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ABSTRACT
Tossing, throwing, or flicking objects in a user interface or
virtual environment can be used as a faster, lower-precision
alternative to traditional pointing, however there is currently
no predictive model of user performance with tossing. We
report experimental measurements of performance in a 1D
tossing task from which a predictive model is derived. We
consider a simplified form of tossing where a virtual object
on a horizontal surface is accelerated and released, and then
decelerates under friction, coming to rest at some final po-
sition. The distance traveled after release is determined by
the release velocity as well as by the friction model used.
To abstract away the details of the friction model, our ex-
periment measures the ability of users to accelerate and re-
lease a virtual object in 1D (using a mouse) with a given tar-
get velocity, with target velocities varying from 6.25 cm/s to
1 m/s. Results indicate that there is a linear relationship be-
tween the target release velocity and the standard deviation
of the release velocity achieved by the user. We also propose
an automatic release technique (instead of requiring the user
to manually release using a mouse button) that significantly
improves precision. The model derived from our experiment
predicts that a user should be able to toss at three different
target speeds (effectively tossing toward target locations at
three different distances) with an error rate under 4%. We
also predict that having four or more targets in the same di-
rection would cause the error rate to rise above 10%. Design
implications for integrating tossing into graphical user inter-
faces are discussed.

Author Keywords
Throwing, flinging, tossing, flicking, sliding, pushing, point-
ing, Fitts’ law, interaction design

INTRODUCTION
Tossing, or gently throwing objects at a relatively low speed,
is an everyday activity in the real world, used to save effort
when precise placement is not required. Paper documents
are tossed onto work surfaces, sometimes in rough piles or
groupings, and sometimes to create an intentionally informal
arrangement. Objects are tossed from one person to another
to save time, and items to be sorted, packaged, or disposed
of may be tossed into a basket, box, or recycling bin, at times
providing a fun challenge and yielding a sense of satisfaction

when the toss is successful. Tossing or throwing are a cen-
tral element of many sports, and it is not unusual for trained
athletes to achieve a low error rate in tossing a ball toward
some target. For example, several dozen of the professional
basketball players listed at nba.com have a “free throw per-
centage” above 80%, some as high as 90%1.

Figure 1. Two examples of tossing in GUIs.Top: In the physics-based
desktop environment BumpTop, an icon is tossed towards a group of
related icons [1]. Bottom: An inertial mouse cursor is used to rapidly
set a slider to its maximum value [15].

In user interfaces, simplified or metaphorical forms of toss-
ing have been used as an alternative to pointing at a distant
location, where users may drag, gesture, or flick in a given
direction [16, 5, 23, 13, 37, 2] (Figure 1). As pointed out in
[37], sliding or flicking objects is a fast, easy-to-understand
action and a natural extension of normal drag-and-drop ac-
tions, possibly giving it an advantage over other techniques
for pointing at distant targets. One system [1] even simulates
collisions between the tossed object and obstacles, causing
the object to bounce off walls or displace other objects pre-
viously placed on a virtual surface. Virtual tossing can also

1In a free throw, the throw line is about 420 cm from the cen-
ter of the net, which has a diameter of 45 cm, and the basketball
has a diameter of 24 cm, yielding an index of difficulty of at most
log2(

420
45−24 +1)≈ 4.4 bits, ignoring the fact that small errors can

still result in the ball falling through the net.



be useful if the user wants to quickly throw, sort, or arrange
objects, and precision is not required or not desired.

Unfortunately, there is still no predictive model of tossing
that could be used to derive design guidelines for user in-
terfaces. With a 2D input device and 2D user interfaces,
we are particularly interested in tossing tasks comparable to
the sport ofcurling, in which players slide and accelerate an
object on a horizontal surface and then release the object,
which then decelerates due to friction. (This is also called
flicking [37].) Many open questions exist related to such
a task. If the user wishes to toss toward some target, how
small can the target be made before the error rate becomes
unacceptable? How many different directions can a user toss
in? In a given direction, how many different distances can
a user toss toward? Is there a tradeoff between movement
time and precision that can be made in tossing, as with tradi-
tional pointing? Can tossing performance be predicted from
the index of performance in Fitts’ law [18, 29]? How should
the release of a tossed object be triggered? What is the max-
imum speed with which a user can toss? How does the index
of performance (or bandwidth) of tossing compare to that of
traditional pointing?

Regarding the question of how many directions a user can
toss in, previous work suggests an answer. In [28], error
rates rose above 5% if there were as many as 12 directions
to stroke in within a single-level marking menu. Similarly,
in [16], 90% of strokes were within≈ 15◦ of the target di-
rection, corresponding to an error rate of 10% if there are 12
discrete directions to stroke in. In this previous work, users
did not need to perform the strokes with any particular ve-
locity, whereas in tossing they would need to do so, making
tossing in different directions at least as difficult. Hence 12
items could be taken as an upper bound on the number of
directions for tossing. The other questions in the previous
paragraph are investigated by the current work, by consid-
ering a simplified form of tossing. The distance traveled
during a toss depends on (1) the offset in position that is
created during the acceleration stage, (2) the velocity at the
time of release, and (3) the kind of friction simulated dur-
ing deceleration. The first and third factors are abstracted
away if we focus on the question of how well users can toss
with a given velocity. In other words, how well can users
“acquire” targets in the velocity domain? We performed an
experimental study of such performance in 1D, resulting in
answers to the previous questions. The major result of our
study is a predictive model of the standard deviation in the
user’s release velocity. This allows us to predict the optimal
placement of a given number of targets in the velocity do-
main, and also predict the error rate that would result with
such targets. We also discuss issues in integrating tossing
into traditional point-and-click user interfaces.

BACKGROUND
Fitts’ law [18, 33, 29] predicts the time to acquire a target
with a rapid, aimed pointing movement. In the Shannon for-
mulation of Fitts’ law [29], given the distanceD to reach the
target, and the widthW of the target measured along the axis

of motion, the average movement timeMT required is

MT = a+b log2

(
D
W

+1

)

︸ ︷︷ ︸

ID

(1)

wherea andb are empirically determined constants that vary
with factors such as the particular pointing device used. The
logarithm is referred to as the index of difficultyID which is
in bits.

Aimed, rapid movements involve a speed/accuracy tradeoff,
reflected inMT being an increasing function of the ratio
D/W in Equation 1. Thus, if the distanceD to a target is in-
creased by some factor, the selection can still be performed
in the same time (i.e. with greater speed) if the accuracy re-
quirement is reduced (i.e.W is increased) by the same factor.
Also observe that, if the target’s sizeW is reduced by a fac-
tor of 1/2, this results in an increase of approximately 1 bit
in ID, and a corresponding incremental increase ofMT.

One way to interpret Equation 1, and the task it models, is
that the user must home in on the target by reducing the ini-
tially large error (or “noise”) in the cursor’s position until
the error is small enough that the cursor falls within the tar-
get. Every reduction by 1/2 of this error requiresb seconds,
and corresponds to transmitting 1 bit of information. The
number of such reductions necessary is log2(A/W) ≈ ID,
and transmittingID bits requiresbID seconds in total. The
remaininga seconds in Equation 1 can partly be explained
as reaction time and/or the time necessary to complete the
selection with a button press. More detailed and accurate
explanations of the mechanisms behind Fitts’ law have been
developed [32, 33], however the foregoing is a useful first
approximation.

Various techniques have been proposed to make pointing
easier, for example, by making targets [31] (or the cursor
[21, 10]) larger, by bringing targets closer to the cursor, or
by making it easier to move the cursor toward a target (§4.2
in [31] contains an overview of several techniques up to
around 2005). For example, some techniques enable the cur-
sor to “jump” onto targets [22, 4]. Others make temporary
proxies of distant targets available nearby the cursor [5, 7].
The techniques drag-and-throw, push-and-throw, and vari-
ants [23, 12, 13] have names suggesting they involve actions
akin to tossing, but as pointed out in [37], these techniques
do not actually involve imparting a velocity with a rapid drag
or flick gesture.

More relevant to the current work is previous work on flick-
ing [16, 34, 37, 2]. [16] and [34] measured the movement
time, angle, and length of flick gestures, comparing them to
alternate input techniques, however these flick gestures were
not used to impart velocity on a virtual object. Reetz et al.
[37] measured movement times and error rates in a target
acquisition task, comparing three techniques: flicking (im-
parting velocity on a virtual object, with friction), pointing
within a “radar” view of proxy targets, and superflicking (a
form of flicking allowing corrections after release). Flicking
was found to be the fastest technique, but also the most error



prone, with an error rate above 45% in some conditions. The
current work differs in several ways: first, [37] does not re-
port the details of the friction model used, whereas our work
is independent of any friction model; second, [37] used an
input device sampled at 50 Hz, whereas we use a mouse that
reports its position at 500 Hz; third, [37] did not investigate
a possible relationship between error rate and target distance
or target size or index of difficulty; and fourth, [37] reports
error rates for each condition, but not the distribution of fi-
nal positions (from which aneffective width[29] could be
calculated, to more precisely quantify the user’s precision).
Aliakseyeu et al. [2] investigated the use of flicking for per-
forming 1D scrolling of a view (where the flick gesture is
used to give a velocity to the view), and proposed interesting
variants on flicking. However, their work did not focus on
the characteristics of individual flick gestures, and instead
measured total time to scroll to a given target with one or
more flicks. Finally, unlike [37, 2], the current work does
not experimentally investigate tossing techniques that allow
corrections after release, focusing instead on the more fun-
damental questions mentioned in the introduction that have
not been addressed as much, or at all, in previous work.

Among older literature, two studies [26, 24] investigated
tracking tasks where users had to capture moving targets, us-
ing either position or velocity control, and proposed predic-
tive models of user performance. In the position control con-
ditions, users had to move the pointing device with a speed
matching the target’s speed, making the task comparable to
that in the current work. However, our work differs in the
range of speeds investigated (speeds up to 1 m/s in our work,
versus [26] where a joystick was moved at a target speed of
up to about 7.5◦/s, or about 6.5-13 mm/s assuming the stick
was 5-10 cm long) as well as in the details of the task (in our
work, the user must simply accelerate and release at a given
target velocity, rather than first acquire a moving target and
then match its velocity for a minimum interval of time).

MODELING FRICTION AND DECELERATION
Before discussing our experimental study, it is useful to first
consider the kinds of friction that might be used in simulat-
ing tossing, and what their effect would be. Consider the
1-dimensional motion of an object of massm sliding over
a horizontal planar surface. The user accelerates the object,
and then releases it at timet = 0 with velocityv= v0, after
which a negative friction forcef causes deceleration.

Normally, a physical model might assume akinetic friction
force f = −µkmg whereg is the gravitational acceleration
and µk is the coefficient of kinetic friction. The constant
acceleration due to this friction isa= f/m=−µkg. Solving
the equations of motion, the instantaneous velocityv= v0+
at and the object’s positionx = v0t + 1

2at2. Assuming the
object stops whenv = 0, the total distance traveled will be
D = 1

2µkgv2
0. ThusD is proportional tov2

0. This is the type of
friction used in the “multi-flick-friction” technique of [2].

Alternative models of friction lead to other dependencies
of D on v0. With a fluid friction drag force f = −bv pro-
portional tov, we havea = (−b/m)v, from which it fol-

lows thatv= v0e−(b/m)t anda= dv/dt= −b
m v0e−(b/m)t and

x = m
b v0(1− e−(b/m)t). In this case, technically the veloc-

ity tends toward zero without ever reaching it, however we
can still calculate that the total distance traveled isD = m

b v0
which is proportional tov0.

The distinction noted above between kinetic friction and fluid
friction should be kept in mind in the following section, and
will be returned to again in our discussion of Future Direc-
tions for this work.

TARGETS IN THE VELOCITY DOMAIN,

AND (−1)TH-ORDER CONTROL
As already mentioned in the introduction, in the tossing tasks
performed in our experimental study, the details of the type
of friction used are abstracted away by having the user toss
with a given target velocity. Each target velocity would nor-
mally map to a specific target distance (depending on the
friction model used). However, instead of displaying a graph-
ical representation of the position of the virtual object in
space as it is tossed and gradually decelerates towards a tar-
get location, we display a cursor whosex coordinate is pro-
portional to the mouse’s sideways speed. Targets for tossing
tasks are displayed directly in the velocity domain, and the
user can see immediately whether the cursor is on the target
or not, without having to wait for a virtual object to deceler-
ate and stop. Although this is unlike users’ real-world expe-
rience with physical tossing, it has the advantages of giving
the user immediate feedback as to their performance, of al-
lowing the user to move on to their next action faster, and is
independent of the friction model used.

Two observations can be made regarding this. First, previ-
ous work has investigated both position control input ([26,
24, 37], for example) and velocity control input [26, 24],
but in both cases the output has been displayed in the spatial
domain, showing the spatial positions of the cursor and tar-
get(s). The terms zero-order control and first-order control
[25] are also used to describe these, since the position of the
input device is used to control either the position or veloc-
ity of the cursor, respectively. However, in our experimental
tossing tasks, output is displayed in the velocity domain, and
thevelocityof the mouse controls thepositionof the cursor.
Hence, our tossing tasks involve(−1)th-order control, by
analogy. Our second observation is that, if we were to as-
sume a fluid friction model, where the distanceD traveled
by the tossed object is proportional to the release velocity
v0, then there is simple linear mapping between the spatial
and velocity domains. This means that displaying output in
the velocity domain is almost equivalent to displaying output
in the spatial domain, so the tossing task in our experimental
study is not so different from physical tossing.

HYPOTHESIS
As mentioned in the background section, Fitts’ law can be
interpreted as stating that every reduction by 1/2 of the error
in the cursor’s position requires a constant amount of time
b. In fact, one of the simplest lower-level models of aim-
ing movements, from which Fitts’ law can be derived, is the
deterministic iterative-corrections model [14, 27]. In this



model, the aiming movement is composed of several sub-
movements, each of which brings the limb (or cursor) closer
to the target center by a constant ratio, and each of which
requires a constant time. The distance remaining to the tar-
get’s center after each submovement can be thought of as the
error associated with the submovement, and is proportional
to the length of the submovement. This error is also pro-
portional to the average velocity of the submovement (since
each submovement takes the same amount of time). A more
sophisticated and recent model, from which Fitts’ law can
again be derived, is the stochastic optimized-submovement
model [32], which assumes that the endpoints of the first
(or primary) submovement have a distribution with a stan-
dard deviation that is proportional to the average velocity of
the first submovement (see also [17] for a review). Such a
relationship has been confirmed in subsequent work, for ex-
ample in [40]. On a related note, a linear relationship has
been found between the peak velocity achieved during the
primary submovement and the target distance; this is dis-
cussed and reviewed in [4].

Turning to movements for tossing, [16, 34, 37] found av-
erage movement times for flick gestures varying between
154 ms [34] and 284 ms [16]. These movement times are
close to the minimum time required for a user to able to
make corrections based on visual feedback (the threshold is
estimated to be somewhere between 100 ms [8] and 200 ms
[29, §5.1]). This should greatly limit, or even preclude, the
possibility of closed-loop corrections to the movement, im-
plying that the movement is ballistic or nearly ballistic. In
discussing the submovements involved in traditional point-
ing, [16] suggests that “[the] first movement or primary sub-
movement may correspond to the flick gesture.” If this is
the case, that a flick or toss movement has the characteris-
tics of the primary submovement in an aiming movement
and is performed too quickly to allow for corrective sub-
movements, then we should expect the “error” or standard
deviation in the endpoint position of a toss movement to be
proportional to the movement’s average speed. Taking this
one (speculative) step further, we hypothesize that for the
tossing task performed in our experimental study, the stan-
dard deviation in the release velocity achieved by the user
will be proportional to the target release velocity.

EXPERIMENT
We conducted a controlled experiment to measure perfor-
mance in a velocity-target acquisition task, which we will
refer to simply a tossing task for brevity. Specifically, our
experiment was designed to

• Measure and compare tossing and traditional pointing, in
terms of movement time, precision, and index of perfor-
mance.

• Identify a candidate model for predicting performance with
tossing. For example, we would like to be able to predict
movement time and/or precision of tossing as a function
of target position and possibly target size.

Apparatus

The pointing device used was a Logitech G5 laser optical
mouse that reports its position at 500 Hz with 2000 dpi (≈
0.01 mm per dot) resolution. Using a mouse rather than a
tablet has the disadvantage that we cannot detect if the user
lifts and repositions the mouse on the surface, however we
designed our tasks to make such lifting unnecessary or im-
possible, and informal observation of participants indicated
they did not lift the mouse in the middle of trials. Further-
more, since mice are an extremely common input device,
we wanted our measurements of tossing performance to be
performed with a device of similar mass, form factor, and
sensing capabilities.

We experimented with different surfaces for the mouse, in-
cluding a large “professional gaming” mouse pad, and found
that simply using the mouse on a laminated desk surface
seemed to produce the cleanest data.

The output device was an UltraSharp Dell 1800FP, 18.1 inch,
1280×1024 pixel LCD screen.

The mouse coordinates were polled at 500 Hz and smoothed
using a moving average filter on a 20 ms window (i.e. con-
taining 10 samples). Because the screen’s refresh rate was
limited to 75 Hz, we could not update the cursor’s position
on the screen at 500 Hz, hence a motion blur was simulated
by displaying 6 to 7 alpha-blended cursors per frame, each
with an alpha of≈ 0.15 (Figure 2).

Figure 2. The stimuli displayed during one trial. Left top: the cursor
begins at the starting position (cross hair) at the left.Left middle and
right: the cursor midway between the starting position and the circular
target at the right. The cursor is displayed as multiple alpha-blended
copies, simulating a motion blur, to compensate for the screen’s refresh
rate being lower than the mouse’s reporting rate. Left bottom: The
cursor inside the target.

Task and Stimuli
A discrete target acquisition task was performed by partici-
pants using either traditionalpointing, ortossing. Each trial
involved moving a cursor from a starting position to a tar-
get that was located to the right of the starting position. The
task was thus one dimensional — direction of motion was
not varied.

At the start of each trial, the user first positioned the mouse
at a location on the desk marked with tape, so that the phys-
ical starting position was approximately the same in each
trial (this avoided the possibility that the user might run out
of physical space in the middle of a trial and need to lift



and reposition the mouse). The user then pressed and held
the mouse button to signal they were ready. The cursor then
appeared at the starting location on the screen (and, in the
case of the full experiment, this was followed by a pause
called theforeperiod, used to prevent anticipatory move-
ment initiation, as explained later). This was followed by
the appearance of the target, after which the user began mov-
ing the mouse to acquire the target. The mouse button was
held down throughout the trial, until the target was acquired.
After target acquisition, there was a 1 second pause during
which output was frozen to allow the user to see how close
they got to the target, providing feedback to allow the user
to adjust their performance in subsequent trials.

In the case of thepointing tasks, the physical displacement
on screen of the cursor matched the physical displacement
of the mouse, i.e. the gain or C:D ratio was 1, with no cursor
acceleration.

In the case of thetossingtasks, displacements in the cursor
corresponded directly to the velocity of the mouse. Hence,
thex-coordinate of the cursor, measured with respect to the
cursor’s starting position, was proportional to the speed at
which the mouse moved to the right. Accelerating the mouse
toward the right caused the cursor to move to the right, whereas
subsequently decelerating the mouse caused the cursor to
move left, and if the mouse came to rest in a motionless po-
sition then the cursor returned to its starting position. The
gain in this case was chosen so that the most extreme target
to be acquired by the user (32 cm from the cursor’s starting
position on screen) would correspond to a mouse velocity of
1 m/s to the right; i.e., the C:D ratio was (1 m/s)/(32 cm) =
3.125 s−1. Our own informal testing indicated that 1 m/s was
close to the upper limit of limb movement, and [9] found a
maximum limb speed of about 1.5 m/s.

For bothpointingandtossingtasks, the location of the most
extreme target (at 32 cm) was chosen so that the screen had a
large margin of empty space to the right of the target, so that
the cursor would remain visible in the event of overshooting.

Our design required the user to drag the mouse, i.e. with the
mouse button held down, in trials for both pointing and toss-
ing. This is because we feel that practical uses of tossing
would likely require dragging, and we did not want our ex-
perimental comparison to give pointing an unfair advantage
by allowing pointing to be done without dragging. (Previous
research has shown that dragging results in a lower index of
performance [30].)

For each of the tasks, we had to choose between presenting
targets as either circles with a given size, or as crosshairs
marking a point target with no size (Figure 3). Traditional
pointing tasks are performed with a target with a given size,
and participants are asked to acquire the target anywhere
within its area. We could have given users the same goal in
a tossing task using circular targets, however we were con-
cerned that this would have only allowed us to measure an
error rate indicating how often the user falls anywhere on
the particular targets used in the experiment. For example, a

large target might encourage the user to toss with less preci-
sion, preventing us from measuring their best possible per-
formance. Ideally, we would instead prefer to ask users to
toss as closely as possible to a given point target, and mea-
sure the resulting “best possible” distribution around the tar-
get. Such a distribution would provide us with more infor-
mation, and should theoretically allow us to calculate the er-
ror rate resulting from choosing any given target size. How-
ever, to make the comparison between pointing and tossing
fair, we wanted to use the same kind of targets in both tasks,
and we did not know if using point targets in a traditional
pointing task would result in behavior governed by Fitts’
law. In the end, we made different choices of target type
for the pilot and the full experiment, as explained later.

Figure 3. The cursor traveling from the starting position on the left
toward a target on the right. There are two ways of displaying the
target. Top: crosshair (i.e. point) target.Bottom: circular target.

Another issue we faced was how to complete a tossing ac-
tion. In both pointing and tossing tasks, the goal was tore-
leasewhen the cursor was over, or as close as possible to,
the target on screen. (In tossing, this meant the goal was to
release when the mouse had reached the target velocity.) We
decided to investigate two methods for release:manual re-
lease, where the user manually releases the mouse button to
indicate that they have completed the desired physical mo-
tion, andautomatic release, where the end of the input mo-
tion is determined automatically, regardless of when the user
releases the mouse button.

To inform the design of a full experiment, including what
kind of targets to use, we first performed a pilot experiment
to gather some initial data.

Pilot Study
The pilot study involved 2 users, and involved both pointing
and tossing, as well as circular targets and crosshair targets.
There were four main conditions: Pointing, with Manual re-
lease, at crosshair targets (PM-+); Pointing, with Manual
release, at circular targets with a 2 cm diameter (PM-O);
Tossing, with Manual release, at crosshair targets (TM-+);
and Tossing, with Automatic release, at crosshair targets
(TA-+). The first two conditions were to test if target type
would make a difference in traditional pointing, and the last
two were to test the automatic release in tossing.

In tossing, automatic release occurred when the peak (i.e.
maximum) velocity was detected in the input motion, and
this peak velocity was used as the input velocity for the toss.
(Note that peak velocity is also used by [4] for predictively



completing movements, however their work is aimed at im-
proving pointing rather than tossing, and they do not exam-
ine the standard deviation of the peak velocity as a function
of target distance as we do.) Detecting this peak in real time
was done simply by waiting for the velocity to decrease re-
peatedly over a small numberN of samples (withN ≈ 5),
and assuming that the velocity encounteredN samples ear-
lier is the peak for the whole motion. Such an automatic
release might yield better performance than manual release
for four reasons. First, requiring the user to release the but-
ton when they reach their desired velocity might interfere
with the execution of their movement. Second, using the
peak velocity of the user might make it easier for the user to
achieve larger target speeds. Third, there is prior evidence
that, when throwing darts, people release the dart close to
the peak velocity of the throw (about 2-11 ms before peak
velocity [38]). Fourth, the slope of the velocity curve is zero
at the peak and therefore minimally sensitive to small errors
in whenthe curve is sampled, whereas sampling the curve
anywhere else where the slope is non-zero will result in a
larger variance if the sample’s timing (e.g. the user’s timing
of the button release) is slightly off.

To further illustrate the distinction between manual release
and (automatic) release at peak velocity, Figure 4 shows a
physical analog where both types of release are possible.

Figure 4. Two ways of physically accelerating and releasing apuck with
velocity v0. Left: The hand presses down and drags the puck to acceler-
ate it, lifting off the puck to release it at some moment in time that may
not coincide with the hand’s peak velocity.Right: The hand pushes the
puck forward to accelerate it. As soon as the hand decelerates (i.e. af-
ter reaching its peak velocity), contact is “automatically” lost with the
puck.

For each of the 4 main conditions, there were 5 targets, dis-
played on-screen at distances of 2, 4, 8, 16, and 32 cm from
the starting position. (In the case of tossing, each target dis-
tance corresponded to a target velocity, with the target at
32 cm corresponding to 1 m/s, and others corresponding to
linearly smaller velocities. For example, the target at 2 cm
corresponded to 6.25 cm/s.) For each main condition, users
performed 25 practice trials (5 for each target distance) fol-
lowed by 250 trials (50 repetitions for each target distance)
in random order. Hence, there were 2 participants× 4 main
conditions (PM-+, PM-O, TM-+, TA-+)× 5 target distances
× 50 repetitions = 2000 trials in total.

For brevity, we only mention three results of the pilot study
here. First, in tossing, the error in the final position was so
large that users were rarely within a 1 cm radius of the tar-
gets, suggesting that even if 2 cm diameter circular targets
had been used in the tossing tasks, it would have made little
or no difference to the distribution of final positions. Thus, in
the full experiment, for consistency with pointing tasks that

traditionally use targets having some size, we used 2 cm cir-
cular targets in all conditions in the full experiment. A sec-
ond result of the pilot was that the automatic release mecha-
nism in tossing worked well, and seemed to work better than
manual release. Thus, in the full experiment, we added a
condition which tested a similar kind of automatic release
condition for normal pointing, to make the main conditions
symmetrical. Finally, a third finding from the pilot was that
we observed that users sometimes started moving before a
trial had begun, in anticipation of the target. To eliminate
this in the full experiment, we added a random foreperiod,
which we explain below.

Full Study

Participants
The full experiment involved 12 right-handed participants.

Conditions
The full experiment crossed thetechnique(Pointing or Tossing)
and release-type(Manual or Automatic) variables, yielding
4 main conditions, abbreviated as PM, PA, TM, and TA. In
all conditions, targets were circles with a 2 cm diameter. In
the PA (pointing with automatic release) condition, the au-
tomatic release occurred when the mouse’s speed dropped
below 50 mm/s for 50 ms.

As mentioned earlier, the data collected in the pilot study in-
dicated that users often began moving the mouse before the
start of the trial. In other words, users would initiate move-
ment slightly before pressing the mouse button down, in an-
ticipation of the target that would appear. Thus, the mouse
would already have momentum to the right when the trial be-
gan. For the full experiment, we prevented such anticipatory
processes by imposing a pause of random duration, called a
foreperiod, between the mouse button down press, and the
appearance of the target. The foreperiod lasted between 600
and 1400 ms, and during this period no mouse motion was
allowed. At the end of the foreperiod, the target would ap-
pear, and users were then allowed to begin moving toward
it.

For each of the 4 main conditions, users were given the fol-
lowing instructions:

“Your goal will be to quickly bring a cursor inside cir-
cular targets. If you are unable to bring the cursor inside
the target, try to be as close as possible.”

and then performed 25 practice trials (5 for each target dis-
tance) followed by 125 trials (25 repetitions for each target
distance) in random order. Hence, there were 12 participants
× 2 techniques (Pointing and Tossing)× 2 release-types
(Manual and Automatic)× 5 target-distances (2, 4, 8, 16,
and 32 cm)× 25 repetitions = 6000 trials in total. As in
the pilot study, a target distance of 32 cm corresponded to a
velocity of 1 m/s in the tossing conditions.

In choosing the order of presentation of conditions, we de-
cided that the two pointing conditions should always appear
before the two tossing conditions, because the pointing con-



ditions were much more familiar to users. However, within
each pair of conditions we varied the ordering, resulting in
a total of 4 orderings (PM,PA,TM,TA), (PM,PA,TA,TM),
(PA,PM,TM,TA), (PA,PM,TA,TM) that were each assigned
to one quarter of the participants.

Results and Discussion of Full Study
Movement Time
For all conditions, movement time MT was measured be-
tween the start of the movement (defined to occur when ve-
locity went above 30 mm/s for 50 ms) and the end of the
movement (defined to occur when velocity dropped below
30 mm/s for 50 ms — these thresholds are based on [11]).
Thus, movement time did not include reaction time. Note
that, in the TA condition, the time between onset of move-
ment and automatic release of target (occurring at the peak
velocity) is lessthan the MT we defined, however our MT
better reflects the total temporal cost of the user’s action, es-
pecially in the context of repeated target acquisitions (where
the user would have to terminate the movement for one toss
before initiating another toss).

Figure 5 shows MT broken down by target distance for each
condition. Analysis of variance revealed two main effects on
MT: one for technique (F1,11 = 154.24,p< .001), meaning
that the tossing conditions required significantly less time
than the pointing conditions, and another main effect for
target-distance (F4,44 = 524.64,p< .001).

Figure 5. The movement time for each target distance, by condition.
Error bars show the standard error of the mean (i.e.,σ/

√
N). In the

tossing conditions, each target distance corresponds to a target velocity
(2 cm corresponds to 6.25 cm/s, 32 cm corresponds to 1 m/s, etc., in a
linear fashion).

For each of the main conditions, the movement times were
fit to a straight line with linear regression with respect to in-
dex of difficulty (Table 1). As is often done in experiments
involving Fitts’ law, the regression was performed on aggre-
gated data, i.e. on average movement times, so only 5 data
points were used for each regression. Table 1 completely
specifies the 5 data points used in each regression, as can
be verified by the reader. We note that the correlation co-
efficient r is at least 0.99 in all conditions. Consulting a
standard table of significance levels, we find that anyr value
greater than 0.9, computed from 5 data points, is significant

(p < .05). Thus, Fitts’ law can be used to model average
movement time in all conditions.

Movement TimeMT in ms, for each Index of Difficulty Linear Regression of
ID = log2((Target Distance in cm)/2+1) in bits MT with respect toID

1.000 1.585 2.322 3.170 4.087 slope intercept r
bits bits bits bits bits mMT bMT

PM: 192.947 284.017 433.801 572.673 795.101 193.276 −14.505 0.997
PA: 195.493 285.087 465.386 600.402 880.844 218.708 −46.642 0.993

TM: 92.599 126.446 156.841 215.706 295.337 64.360 20.806 0.991
TA: 86.705 122.725 155.508 206.173 290.413 63.796 17.099 0.990

Table 1. Average movement timesMT in ms for each target distance, by
condition, and the result of linear regressions. The conditions PM, PA,
TM, TA correspond to Pointing with M anual and Automatic release,
and Tossing with Manual and Automatic release, respectively.

Error in Final Position
For each target distanced, there is a distribution of final po-
sitions achieved by the user with meanµ and standard de-
viation σ . We characterize the distribution by its constant
errorCE = µ − d (i.e., a negativeCE indicates systematic
undershoot) and variable errorVE = σ (a synonym for the
standard deviation). Tables 2 and 3 show the values ofCE
andVE for all conditions, and the results of linear regres-
sions, now with respect to target distance rather than index of
difficulty ID. (We also performed regressions ofCE andVE
with respect toID, but these result inr values closer to zero.)
Again, regressions were performed on aggregated data, with
5 data points for each regression, hence allr values greater
than 0.9 (or less than−0.9) are significant (p< .05).

Constant ErrorCE in cm, Linear Regression ofCE with
for each Target Distance in cm respect to Target Distance

2 cm 4 cm 8 cm 16 cm 32 cm slope intercept r
mCE bCE

PM: 0.0209 −0.1095 −0.0440 0.0839 −0.0749 −0.0005 −0.0191 −0.071
PA: −0.1154 −0.3666 −0.3304 −0.4214 −1.2714 −0.0348 −0.0697 −0.951

TM: −0.0810 −0.8796 −2.3695 −5.1826 −7.9906 −0.2631 −0.0378 −0.983
TA: 0.5751 0.5326 −0.1025 −2.4999 −4.6407 −0.1847 1.0638 −0.986

Table 2. Constant errorCE in cm for each target distance, by condition,
and the result of linear regressions. Most of theCE values are negative,
indicating undershoot (i.e. the mean of the distribution is to the left of
the target center). Not surprisingly, CE is small in the pointing con-
ditions. In the tossing conditions,CE increases negatively with target
distance, in a roughly linear fashion (r somewhat close to−1), and is
reduced in the automatic release condition.

Variable ErrorVE in cm, Linear Regression ofVE with
for each Target Distance in cm respect to Target Distance

2 cm 4 cm 8 cm 16 cm 32 cm slope intercept r
mVE bVE

PM: 0.2911 0.3188 0.3516 0.3567 0.3135 0.0003 0.3227 0.131
PA: 0.4986 0.7247 1.1395 2.1059 3.4555 0.0992 0.3552 0.997

TM: 1.3773 1.6560 2.6330 4.6122 8.0084 0.2247 0.8709 0.999
TA: 1.1587 1.1038 1.5511 2.9463 5.4755 0.1508 0.5767 0.995

Table 3. Variable error VE in cm (i.e., the standard deviation) for each
target distance, by condition, and the result of linear regressions. Not
surprisingly, VE is small when pointing with manual release. In the
tossing conditions,VE increases with target distance, in a linear fashion
(r close to1), and is reduced in the automatic release condition.

For CE, analysis of variance revealed three main effects:
technique (F1,11 = 46.94, p < .001), release-type (F1,11 =
5.94,p< .05), and target-distance (F4,44= 44.73,p< .001).
For VE, there were two main effects: technique (F1,11 =
77.23, p < .001), and target-distance (F4,44 = 51.39, p <
.001). It follows that pointing had a significantly lowerCE
andVE than tossing. Among the interactions found, two



2-way interactions were notable: a technique by release-
type interaction (F1,11 = 14.70,p< .01) forCE, and a tech-
nique by release-type interaction (F1,11 = 33.44, p < .001)
for VE. These interactions reflect the fact that automatic
release madepointing significantly worse in terms ofCE
andVE, whereas automatic release also madetossingsig-
nificantlybetterin terms ofCE andVE.

Figures 6-9 depict the distribution of final positions as a
function of target distance for each of the 4 main condi-
tions, and Figure 10 shows a theoretical case. In all five
figures 6-10, the axes are set to the same scale, and the
height of the error bars is set to 4.133 standard deviations
(i.e.±

√

πe/2σ ≈±2.066σ around the mean, or a width of
4.133 times theVE values in Table 3). This width encom-
passes

erf(
√

πe/2/
√

2)≈ 96%

of the distribution, corresponding to an error rate of about
4%. 4.133σ is also the effective widthWe of the targets, as
defined and explained in [29].

Figures 6-9 contain the following 3 kinds of lines: (1) a dot-
ted liney= x passing through the center of the targets, (2) a
solid liney= x+mCEx+bCE showing the line that best fits
the centers of the distributions, wheremCE andbCE are the
slope and intercept taken from the appropriate linear regres-
sion in Table 2, and (3) dashed linesy= x+mCEx+bCE±
2.066(mVEx+bVE) showing the effective target width, where
mVE andbVE are similarly taken from the regressions in Ta-
ble 3.

Not surprisingly, in the pointing with manual release (PM)
condition, theCE andVE are small and approximately con-
stant across target distances (Figure 6). This is because the
user can reduce the error in the final location by simply
performing corrective submovements as required, prolong-
ing the movement time. In the other three conditions, how-
ever, especially TM and TA, the correlation coefficients in
Tables 2 and 3 are high, and the corresponding Figures 7-9
indicate there is a linear relationship betweenCE and target
distance, and also betweenVE and target distance.

Unfortunately, theVE in the tossing conditions is so high
that the error bars in Figures 8 and 9 overlap vertically to a
large degree. This means that, in a practical setting, tosses by
the user toward the same 5 targets would be misinterpreted
by the computer much more often than 4% of the time. For
reliably distinguishable targets (i.e. with an error rate of 4%
or less), in the TM condition, there appears to be room for
only two targets in the velocity domain: one at 2 cm (i.e.
6.25 cm/s), and one at 32 cm (i.e. 1 m/s). In the TA condi-
tion, however, the error is smaller, and there appears to be
room for threereliably distinguishable targets, as shown in
Figure 10.

Indices of Performance of Pointing and Tossing
Of the four techniques tested in the full experiment, the most
successful pointing and tossing techniques were PM and TA,
respectively. There are a couple of issues to consider to in-
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Figure 6. Performance in the pointing with manual release condition.
Not surprisingly, the distributions of final positions are tightly clustered
around the line y= x, because in general users were able to fall within
each target regardless of target distance.
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Figure 7. Performance in the pointing with automatic releasecondition.
A small negative constant error (shown by the solid line appearing be-
low the dotted line) is seen, as well as a variable error that grows with
target distance.

form a proper comparison of these two techniques.

First, as shown in Figure 5 and Table 1, tossing with au-
tomatic release can be performed faster than pointing with
manual release, however this comes at the cost of a higher
constant errorCE and variable errorVE (Tables 2 and 3).
Thus, there is a tradeoff between the PM and TA techniques
that complicates comparison.

The second, more subtle issue to consider, is related to the
target distancethat was manipulated as an independent vari-
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Figure 8. Performance in the tossing with manual release condition.
The effective widths of the targets at 2 and 32 cm do not overlap in
space, however there does not seem to be room to add a 3rd non-
overlapping target in between them.
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Figure 9. Performance in the tossing with automatic release condi-
tion. The effective widths of the targets at 2 and 32 cm do not overlap
in space, and furthermore there appears to be room to fit a 3rd non-
overlapping target in between them (see Figure 10).

able. As already mentioned, in the pointing conditions, the
C:D ratio was 1, so the target distance was the same on-
screen and in the physical domain. For convenience, the
same on-screen target distances were used in the tossing con-
ditions, however in the physical domain these target dis-
tances corresponded tovelocitiesto be acquired by the user.
The fact that an on-screen target distance of 2 cm corre-
sponded to a velocity of 6.25 cm/s is simply a consequence
of the C:D ratio used in our tossing conditions. Had we used
a different C:D ratio for tossing, but kept the same target
velocities, this would have changed the on-screen target dis-

0 2 4 8 16 32
0

5

10

15

20

25

30

35

40

45

Target Distance (cm)

F
in

al
 P

os
iti

on
 (

cm
)

Tossing with Automatic Release

Figure 10. Theoretical performance in the tossing with automatic re-
lease condition. Two of the experimentally measured distributions are
shown (the ones at target distances of 2 and 32 cm from Figure 9) in
black. In addition, a theoretical distribution, found through interpola-
tion, is shown in red. The dotted lines clearly show that the error bars
do not overlap in space, hence there appears to be room for 3 targets
with non-overlapping effective widths.

tances for tossing. Thus, comparisons between techniques at
each target distance, such as those in Figure 5 and Tables 1-
3, are arguably misleading.

Therefore, to properly compare the PM and TA techniques,
we calculate their respective index of performanceIP (i.e.
their bandwidth, or throughput). To do this, we first need to
properly account for the largeVE with tossing by using the
effective widthWe of the targets for each technique [29]. In
addition, because of the largeCE with tossing, we also cal-
culate the effective distanceDe of each target for each tech-
nique. Table 4 shows these effective quantities and Table 5
shows the resulting regressions.

PM

Target Distance 2.000 4.000 8.000 16.000 32.000
CE 0.021 −0.110 −0.044 0.084 −0.075

De = Target Distance+CE 2.021 3.891 7.956 16.084 31.925
VE 0.291 0.319 0.352 0.357 0.314

We = 4.133VE 1.203 1.318 1.453 1.474 1.296
IDe = log2(De/We+1) 1.422 1.983 2.695 3.574 4.680

MT 192.947 284.017 433.801 572.673 795.101

TA

Target Distance 2.000 4.000 8.000 16.000 32.000
CE 0.575 0.533 −0.103 −2.500 −4.641

De = Target Distance+CE 2.575 4.533 7.898 13.500 27.359
VE 1.159 1.104 1.551 2.946 5.476

We = 4.133VE 4.789 4.562 6.410 12.176 22.629
IDe = log2(De/We+1) 0.621 0.995 1.158 1.076 1.143

MT 86.705 122.725 155.508 206.173 290.413

Table 4. Effective distanceDe, effective widthWe, effective index of dif-
ficulty IDe, and related quantities for the pointing with manual release
(PM) and tossing with automatic release (TA) conditions.

To find the index of performanceIP for each technique, one
approach is to defineIP = 1/b whereb is the slope of the
regression line. This results inIP = 1/(184.438 ms/bit) =
5.42 bits/s for the PM condition, andIP= 1/(253.773 ms/bit)=
3.94 bits/s for TA. However, theIP = 1/bdefinition has the



Linear Regression of
MT with respect toIDe

slope intercept r
PM: 184.438 −73.798 0.999
TA: 253.773 −81.182 0.707

Table 5. Linear regressions ofMT using effective index of difficulty.

disadvantage of not taking into account the intercepta of
the regression. Furthermore, we note that in Table 4, all the
IDe values for TA are below 1.2 bits (making it all the more
important to takea into account), and ther value for TA in
Table 5 is only about 0.7. Thus, it is doubtful that the slope
of the regression line for TA will, by itself, accurately reflect
the bandwidth of the technique.

An alternative definition of the index of performance isIP=
IDe/MT, whereIDe and MT are the average effective in-
dex of difficulty and average movement time, respectively
(see [41, 39] for discussion of these and other approaches
to calculating index of performance). This definition im-
plicitly takes into account the intercepta, but has the dis-
advantage that it depends on the range of (distance,width)
target values used in the experiment. However, as already
mentioned, the target distances were chosen to cover most,
if not all, of the full range of reasonable tossing speeds,
thus we expect this definition to yield more meaningful val-
ues ofIP. Performing the calculation, in the PM condition,
IP= (2.871 bits)/(455.708 ms) =6.30 bits/s, and in the TA
condition, IP = (0.999 bits)/(172.305 ms) =5.80 bits/s.
The difference inIP values is less than 10%.

Thus, although tossing is faster than pointing, these calcula-
tions indicate that the loss of precision with tossing is such
that information cannot be expressed quite as efficiently with
tossing as it can be with pointing. Of course, our experiment
only tested one set of conditions, and future work may find
different results. However, assuming that tossing has indeed
a smaller bandwidth than pointing, it would seem unwise
to design interfaces where input is done exclusively through
tossing, without any pointing. However, a case can still be
made for interfaces that use a mixture of pointing and tossing
for input. In a later section of this paper, we discuss mecha-
nisms by which a user could switch between normal pointing
and tossing. Performing such a switch is one way of telling
the system that the user is interested in a different class of
targets or a different class of actions, and would allow the
user to perform fast, imprecise, distant displacements with
tossing whenever desired. More generally, an interface could
also be designed to support switching between normal point-
ing and one of several other possible input schemes (such
as object pointing [22], a bubble cursor [21, 10], or normal
pointing with a larger gain). However, having tossing as the
2nd mode has the advantage that tossing has a familiar, nat-
ural metaphor in real life, and may be easier to understand
for users than other input schemes.

ERROR RATE AS A FUNCTION OF NUMBER OF TAR-

GETS

Although Figure 10 indicates that there should be room for a
3rd target, this is based on targets having an effective width
of 4.133 standard deviations (i.e.±

√

πe/2σ ≈ ±2.066σ
around the mean), corresponding to an error rate of

1−erf(
√

πe/2/
√

2)≈ 4%

If a higher error rate is tolerable (or a lower error rate is
required), or the experimental conditions are modified, then
the number of allowable targets may change. Hence, we now
show how to calculate, in general, the optimal placement of
N of targets, and the estimated error rate that should result
from this.

Let x1 and xN be target distances within the range of dis-
tances that a user can reasonably achieve, withx1 near the
lower end, andxN near the upper end. We wish to choose
intermediate target distancesx2, . . . ,xN−1 that minimize the
overlap between the distributions of final positions and thus
minimize the error rate. LetbCE,mCE,bVE,mVE be slope and
intercept regression constants for constant error and variable
error, as in Tables 2 and 3. To simplify our analysis, we
initially assume thatbCE = bVE = 0. Figure 11 illustrates.
For each target distancex, the distribution of final positions
is centered around the meanµ = x+mCEx, corresponding
to a point on the solid line in Figure 11 whose equation is
y = x+ mCEx. The portion of a target’s distribution that
does not overlap (iny) with other targets corresponds to
y= µ±zσ , wherez is a z-score. These non-overlapping por-
tions are delimited by the dashed lines in Figure 11, whose
equations arey= x+mCEx±z(mVEx). (In Figures 6-10, the
dashed lines correspond to a z-score ofz= 4.133/2, whereas
z has an unknown value in Figure 11.) As can be seen, the
non-overlapping portions of the distributions form the verti-
cal segments of a staircase pattern.

GivenN, x1, xN, we would like to calculatezand the associ-
ated error rate. The staircase pattern in Figure 11 results in
the valuesx1, . . . ,xN forming a geometric sequence. (To see
this, consider the triangles bounded by the horizontal axis
y= 0, the (dotted) vertical linesx= xi for i = 1, . . . ,N, and
any of the (solid or dashed) diagonal lines in the figure, and
note how these triangles are similar.) The scale factor of the
geometric sequence is

s=
x2

x1
= . . .=

xN

xN−1
= N−1

√
xN

x1

Next, consider the value ofy∗, at the boundary between the
last two targets, located betweenyN−1 andyN. The value of
y∗ can be expressed either as that ofyN−1 plus half a step
(of appropriate size), or asyN minushalf a step (again, of
appropriate size). To be precise,

y∗ = yN−1+z(mVExN−1) = yN −z(mVExN)

Expanding the expressions foryN−1 andyN,

(1+mCE)xN−1+z(mVExN−1) = (1+mCE)xN −z(mVExN)

Substituting inxN = s xN−1 and solving forz, we find

z=
(1+mCE)

mVE

(s−1)
(s+1)



Figure 11. A theoretical “staircase” pattern formed by having N targets
to toss to (in this case,N = 4). The dashed lines delimit the vertical
segments of the “stairs”, i.e. the portions of the distributions that do
not overlap. Any tosses that fall outside the dashed lines are errors,
because they will be misinterpreted as tosses to a different target. In
other words, each target is effectively a vertical segment centered at
someyi , and the user must toss within the vertical segment.

Finally, assuming normal distributions, the error rate that
should result from this non-overlap is 1−erf(z/

√
2).

If we now allow for non-zero values ofbCE or bVE, it turns
out that the only calculation that changes is of the scale fac-
tor, which becomes

s= N−1

√

xN +bVE/mVE

x1+bVE/mVE

The values ofz and of the error rate are calculated using the
same expressions as before.

Taking the experimental results in the tossing with automatic
release condition, we setx1 = 2, xN = 32, mCE = −0.1847,
mVE = 0.1508, andbVE = 0.5767. We can then find the
theoretical error rate as a function of the number of buttons
N, as reported in Table 6.

N s z error rate
3 2.480 2.299 2.148 %
4 1.832 1.589 11.214 %
5 1.575 1.207 22.743 %

Table 6. Theoretical prediction of the error rate, and other parameters,
as a function of the number of discrete tossing targetsN, for tossing
with automatic release.

Although we have not tested theN = 3 case with an appro-
priately positioned intermediate target, both Figure 10 and
the above calculations indicate that users should be able to

toss toward 3 targets in the same direction with an error rate
below 4%.

The theoretical error rate of 11% forN = 4 is rather high,
however it may be acceptable in certain applications where
the cost of an error is low. It is also possible that with a
different input device, and/or a better mechanism for per-
forming automatic release, the error rate forN = 4 might be
reduced.

INTEGRATING TOSSING IN STANDARD USER INTERFACES
For practical applications, an interesting design question is
how to allow users to use tossing without interfering with
already existing mouse actions (pointing, clicking, and nor-
mal dragging) in status quo user interfaces. If tossing is only
possible when moving with the mouse button (or stylus tip)
held down, then clearly tossing will not interfere with nor-
mal pointing and clicking (i.e. press-releasing). The only
problem that would remain is disambiguating normal drag-
ging from tossing. Furthermore, of all the objects (icons,
windows, etc.) in an interface that might be dragged, the de-
signer may deem some of these objects as “non-tossable”.
Initiating a drag on such objects, then, would never be inter-
preted as a toss. Objects thatcan be tossed might be indi-
cated as such by a special highlighting color or cursor shape
when the cursor is over them. To allow both tossing and nor-
mal dragging of such “tossable” objects, various approaches
are possible for disambiguating the two actions. The ap-
proach taken in [37, 2] is to use the velocity at release time
to disambiguate dragging (a release velocity near zero) and
tossing (a release velocity above some threshold). However,
this approach cannot be used in conjunction with automatic
release at peak velocity, which our experiment showed to be
more precise than manual release. The following are some
alternative approaches that assume tossing is performed with
automatic release:

1. To toss an object, press over it and drag faster than some
minimum threshold speed. Dragging slower than the thresh-
old is interpreted as a normal drag. (Unfortunately, this
could prevent users from dragging an object to a desired
location as quickly as they would like to, and could also
increase the lowest target speed for tossing, thus reducing
the available range[x1,xN] for discrete tossing targets.)

2. To toss an object, press over it and drag. To drag an
object normally, press-pause over it (i.e. press and then
wait for some small span of time, such as 300ms), waiting
for some visual confirmation (such as a change in cursor
shape) that the object will not be tossed, and then drag
normally.

3. To toss or normally drag an object, press over it and drag.
During dragging, the system continually looks for veloc-
ity peaks in the user’s motion, and highlights the location
that the object would be tossed to if the toss is accepted
by the user. (Alternatively, the object could be tentatively
moved to the final location, and would spring back if the
user declines the offered toss.) To accept the offered fi-
nal position of a toss, the user releases the mouse button
immediately. To ignore or decline a tossed position, the



user can continue dragging to new locations, and can also
dwell over a location (say, for 300ms) to decline the most
recently offered toss and then release to drop the object
at the position dragged to. This approach is similar to the
previous one, except that the pause is moved to the end of
the normal drag action.

4. To toss an object, press over it and drag. To drag an object
normally, press-release (or press-release-press-release, as
in a double click) over it to “attach” it to the cursor, then
move to the destination location (without holding down
the button), and press-release to “drop” the object. (This
approach has the disadvantage that press-release and dou-
ble clicking are often already used for selecting and open-
ing an object, respectively.)

5. To toss an object, press over it and drag. To drag an object
normally, press-release-press (i.e. one-and-a-half clicks)
over it to grab it, drag to the destination location (while
holding down the button), and release to drop the object.

6. Use one button for normal dragging, and another button
(or the same button with a keyboard modifier key) for
tossing. (This approach has the disadvantage that it is
more difficult to use with a stylus, and it requires using
two hands or may require using a button that is already
mapped to a function such as the common right-click menu.)

7. Use a virtual button or widget to switch between normal
dragging and tossing. For example, thetrailing widget in
[19] could be used to perform such switching, generally
remaining close to the cursor for easy access but also usu-
ally out of the user’s way.

Approach #6 above is an obvious one to take when using a
mouse with more than one button and/or a keyboard. The
fact that the right mouse button may already be mapped to a
right-click menu need not be a major obstacle, since a right-
press-release (or right-press-pause) could still open the menu
normally, while a right-press-drag would initiate a toss (or a
normal drag, as the case may be).

Approach #5 listed above may be the most viable, since it
can be used with a stylus without any extra buttons, does not
require slowing the user down with any imposed pauses, and
makes use of a one-and-a-half click action that, as far as we
know, is not currently mapped to an operation in any existing
interface.

Tossing within an interface could be done toward a contin-
uous range of locations, or toward a set of discrete targets.
Examples of cases where it could make sense to have a set of
discrete tossing targets defined include (1) tossing icons into
windows or into folders, (2) tossing thumbnails of photos
into piles or groups of photos, (3) tossing windows toward
the edges of the screen or toward empty spaces2 located be-
tween other windows, (4) tossing the thumb of a scrollbar
toward chapter boundaries within a document or toward the

2Such empty spaces could be automatically found using the tech-
nique in [6].

first or last page of the entire document, (5) tossing the cur-
sor itself toward widgets (buttons, menus, tool palettes, etc.)
that it can interact with, as a shortcut to pointing.

Since Figure 10 and Table 6 indicate that only 3 discrete tar-
gets could be reliably tossed to in the same direction, we
must consider what to do if there are more than 3 discrete
targets in a given direction. One possibility is, when the user
moves their cursor over a tossable object, the system could
highlight the 3 most likely tossing targets in each direction
(where likelihood could be a function of past usage and/or of
the compatibility of object and target types (see§4.1 of [5]
for related strategies for determining candidate drop sites)).
If the user tosses the object, the “slow”, “medium”, and
“fast” tossing speeds would be mapped to the closest, in-
termediate, and farthest highlighted targets in the appropri-
ate direction. This approach would mean that if the user
wishes to move the object to a target that isn’t highlighted,
they would probably drag it normally instead of tossing.

Another possible approach is to highlight the 3 closest tar-
gets in each direction, and to allow the user tore-tossan ob-
ject one or more times before releasing the mouse button. In
effect, the first velocity peak detected would cause a toss, but
also rigidly “connect” the cursor to the object (now possibly
far away), enabling additional tosses to be performed, until
the button is released at which point the connection would
disappear. Such re-tossing would be useful not just for toss-
ing farther than the 3 closest targets, but also for correcting
an erroneous toss.

In the superflick [37] technique, the tossed object is released
when the user lifts the stylus tip (equivalent to releasing a
mouse button), at which point the final position of the toss
is immediately displayed, and an animation also plays out,
showing the motion of the object to its final position. Dur-
ing this animation, the user may click and drag a second
time to displace the final position in a relative manner, again
as if there were a rigid connection between the final toss lo-
cation and the pointing device. (Also, during such correc-
tive displacements, the C:D ratio is temporarily changed to
1:4.) Thus, tossing and correcting with superflick requires
two press-drag-release actions. In contrast, if an automatic
release technique were used, tossing could be performed by
press-dragging, and then corrections could be performed (ei-
ther by re-tossing, as describing in the previous paragraph,
or by displacing the final position with relative motions) all
within a singledrag. Such a technique would improve the
precision of the initial toss, and also have the advantage that
the user would not have to wait for an animation to termi-
nate before clicking and dragging to initiate some other ac-
tion. Although an animation could still be played out, the
user could release immediately if they see that no correction
is necessary, and move on to some other action before the
animation has finished. An additional improvement to the
superflick technique would be to change the C:D ratio dur-
ing corrections tok:v0, wherek is some constant andv0 is
the release velocity. Thus, the C:D ratio would scale with the
release velocity, rather than being fixed at 1:4. This is moti-
vated by the fact that our experiment found that the standard



deviation in final tossed position varies linearly withv0, thus
faster tosses will usually require larger corrections.

Finally, after a toss is performed, there are a few forms of
visual feedback that could be displayed. [37] displays the fi-
nal location of the toss as well as an animation of the tossed
object moving toward that location. To save time, an alterna-
tive form of feedback that might be easier to see when played
out at high speed would be a visual “smoke trail” or semi-
transparent streak toward the final location, that fades out
over a short period of time. Also of potential use would be
visual feedback indicating the peak velocity achieved, with
respect to the “slow”, “intermediate”, and “fast” speeds, per-
haps on a small linear scale that is popped up for a moment.
This would allow the user to see if their toss was nearly (or
only slightly) misinterpreted, enabling them to calibrate their
speed in subsequent tosses. Finally, to allow easy undoing
of unintentional tosses, a small virtual button could be tem-
porarily popped up close to the cursor’s position. Moving
toward the button and clicking on it would undo the toss,
and moving away from it (which would usually happen nat-
urally if the button is ignored) would cause the virtual button
to disappear.

CONCLUSIONS
Our experimental study confirmed that tossing is significantly
faster than pointing, but is also significantly less precise.
The movement time associated with tossing was found to
increase linearly with the index of difficulty of the targets,
and the constant error and variable error were found to in-
crease linearly with the distance to the target. We found no
evidence that users can trade off movement time for preci-
sion during tossing, as they can in traditional pointing. From
these results, we calculated the index of performance asso-
ciated with tossing, and found it to be less than 10% lower
than the index of performance associated with pointing. We
also showed how to calculate the optimal arrangement of a
given number of targets in velocity space, and calculate the
predicted error rate that results from such an arrangement.
We predict that 3 optimally positioned targets along a single
direction would allow for tossing with an error rate below
4%.

We also demonstrated that tossing precision is significantly
improved by automatically releasing at the peak velocity,
without requiring a longer movement time. On the other
hand, automatically releasing during traditional pointing when
the velocity drops below a threshold significantly worsened
precision.

Finally, we have discussed several approaches for integrating
tossing within user interfaces alongside normal pointing and
dragging.

FUTURE DIRECTIONS
One obvious direction for future work would be to test the
error rates that we predict for arrangements of three or four
discrete targets in the velocity domain, and to test this for
tossing movements in different directions. We have also
discussed ways that the superflick technique [37] could be

improved to allow tossing with correction in a single press-
drag-release, using automatic release, and using a C:D ratio
during correction that depends on the release velocity. This
improved superflick technique could also be tested experi-
mentally.

We also suspect that the automatic release technique that we
described forpointing, which was shown to worsen perfor-
mance, might be improved if the threshold speed used to de-
termine when the user has stopped was made proportional to
the peak velocity. Such automatic detection of the endpoint
of a pointing motion might be useful in interfaces where the
user cannot perform explicit clicks, e.g. with eye trackers,
and might prove superior to using a dwell time threshold for
“clicking”.

Future work could also test the effect of different input de-
vices (e.g. mouse versus stylus) as well as different feed-
back. For example, showing an animation of a virtual ob-
ject decelerating to a final position, as done in [37], would
be more congruent with our everyday real world experience,
and might allow users to better adapt their subsequent mo-
tions. Different friction models could be tested for driving
such animation, such as the kinetic and fluid friction we
discussed. (Also of interest might be a friction model that
results in distance traveledD being a logarithmic function
of release velocityv0, so that the magnitude of the vari-
able error inD is independent ofD, “evenly distributing”
error across distance.) Haptic feedback might also be useful
for improving tossing performance, to provide, for example,
cues about the weight of a virtual object, and/or signal when
release has occurred.

It could also be worthwhile to explore designs for widgets
based on velocity input. For example, “speed-dependent
marking menus” have been proposed [35] where options are
selected with strokes of varying direction and speed (analo-
gous to the pressure marking menu in [36] that is sensitive
to pen pressure, or bullseye menus [20] that are sensitive
to stroke length, in addition to direction). Taking this idea
further, researchers might try to design a graphical interface
that uses tossing and velocity-based actions as much as pos-
sible, perhaps creating a “Tossy” interface in a spirit similar
to CrossY [3] which is designed around crossing actions.
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