pumping Lemma, for |w| > C,
y = y1 ·y2 ·y3 and w = w1 ·w2 ·w3 and for all k > 0, (y1 ·yk2 ·y3, w1 ·wk2 ·w3) belongs
to the relation. However, in the standard representation, since |w| = O(log(|y|)),
for all constant A > 0, there is a sufficiently large y such that |y| > A × |w|.
This contradicts |w2| > 0. |w2| = 0 means that |y2| > 0 and (y1 · y3, w) is in the
relation. Iterating this process, one finally gets a word y of smaller than C, in
contradiction with the fact that |y| > O(log(|w|)).

Second remark, thinking in terms of the direct connection language, Item
(1) of Definition 2 corresponds to p = ε and Item (2) to p ∈ {0, 1}. It is only
for convenience that we split the mappings. From Proposition 4, it would be
equivalent to take a unique transducer for both typing and predecessor functions.

Third remark, for our bounded fan-in function basis (B0), the second argu-
ment of ϕ is either 0 or 1. Again, by Proposition 4, it is equivalent to define ϕ
by a pair ϕ0, ϕ1 of two rational functions. Then, the two functions are length
preserving, thus can be described by a letter-to-letter MONA. For types, the
function τ can be equivalently replaced by rational relations τt(−,−) for each
type t ∈ B0 where (x,w) ∈ τt iff τ(x,w) = t. Again, the MONA corresponding
to τt can be supposed to be letter to letter.

Example 4.

o000

w�00

w0�0 w1�0

w00� w01�

i000 i001 i010 i011

w10� s110

i101i100

Consider the addressing system for
a circuit with 6 input bits and 1 out-
put bit presented on the left. If one
define gate addressed with a prefix w

to have type ∨ and gates addressed
with s to be rejecting gates, then,
the circuit computes the function OR6.
Here, as length parameter, we have set
A = 1 and B = 1. It is clear that the
construction extends to a Rational-
uniform circuit family. Such circuits provide access to all the bits of the input
word through a binary tree of depth log(n). To justify rationality, let us observe
that the typing is immediate from the prefix letter and for the two predecessor
functions, we work by case analysis.

ϕ0(n , o0|n |) = w�0|n |−1

ϕi(n , wu�00m) = if u · i · 0m+1 < n then w · u · i ·�0m else s · u · i · 0m+1

ϕi(n , wu�) = if u · i < n then i · u · i else s · u · i

with u ∈ {0, 1}∗, i ∈ {0, 1},m > 0. Otherwise, ϕi, i ∈ {0, 1} is left undefined.
The presentation entails the rationality of the predecessor functions.

We remind that a circuit family is said DLogTime-uniform (resp. ALogTime-
uniform) if its direct connection language is in DLogTime (resp. ALogTime).
As was to be expected we have the following property.

Theorem 3. Any Rational-uniform circuit family is DLogTime-uniform.

Proof. Let us suppose given a Rational-uniform circuit family (Cn)n with re-
spective typing and successor functions (τ, ϕ0, ϕ1) on some alphabet Σ. As jus-
tified above, these relations are respectively computed by the letter to letter
MONAs (Tt)t∈B0

, Φ0, Φ1. The main issue is that data are not presented in the
same way for the two notions of uniformity. So, in a first step, we prepare the
data to fit the format of the MONAs (Tt)t∈B0 , Φ0 and Φ1.

Let us consider the Turing Machine M defined as follows. Remember that
inputs for DLogTime-uniformity have the form I = (y, g , p, b). First, one com-
putes log(y) on some working tape Y and pad it to length A× log(y) +B, this
is n . The computation of log(n) can be done in log-time as justified by Buss [8],
the padding takes A× log(n) +B steps, that is logarithmic time. Copying g , p
and b on respectively working tapes G, P and B is also done in log-time since
g and b have logarithmic length. Words on the working tapes Y , G and B have
the format required by the MONAs (Tt)t∈B0

, Φ0 and Φ1.

If p = ε, one runs the MONAs (Tt)t∈B0 in parallel on Y , G, B and we output
the index of the succeeding MONA (the one reaching a final state). If p = 0, one
runs Φ0 on Y , G, B. Otherwise, one runs Φ1. In each cases, since we took the
precaution to use letter-to-letter MONA, the run time is in the size of the tapes,
that is in O(log(n)). To conclude, it is immediate to see that the machine M
recognizes the connection language of the family, and that it runs in logarithmic
time.

3.2 Constant-depth Rational-uniform circuit families

In this section, we present an alternative description of constant-depth Rational-
uniform circuit families. It is used in Section 5 to prove the separation Theorem 5.

Let Cd be the finite set of circuits C such that ||C|| 6 d and C has a unique
root, that is a unique gate which is an ancestor of all other gates. Each circuit C
in Cd has clearly less than W = 2d input gates. Let Π(C) = (π1(C), . . . , πk(C))
with k 6 W be a sequence of all the paths from the root to the input gates of
C. For each circuit C ∈ Cd, for each w ∈ C, let E(C,w) be the finite set of pairs
of words (π1, π2) such that w[π1] = w[π2].

A family of circuit (Cn)n>0 is said to have constant depth whenever there is
some d > 0 such that ||Cn|| 6 d for all n > 0. For each gate w in (Cn)n, let us
consider the sub-circuit made of w and its predecessors. It has depth at most
d, and thus it is isomorphic to a circuit in Cd, next called the index of w. By
isomorphic we mean that the two circuits only differ by a renaming of addresses.

Proposition 5. Given a Rational-uniform circuit family of constant depth d,
let θ be the function mapping (n ,w) for n > 0 and an output gate address w in
Cn to the index of w. The function θ is rational.

In other words, up to some extra-copies of the circuit size, one may compute
with a MONA the part of the circuit which participate to the computation of
some gate w.

Proof. In a first step, we build a family of d+ 2-ary rational relations (θC)C∈Cd
whose intention is the following: for some n > 0 and some gate address w, θC
holds on (n , . . . , n︸ ︷︷ ︸

d+1 times

, w) iff C is the index of w where d is the depth of the circuit

C. Actually, the definition of the relations θC is done by induction on the depth
of circuits C ∈ Cd.

The circuits C of depth 0 in Cd are composed of one gate, either an input gate,
an accepting gate or a rejecting gate. We define respectively θC , τi, θC , τ1,
θC , τ0.

Consider a circuit C of higher depth. By case analysis on the type t of the root
gate r of C. If t corresponds to a unary gate, that is o or ¬, let s be the unique
predecessor of r in C. As a matter of fact, s is the root of a circuit C ′ ∈ Cd
of depth strictly smaller than C. We define accordingly θC(x0, . . . , xd, w) ,
τt(x0, w) ∧ θC′(x1, . . . , xd, ϕ0(x0, w)).

If t corresponds to a logical gate, ∧ or ∨. Let s0, s1 be the two successors
(possibly equal) of the unique root r ∈ C. The gate s0 and s1 are respectively
the root of the circuits C0, C1 of depth strictly smaller than the depth of C. Let
π ∈ {0, 1}∗, we define by induction on π the rational function ϕπ(x1, . . . , xn, w)
by ϕε(x1, . . . , xn, w) = w and ϕa·π′(x1, . . . , xn, w) = ϕπ(x1, ϕa(x2, . . . , xn, w)).
Then, ϕπ(n , . . . , n , w) outputs w[π] whenever the sequence n , . . . , n has length
at least |π|. Now, given a circuit C ′, we claim that C ′ is isomorphic to C when-
ever (i) C ′ has a root r′ labeled t, (ii) r′ has two predecessor states s′0 and s′1
respectively roots of circuits isomorphic to C0 and C1, (iii) E(C, r) = E(C ′, r′).
When defining θC(x0, . . . , xd, w),

(i) is verified by: (x1, . . . , xd, w) 7→ τt(x1, w),
(ii) is verified by:

(x1, . . . , xd, w) 7→ θC0(x1, . . . , xd, ϕ0(x0, w)) ∧ θC1(x1, . . . , xd, ϕ1(x0, w)),
(iii) is verified as follows. For all words π, π′ of length smaller than d, if (π, π′) ∈

E(C, r), then: (x1, . . . , xd, w) 7→ ϕπ(x1, . . . , xd, w) =dom ϕπ′(x1, . . . , xd, w),
otherwise:(x1, . . . , xd, w) 7→ ϕπ(x1, . . . , xd, w) 6=dom ϕπ′(x1, . . . , xd, w),

where ϕπ(t̄) =dom ϕπ′(t̄) iff either t̄ 6∈ dom(ϕπ)∧ t̄ 6∈ dom(ϕπ′) or ϕπ(t̄) = ϕπ′(t̄).
The three points (i), (ii), (iii) can be put all together by closure under intersection
of length preserving rational relations.

To end the proof, observe that θC can be restricted to θ′C(x0, . . . , xd, w) ⇔
θ(x0, . . . , xd, w) ∧ x0 = x1 = · · · = xd which is a length preserving. Let T ′C =
(Σ,Q, q0, F, δ) be the corresponding letter-to-letter MONA. Then, θ is recog-
nized by (Σ,Q, q0, F, δ

′) with (q, a, b, q′) ∈ δ′ iff (q, a, . . . , a, b, q′) ∈ δ. The trick

can be used for paths, and we let the MONA Ψπ for all path π such that
[Ψπ](n,w) = ϕπ(n, . . . , n, w).

Actually, one may think of Cd as a (finite) function basis. Then, circuits of
depth d on B0 can be seen as circuits of depth 1 on basis Cd.

Proposition 6. For any Rational-uniform circuit family (Cn)n>0 of constant
depth d, there are MONA (TC)C∈Cd and MONA Φ1, . . . , ΦW such that for all
n > 0, for all output gate w in Cn, [TC](n ,w) holds iff C is the index of w in
Cn and [Φj](n ,w) outputs the address of the input gate in Cn corresponding to
the j-th input gate in C, the index of w.

Proof. The MONA (TC)C have been constructed in the previous Lemma. The
W = 2d MONA Φ1, . . . , ΦW are built as follows. Let the circuits Cd = (C1, . . . , Cr)
and let ar(C) be the number of inputs of the circuit C. The MONA Φj is:

(n ,w) 7→


if TC1

(n ,w) ∧ (j 6 ar(C1)) then Ψπj(C1)(n ,w)
else if TC2

(n ,w) ∧ (j 6 ar(C2)) then Ψπj(C2)(n ,w)
. . .

else ⊥

with Ψπ be defined as in the previous Lemma.

4 Complexity hierarchy robustness

Definition 3 (Complexity classes). For k ∈ N, NCkRat (resp. NCkDLT and
NCkALT) is the class of problems solvable by a Rational-uniform (resp. DLogTime-
uniform and ALogTime-uniform) family of circuit (Cn)n>0 over basis B0, of
respective depth ||Cn|| = O(logk(n)) and size |Cn| = nO(1) in the size of the
input. We denote NC = ∪k∈NNCkDLT .

Following Cook [10], NC is considered to be the class of problems that can
be efficiently solved on a parallel computer. Proposition 8 proves that NCkDLT ⊆
NCk+1

Rat for all k > 0. Together with Theorem 3, we have the following hierarchy:

NC0
Rat ⊆ NC0

DLT ⊆ NC1
Rat ⊆ NC1

DLT ⊆ · · · ⊆ NCkRat ⊆ NCkDLT ⊆ · · · ⊆ NC

which implies that NCRat = ∪k∈NNCkRat = NC.

Lemma 1. Given a ALogTime-uniform circuit family (Cn)n, without loss of
generality, one may suppose that the address of any gate is actually labeled by
t · u where t denotes the type of the gate. We call such circuits explicitly typed
circuits.

Proof. Suppose that the circuit is not explicitly typed. LetM be the machine rec-
ognizing the connection language of (Cn)n. Let (C ′n)n be exactly the same circuit
family but with address (t · w) for any gate w of type t. It is also ALogTime-
uniform. Indeed, verifying the type t of a gate w (y, w, ε, t) merely amounts to
verify that t (whose size is bounded by some constant K) is the prefix of w so
that the procedure takes constant time. Computing the i-th successor of a gate
(t · u) is done as follows:

verify(y,w,i,u){

//copies of types and address on some working tapes

let (a,w’) and (b,u’) such that a.w’ = w and b.u’ = u

return (run M on (y,w’,i,u’)) and (run M on (y,u’,epsilon,b))

}

Copying addresses of logarithmic size is done in logarithmic time. The copies of
the types take constant time. Finally, the two last runs take logarithmic time.

4.1 Simulation of alternating random access Turing Machine

We recall some main facts about alternating random access Turing Machine
(ARM) as described by Leivant and Marion [15], see also [9, 21]. A machine
M is a tuple 〈Q, q0, δ〉 made of a set of states, an initial state and a transi-
tion function δ. States are classified as disjunctive or conjunctive (the action
states), as accepting, rejecting or reading states. We recall that the operational
semantics of the machine is a two step process: first generating the computa-
tion tree, second, evaluating the computation tree. A configuration is a tuple
(q, w1, . . . , wk) ∈ Q × Bk of a state and k work stacks, the initial tuple being
(q0, ε, . . . , ε). A computation tree is a tree whose nodes are configurations and
whose root is the initial configuration. For action states, depending on the state
and on the bits at the top of the work stacks, one spawns a pair of successor con-
figurations by pushing/popping letters on the work stacks. For a machine work-
ing in time t(n), the tree is expanded up to depth t(n). For the evaluation, the
computations begin at the leaves of the tree. The output of accepting/rejecting
states is respectively 1 and 0. The output of action state is given by the associ-
ated logical operator. Finally, since we will apply ARM on connection language,
that is 4-tuples (n ,w, b, u), to simplify reading, we suppose that the input is
actually written as four independent words t0, . . . , t3. To read the inputs, each
word ti, i 6 3, is associated to a working tape indexed ρ(i) 6 k and to a read-
ing state qread(i) ∈ Q. The output of a configuration (qread(i), w1, . . . , wk) is the
wρ(i)-th bit of ti.

To simulate ARM by means of Rational-uniform circuit family, we need
the (rational) function read defined as follows. read takes inputs (w, u) with
w, u ∈ {0, 1}∗. On inputs of the shape w = w′ · i with i ∈ {0, 1}, read outputs
(w′,Hi(u)), that is it removes the last bit i of w, and then apply transducer
Hi on u, cf Example 1. Otherwise, that is if w = ε, read(w, u) = (w, u). By
composition, read is clearly a rational function.

Given a circuit family (Cn)n>0 whose direct connection language L is rec-
ognized by an ARM M = 〈Q, q0, δ〉 working in logarithmic time, given some
4-tuple (y, w, b, u), let us consider the circuits C[M,n ,w, b, u] with |y| = n as
defined now. Gate addresses are tuples (q, w1, · · ·wk, n , w, b, u) made of a con-
figuration of M and the content of the inputs of M . We call these addresses
extended configurations. According to the state, we define the typing and the
predecessor functions of C[M,n ,w, b, u].

a) for any action state (of M), (q, w1, · · ·wk, n , w, b, u) has the corresponding
logical type. Its two predecessors are the extended configuration (qi, wi1, . . . ,
wik, n , w, b, u) for i ∈ {0, 1}, as given by the transition function.

b) Accepting/Rejecting states are typed 0 or 1.
c) for a reading state qread(i) , we build a chain of identity gates3 with a last

gate being a rejecting gate or an accepting one (actually depending on the bit
read in ti). The first identity gate has the address (wρ(i), ti). Its predecessor
is read(wρ(i), ti). After |wρ(i)| application of the function read, we get a pair
of words (ε, u) such that the last bit of u denotes the bit read at address
wρ(i) within ti. The last gate of the gate is accepting or rejecting depending
on this last bit.

Given the preceding description,

Proposition 7. 1. the circuit C[M,n ,w, b, u] outputs 1 iff (y, w, b, u) ∈ L,
2. the circuit has depth O(max(|n|, |w|, |b|, |u|)) and polynomial size,
3. the typing function, the two predecessor functions are rational.

Proof. 1. The simulation of action states, accepting states and rejecting states
directly follows from the operational semantics. The simulation of reading
state, though done in O(log(n)) steps output the desired result.

2. Since wj is a working tape, it has size O(log(n)). The chain of identity gate
having the same length, the depth is O(log(n)). For the size, one observes
that all words have length O(log(n)). The result follows by enumeration.

3. Typing is immediate from the classification of states. For predecessor func-
tions, for action states, since the next configuration depend only on the finite
control of the top bits, computing the predecessor configurations is clearly ra-
tional. For reading states, computing (wj , ti) from (qread(i), w0, . . . , wk, t0, . . . ,
t3) is also rational and we have seen above that read is rational.

4.2 From DLogTime-uniformity to Rational-uniformity

Proposition 8. For all k > 0, NCkDLT ⊆ NCk+1
Rat .

Proof. Actually, we prove the even more stronger result, that is NCkALT ⊆
NCk+1

Rat . Indeed, since DLogTime ⊆ ALogTime, DLogTime-uniformity is a
priori sharper than ALogTime-uniformity. Actually, the two notions coincide
for k > 1 as shown by Barrington, Immerman and Straubing in [3]. So, con-
sider a function computed by an ALogTime-uniform, explicitly typed family
of circuits, (Cn)n>0 of polynomial size and depth bounded by c × logk(n). Let
M be the machine running in ALogTime which decides the direct connection
language of (Cn)n>0. We begin by some preliminary observations.

First, there is a constant K such that the machine M runs in time K× log(n)
and space K × log(n) where n denotes the size of the input. Then accordingly,
the size of any gate addresses in the circuit Cn is bounded by K × log(n). So
by a padding argument, one may suppose without loss of generality that every
gate address (in Cn) has actually exactly the size C × log(n) for any n > 0.

3 On the basis B0, it is obtained as the composition of two gates: x 7→ x∨0 for instance.

Second, circuits (C[M,n ,w, b, u])n ,w,b,u
described for Proposition 7 have

logarithmic depth whenever w, b, u have logarithmic size (in n).

We define now a Rational-uniform circuit family (C ′n)n such that C ′i sim-
ulates Ci for all i > 0. The principle of our simulation is the following. To any
gate w in Cn, we associate a corresponding gate w in C ′n with same logical op-
erator. In a first step, we guess the addresses u0 and u1 of both successor gates
of w. Given ui, we verify in parallel that ui is actually the i-th successor of w
(i ∈ {0, 1}) by means of C[M,n ,w, i, ui] and we build recursively the circuit
corresponding to the gate ui. The process ends on input gates.

Let us describe the construction in more details. First, we suppose that the
circuit family is typed (as justified by Lemma 1). Any address (t ·w) correspond-
ing to a logical gate of type t in Cn is mapped to a gate (n , (t ·w)) in C ′n. From
that gate, we build a small circuit as follows. Let A be the number of succes-
sors of w (one for the negation and two for the binary operators). (n , (t · w))
has A ∨-gate successors (t1) addressed (n , (t · w), i, ε) with 0 6 i < A . Any
such gate (n , t · w, i, ε) is the root of the full binary tree of gates (t2) of depth
|w| = C×log(n) with leaves addressed (n , t·w, i, u). Internal nodes of the binary
tree are ∨-gates, the leaves having type ∧.

The first successor (t3) of a gate (n , t · w, i, u) is C[M,n , t · w, i, u]. The
second successor (t4) is the gate corresponding to u itself (here the construction
will recursively continue). Finally, any input gate within Cn is an input gate
within C ′n.

It is clear that the family is Rational-uniform: constructions (t1) and (t2)
are obtained by concatenation of finitely many letters to the current address,
(t3) refers to Proposition 7, and (t4) consists in erasing the arguments t ·w and
i.

The length of the path between gate w and gate u is C × log(n) + 1 (the
depth of the binary tree (t2)). Thus, the depth ||w|| of the circuit from gate w is

||w|| = max(C × log(n) + ||u||, C × log(n) +K × log(n)) (1)

6 ||u||+ (C +K)× log(n). (2)

where in Equation 1, the max function comes from the parallel choice (done at
each leaf of (t2)) for the verifier (t3) as given by Proposition 7 and the depth
of the circuit from that gate. Since the depth of the circuit Cn is bounded by
c× logk(n), using recursively Equation 2, it follows that the depth of the circuit
C ′n is bounded by c× logk(n)× (C +K)× log(n) = O(logk+1(n)). Remark that
since all the addresses in circuit C ′n have size bounded by O(log(n)), the size of
the circuit C ′n is bounded by nO(1).

5 Separation theorems

We present classical separation proofs for the DLogTime-uniform hierarchy. We
stress that these proofs are not restricted to the case of uniform circuit family!

Definition 4. We define the standard following decision problems. Instance: A
binary word w ∈ {0, 1}∗. PARITY: Is the number of 1’s in w odd? MAJORITY:
Are the majority of input bits 1? PALINDROME: Are bits at positions i and |w| − i
equals, for all 1 6 i 6 |w|? OR: Is the disjunction over bits of w equals to 1? HALF:
Is the middle bit of w equals to 1? The restriction of the previous problems to
an instance of binary word with fixed length n are denoted respectively PARITYn,
MAJORITYn, PALINDROMEn and HALFn.

Lemma 2. PARITY, MAJORITY, OR and PALINDROME are not in NC0
Rat but in

NC1
Rat.

Proof. Given an input of size n, all of these problems require circuit depth at
least Ω(log(n)), just so all the input bits could effect the output gate. Thus no
one belongs to NC0

Rat (as well as NC0
DLT). For NC1

Rat membership, we have
seen how to compute ORn for a given n in Example 4. PARITY uses the same
schema but with w-gates typed XOR (those gates being simulated by x xor y =
(x ∨ ¬y) ∧ (¬x ∨ y) on basis B0) and s-gates typed 0. To compute PALINDROME,
we take again the same schema, but with w-gates being typed ∧, s-gates being
typed 1 and input gates addressed i ·u are replaced by a XOR-gate addressed c ·u
with two predecessors being i ·u and i · (n−u− 1). Since subtraction is rational,
this latter address being obtained by equation ϕ1(n , c · u) = i · n− u− 1 , the
predecessor function ϕ1 remains rational. A standard proof of membership for
MAJORITYn given n, is to repeatedly reduce the addition of three numbers to
the addition of two numbers, computing carries without propagate them by
using bitwise XOR gates. After O(log(n)) depth, the resulting two O(log(n))-bit
numbers have to be compared with n/2. All of these computations may be done
within Rational-uniformity.

Lemma 3. HALF ∈ NC0
Rat.

Proof. Given n the middle bit address can be computed by a MONA: consider
the circuit made of a unique output gate, with a predecessor function ϕ0 defined
only on the input: ϕ(n ,o · 0|n|) = (n− 1)/2 . Subtraction is rational, division

by 2 (a shift of the bits of n− 1) is rational, thus ϕ0 is rational. ϕ1 is the empty
function, and typing is immediate.

We denote Reg the class of decision problems solvable by deterministic finite
automata. It is well known that Reg = DSpace(O(1)), the decision problems
that can be solved in constant space [23].

Lemma 4. PARITY, OR ∈ Reg and HALF, PALINDROME /∈ Reg.

Proof. As it is uncommon, we present that the language relative to the function
HALF is not regular. Ad absurdum, by Pumping Lemma, suppose it is so. Let N
be the bound above which w ∈ L(HALF) implies w = w1 · u ·w2 with |u| > 0 and
w1 · uk · w2 ∈ L(HALF) for all k > 0. Let us apply it on w = 0N · 1 · 0N . Let the
decomposition w = w1 ·u ·w2 as above. Either u contains the 1, but then w1 ·w2

contains no 1 and thus w1 ·w2 6∈ L(HALF) in contradiction with the Lemma. Or,

w1 = 0m, u = 0j and w2 = 0N−m−j10N is the remaining word with j > 0 since
|u| > 0. But, in that case, w1 · u2 · w2 = 0N+2j · 1 · 0N has no 1 in the middle,
contradicting the Lemma. The last case, w1 = 0N · 1 ·Nk, u = 0j , w2 = 0N−j−k

is symmetric to the preceding one.

Theorem 4. Reg 6= NC0
Rat and NC0

DLT (NC1
Rat.

Proof. Inequality arises from previous lemmas: we have OR /∈ NC0
Rat 3 HALF and

OR ∈ Reg 63 HALF. Finally NC0
DLT (NC1

Rat as OR /∈ NC0
DLT and OR ∈ NC1

Rat

by lemma 2.

Theorem 5. NC0
Rat (NC0

DLT

Proof. Let τ : {0, 1}∗ → {0, 1} such that τ(w) is the log(|w|)-th bit of w. Such a
function is computable within NC0

DLT . Given n ∈ N, consider the circuit made
of one output ∨ gate addressed 0 whose two successor gates are the input gate
log(n). Typing is trivially DLogTime-uniform. To verify that the successors of
the output gate can be computed in DLogTime, we have to verify that the
relation {(y, 0, b, u) | b ∈ {0, 1} ∧ u = log(|y|)} is computable in DLogTime.
From Buss [8], for any word y of length n, for any boolean b ∈ {0, 1}, computing
log(|y|) from (y, 0, b, u) is done in logarithmic time. Since log(|y|) has logarithmic
size with respect to (y, 0, b, u), the equality of log(|y|) with u is performed in
logarithmic time.

We establish now ad absurdum that the predicate τ cannot be computed
by a Rational-uniform circuit family of constant depth. We propose a proof
with an encoding based on size parameters A = 1 and B = 0. The proof can be
extended to other cases. Suppose the existence of such a family (Cn)n computing
τ . Let D be its depth.

Fact 1. There is a path from the output gate addressed o · 0n of the circuit
Cn to the input gate addressed i · log(n) . Otherwise, the output of the circuit

Cn[w] on some word w would not depend on its log(n)-th bit, that is wlog(n),
which contradicts the definition of τ .

Fact 2. Without loss of generality, one may suppose that wlog(n) is actually
the only input bit read on the input by the circuit Cn. Indeed, it is clear that τ
does not depend on other bits, so that other input gates can be replaced by a
(for instance) rejecting gate.

Fact 3. According to Proposition 6, there is a MONA Φ1 such that Φ1 outputs
i · log(n)

|n|
on input (n ,o · 0|n |).

As we will see, the set of binary words A = {i·log(n)
|n|
| n > 0} is not regular.

But the projection of a rational relation is a regular language (see Proposition 1).
Since {u | (B∗,o · 0∗, u) ∈ [Φ1]} = A, there is a contradiction.

Let us suppose that A is regular. Consider a transducer [D] that removes the
first letter of a word, then, according to Proposition 1, its range A′ = [D](A) =
{log(n)

|n|
| n > 0} is a regular language. We actually prove that A′ is not

regular. If it were the case, let L be the bound as given by the Pumping Lemma.

Consider the smallest k such that n = 22k

verifies |n | = 2k + 1 > L. The

word log(n)
|n|

has the shape 02k−k · 1 · 0k, thus has length 2k + 1 Then, since,

log(n)
|n|
∈ A′, there is a decomposition log(n)

|n|
= u · v · w such that for all

t > 0, u · vt · w ∈ A′. There are three cases, v is at the left or right of the 1,
or it contains the 1. The reader can easily check the contradiction, that is, in
the first cases |wt| is opposed to membership in A′, and the last case is a simple
computation.

6 Unbounded fan-in circuits

We provide same kind of results for Rational-uniform circuit families, called
with unbounded fan-in, over the basis B1 = {(∧n)n>2, (∨n)n>2,¬, 0, 1, i,o}.

Again we suppose that circuits have polynomial size, so there is a polynomial
P such that |Cn| 6 P (n) for all n > 0. Then each gate of Cn has at most P (n)
predecessors and we consider its k-th predecessor where we encode k also in less
than |P (n)| bits. We choose to describe gates over the basis B1 by giving its
type in {∨,∧, i,o,¬} and by describing all of its predecessors: this is exactly
our Rational-uniform definition 2. Since all the inputs have a common length,
again, the MONAs can be considered to be letter-to-letter.

We define ACkRat for k ∈ N exactly as NCkRat but over basis B1. That is, for
k ∈ N ACkRat is the class of problems solvable by a Rational-uniform family of
circuit (Cn)n>0 over basis B1, of respective depth ||Cn|| = O(logk(n)) and size
|Cn| = nO(1) in the size of the input. Then by theorem 3, we have for all k > 0,
ACkRat ⊆ ACkDLT but also the following.

Proposition 9. For all k > 0, we have NCkRat ⊆ ACkRat ⊆ NCk+1
Rat .

Proof. First inclusion trivially comes from Rational-uniform definition by de-
scribing ACkRat with the same MONA as NCkRat. Second inclusion is described
as follows. Consider a circuit family (Cn)n in ACkRat. There are letter-to-letter
MONAs T and Φ computing τ and ϕ. Any gate w of Cn which is in B0 is
left unchanged, any other gate w, say a ∧n, is replaced by a binary tree of
gates ∧ defined as follows. The root of the tree is (q0,∧, w, ε, ε) with q0 being
the initial state of Φ. Any state (q,∧, a · w′, k′, u′) has type ∧ and successors
(q′,∧, w′, b · k′, c · u′) for all (q, a, b, c, q′) ∈ δΦ with δΦ the transition relation of
Φ. Since δΦ is finite, this is easily encoded in basis B0. Any state (q,∧, ε, k, u) has
type 1 if q 6∈ FΦ, the set of final states of Φ. Otherwise, the state has the type of
u in Cn. From the construction, observe that u is the address of the k-th prede-
cessor of w in Cn. Then, removing q, ε, k from the address by a MONA is easy
and the definition continues from u. Since, the MONA Φ is letter-to-letter, the
length of the path between gate w and gate u is |w|, that is O(log(n)). Thus, the
depth of the simulating circuit is O(log(n)k)×O(log(n)) = O(log(n)k+1). Since
the addressing system simulates a running MONA, the construction is rational.

Proposition 10. For all k > 0, we have ACkDLT ⊆ NCk+1
Rat .

Proof (Sketch). We revisit the proof of proposition 8 only for the three following
points. 1) We consider a function computed by an ALogTime-uniform explic-
itly typed family of circuits (Cn)n of polynomial size and depth bounded by
c × logk(n), but over B1. Then given n, each gate has at most log(nO(1)) =
O(log(n)) predecessors. 2) We will use the circuits (C[M,n ,w, b, u])n ,w,b,u

de-
scribed in Proposition 7 which have logarithmic depth whenever w, b, u have
logarithmic size (in n). In Proposition 8, b was a constant, here, it has loga-
rithmic size. But the proof of Proposition 7 remains valid in the present case.
3) When simulating a gate w, instead of spanning a full binary tree to find the
predecessor u corresponding to w, we span a full binary tree whose leaves are
pairs (k, u) ∈ ΣA×log(n)+B×ΣA×log(n)+B . Such addresses having size O(log(n)),
the depth of the tree remains O(log(n)) as in Proposition 8. At each leaf, instead
of verifying that (n ,t ·w, i, u) ∈ C[M,n ,w, i, u], one verifies that (n ,t ·w, k, u) ∈
C[M,n ,w, k, u]. The depth and the size bound are computed as in Proposition 8.

Lemma 5. PARITY /∈ AC0
Rat.

Proof. Standard and very nice proofs for PARITY /∈ AC0
DLT are valid for even

non-uniform circuit family. E.g. they are based on the fact that every con-
stant depth circuit computing PARITYn must have sub-exponential size (i.e.

exp(Ω(n
1

d−1)) for depth d circuit) [11, 1, 12]. This applies also with Rational-
uniformity!

Theorem 6. Reg 6= AC0
Rat (NC1

Rat

Proof. By proposition 9 for k = 0, we have NC0
Rat ⊆ AC0

Rat ⊆ NC1
Rat. By

lemmas 4 and 3 , we have HALF is not in Reg but in NC0
Rat, thus in AC0

Rat.
Then AC0

Rat 6⊆ Reg. By lemmas 2, 4 and 5, PARITY is not in AC0
Rat but in

Reg ∩NC1
Rat. Then we have both Reg 6⊆ AC0

Rat and NC1
Rat 6⊆ AC0

Rat, and the
result holds.

7 Conclusion

Common questions remain to study w.r.t P and NP . Indeed our uniformity
notion is a weak external computational power keeping the internal computa-
tional power for separation approaches. E.g. as MAJORITY∈ NC1

Rat we have for
Constant-Depth Threshold Circuits TC0

Rat ⊆ NC1
Rat, and one could ask whether

TC0
Rat = NC1

REG, or whether TC0 = NP .
Finally, the relationship between Reg and AC0 is a long standing issue.

We refer to the work of [7] for a presentation of regular languages in NC1. It is
almost clear that Reg ⊆ NC1

Rat, but the question is renewed due to the fact that
AC0

Rat 6= AC0
DLT using again the argument of the HALF function. Observe that

AC0
DLT 3 HALF 6∈ AC0

Rat and HALF 6∈ Rat which could mean that AC0
Rat could

be the ”correct” set to deal with Reg. In this branch of research, the relation
between Reg and ACC0

Rat should be also reconsidered since HALF 6∈ AC0
Rat.

References

1. M. Ajtai.
∑1

1-formulae on finite structures. APAL, 24(1):48, 1983.
2. D. Barrington, K. Compton, H. Straubing, and D. Thérien. Regular languages in

NC1. J. of computer and system sciences, 44:478–499, 1992.
3. D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within

NC1. Journal of Computer and System Sciences, 41:274–306, 1990.
4. S. Bellantoni and I. Oitavem. Separating NC along the δ axis. TCS, 318:57–78,

2004.
5. G. Bonfante, R. Kahle, J.-Y. Marion, and I. Oitavem. Recursion Schemata for

NCk. In CSL ’08, volume 5213 of LNCS. Springer, 2008.
6. A. Borodin. On relating time and space to size and depth. SIAM Journal on

Computing, 6(4):733–744, 1977.
7. S. Buss, S. Cook, A. Gupta, V. Ramachandran, and Over Ac. An optimal parallel

algorithm for formula evaluation. SIAM J. Comput, 21:755–780, 1990.
8. S. R. Buss. The boolean formula value problem is in alogtime. In in Proceedings of

the 19-th Annual ACM Symposium on Theory of Computing, pages 123–131, 1987.
9. A. Chandra, D. Kožen, and L. Stockmeyer. Alternation. J. ACM, 28:114–133,

1981.
10. Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf.

Control, 64(1-3):2–22, March 1985.
11. M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time

hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.
12. J. H̊astad. Almost optimal lower bounds for small depth circuits. In J. Hartmanis,

editor, STOC, pages 6–20. ACM, 1986.
13. R. M. Kaplan and M. Kay. Regular models of phonological rule systems. Compu-

tational Linguistics, 20:331–378, 1994.
14. D. Leivant. A characterization of NC by tree recurrence. In Foundations of Com-

puter Science 1998, pages 716–724. IEEE Computer Society, 1998.
15. D. Leivant and J.-Y. Marion. A characterization of alternating log time by ramified

recurrence. Theoretical Computer Science, 236(1–2):192–208, 2000.
16. V. Mogbil and V. Rahli. Uniform circuits, & boolean proof nets. In LFCS, volume

4514 of LNCS, pages 401–421. Springer, 2007.
17. M. Nivat. Transduction des langages de chomsky. Ann. Inst. Fourier, 18:339–456,

1968.
18. I. Oitavem. Characterizing NC with tier 0 pointers. Math. Logic Quarterly, 50:9–

17, 2004.
19. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J.

Res. Dev., 3(2):114–125, April 1959.
20. G. Rozenberg and A. Salomaa. Handbook of formal languages. Springer-Verlag,

1991.
21. W. L. Ruzzo. On uniform circuit complexity. J. of Comp. and Syst. Sci., 22:365–

383, 1981.
22. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
23. J. C. Shepherdson. The reduction of two-way automata to one-way automata.

IBM J. Res. Dev., 3(2):198–200, April 1959.
24. K. Terui. Proof nets and boolean circuits. In LICS, pages 182–191. IEEE, 2004.
25. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer,

1999.

