
HAL Id: hal-00702665
https://hal.inria.fr/hal-00702665v2

Submitted on 31 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certifying and reasoning on cost annotations in C
programs

Nicolas Ayache, Roberto Amadio, Yann Régis-Gianas

To cite this version:
Nicolas Ayache, Roberto Amadio, Yann Régis-Gianas. Certifying and reasoning on cost annotations
in C programs. FMICS 2012 - 17th International Workshop on Formal Methods for Industrial Critical
Systems, Aug 2012, Paris, France. �hal-00702665v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49891265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00702665v2
https://hal.archives-ouvertes.fr

Certifying and reasoning on cost annotations in
C programs

Nicolas Ayache1,2 Roberto M. Amadio1 Yann Régis-Gianas1,2

1 Université Paris Diderot (UMR-CNRS 7126)
2 INRIA (Team πr2)

Abstract We present a so-called labelling method to enrich a compiler
in order to turn it into a “cost annotating compiler”, that is, a compiler
which can lift pieces of information on the execution cost of the object
code as cost annotations on the source code. These cost annotations
characterize the execution costs of code fragments of constant complexity.
The first contribution of this paper is a proof methodology that extends
standard simulation proofs of compiler correctness to ensure that the
cost annotations on the source code are sound and precise with respect
to an execution cost model of the object code.
As a second contribution, we demonstrate that our label-based instru-
mentation is scalable because it consists in a modular extension of the
compilation chain. To that end, we report our successful experience in
implementing and testing the labelling approach on top of a prototype
compiler written in ocaml for (a large fragment of) the C language.
As a third and last contribution, we provide evidence for the usability
of the generated cost annotations as a mean to reason on the concrete
complexity of programs written in C. For this purpose, we present a
Frama-C plugin that uses our cost annotating compiler to automatically
infer trustworthy logic assertions about the concrete worst case execution
cost of programs written in a fragment of the C language. These logic
assertions are synthetic in the sense that they characterize the cost of
executing the entire program, not only constant-time fragments. (These
bounds may depend on the size of the input data.) We report our ex-
perimentations on some C programs, especially programs generated by
a compiler for the synchronous programming language Lustre used in
critical embedded software.

1 Introduction

The formal description and certification of software components is reaching a
certain level of maturity with impressing case studies ranging from compilers
to kernels of operating systems. A well-documented example is the proof of
functional correctness of a moderately optimizing compiler from a large subset
of the C language to a typical assembly language of the kind used in embedded
systems [10].

In the framework of the Certified Complexity (CerCo) project1 [3], we aim
to refine this line of work by focusing on the issue of the execution cost of

1 CerCo project http://cerco.cs.unibo.it

the compiled code. Specifically, we aim to build a formally verified C compiler
that given a source program produces automatically a functionally equivalent
object code plus an annotation of the source code which is a sound and precise
description of the execution cost of the object code.

We target in particular the kind of C programs produced for embedded ap-
plications; these programs are eventually compiled to binaries executable on
specific processors. The current state of the art in commercial products such as
Scade2 [7] is that the reaction time of the program is estimated by means of
abstract interpretation methods (such as those developed by AbsInt3 [6]) that
operate on the binaries. These methods rely on a specific knowledge of the archi-
tecture of the processor and may require explicit (and uncertified) annotations
of the binaries to determine the number of times a loop is iterated (see, e.g., [13]
for a survey of the state of the art).

In this context, our aim is to produce a mechanically verified compiler which
can lift in a provably correct way the pieces of information on the execution
cost of the binary code to cost annotations on the source C code. Then the pro-
duced cost annotations are manipulated with the Frama− C4 [4] automatic tool
to infer synthetic cost annotations. We stress that the practical relevance of the
proposed approach depends on the possibility of obtaining accurate information
on the execution cost of relatively short sequences of binary instructions. This
seems beyond the scope of current Worst-Case Execution Time (WCET) tools
such as AbsInt or Chronos5 which do not support a compositional analysis of
WCET. For this reason, we focus on processors with a simple architecture for
which manufacturers can provide accurate information on the execution cost of
the binary instructions. In particular, our experiments are based on the 8051 [9]6.
This is a widely popular 8-bits processor developed by Intel for use in embedded
systems with no cache and no pipeline. An important characteristic of the pro-
cessor is that its cost model is ‘additive’: the cost of a sequence of instructions
is exactly the sum of the costs of each instruction.

The rest of the paper is organized as follows. Section 2 describes the la-
belling approach and its formal application to a toy compiler. Appendix A gives
standard definitions for the toy compiler and sketches the proofs. A formal and
browsable Coq development composed of 1 Kloc of specifications and 3.5 Kloc
of proofs is available at http://www.pps.univ-paris-diderot.fr/cerco. Sec-
tion 3 reports our experience in implementing and testing the labelling approach
for a compiler from C to 8051 binaries. The CerCo compiler is composed of 30
Kloc of ocaml code; it can be both downloaded and tested as a web application
at the URL above. More details are available in Appendix B. Section 4 intro-
duces the automatic Cost tool that starting from the cost annotations produces

2 Esterel Technologies. http://www.esterel-technologies.com.
3 AbsInt Angewandte Informatik. http://www.absint.com/.
4 Frama− C software analyzers. http://frama-c.com/.
5 Chronos tool. www.comp.nus.edu.sg/~rpembed/chronos.
6 The recently proposed ARM Cortex M series would be another obvious candidate.

certified synthetic cost bounds. This is a Frama− C plug-in composed of 5 Kloc
of ocaml code also available at the URL above.

2 A “labelling” method for cost annotating compilation

In this section, we explain in general terms the so-called “labelling” method to
turn a compiler into a cost annotating compiler while minimizing the impact
of this extension on the proof of the semantic preservation. Then to make our
purpose technically precise, we apply the method to a toy compiler.

2.1 Overview

As a first step, we need a clear and flexible picture of: (i) the meaning of cost
annotations, (ii) the method to provide them being sound and precise, and (iii)
the way such proofs can be composed. The execution cost of the source pro-
grams we are interested in depends on their control structure. Typically, the
source programs are composed of mutually recursive procedures and loops and
their execution cost depends, up to some multiplicative constant, on the num-
ber of times procedure calls and loop iterations are performed. Producing a cost
annotation of a source program amounts to:

– enrich the program with a collection of global cost variables to measure re-
source consumption (time, stack size, heap size,. . .)

– inject suitable code at some critical points (procedures, loops,. . .) to keep
track of the execution cost.

Thus, producing a cost-annotation of a source program P amounts to build an
annotated program An(P) which behaves as P while self-monitoring its execution
cost. In particular, if we do not observe the cost variables then we expect the
annotated program An(P) to be functionally equivalent to P . Notice that in the
proposed approach an annotated program is a program in the source language.
Therefore, the meaning of the cost annotations is automatically defined by the
semantics of the source language and tools developed to reason on the source
programs can be directly applied to the annotated programs too. Finally, notice
that the annotated program An(P) is only meant to reason on the execution
cost of the unannotated program P . Therefore, An(P) will never be compiled,
nor executed. Hence, the influence of cost annotations on the WCET is off-topic.

Soundness and precision of cost annotations Suppose we have a functionally
correct compiler C that associates with a program P in the source language a
program C(P) in the object language. Further suppose we have some obvious
way of defining the execution cost of an object code. For instance, we have a good
estimate of the number of cycles needed for the execution of each instruction of
the object code. Now, the annotation of the source program An(P) is sound if its
prediction of the execution cost is an upper bound for the ‘real’ execution cost.
Moreover, we say that the annotation is precise with respect to the cost model
if the difference between the predicted and real execution costs is bounded by a
constant which only depends on the program.

Compositionality In order to master the complexity of the compilation process
(and its verification), the compilation function C must be regarded as the result of
the composition of a certain number of program transformations C = Ck ◦· · ·◦C1.
When building a system of cost annotations on top of an existing compiler, a
certain number of problems arise. First, the estimated cost of executing a piece
of source code is determined only at the end of the compilation process. Thus,
while we are used to define the compilation functions Ci in increasing order,
the annotation function An is the result of a progressive abstraction from the
object to the source code. Second, we must be able to foresee in the source
language the looping and branching points of the object code. Missing a loop
may lead to unsound cost annotations while missing a branching point may lead
to rough cost predictions. This means that we must have a rather good idea
of the way the source code will eventually be compiled to object code. Third,
the definition of the annotation of the source code depends heavily on contextual
information. For instance, the cost of the compiled code associated with a simple
expression such as x+1 will depend on the place in the memory hierarchy where
the variable x is allocated. A previous experience described in [1] suggests that
the process of pushing ‘hidden parameters’ in the definitions of cost annotations
and of manipulating directly numerical cost is error prone and produces complex
proofs. For this reason, we advocate next a ‘labelling approach’ where costs are
handled at an abstract level and numerical values are produced at the very end
of the construction.

2.2 The labelling approach, formally

The ‘labelling’ approach to the problem of building cost annotations is summa-
rized in the following diagram.

L1 L1,`I
oo

er1

		

C1 // L2,`

er2

��

. . .
Ck // Lk+1,`

erk+1

��
L1

L

II

C1 // L2
. . .

Ck // Lk+1

er i+1 ◦ Ci = Ci ◦ er i
er1 ◦ L = idL1

An = I ◦ L

For each language Li considered in the compilation process, we define an ex-
tended labelled language Li,` and an extended operational semantics. The labels
are used to mark certain points of the control. The semantics makes sure that
whenever we cross a labelled control point a labelled and observable transition
is produced.

For each labelled language there is an obvious function er i erasing all labels
and producing a program in the corresponding unlabelled language. The com-
pilation functions Ci are extended from the unlabelled to the labelled language
so that they enjoy commutation with the erasure functions. Moreover, we lift

the soundness properties of the compilation functions from the unlabelled to the
labelled languages and transition systems.

A labelling L of the source language L1 is a function such that erL1 ◦L is the
identity function. An instrumentation I of the source labelled language L1,` is a
function replacing the labels with suitable increments of, say, a fresh global cost
variable. Then, an annotation An of the source program can be derived simply as
the composition of the labelling and the instrumentation functions: An = I ◦L.

Suppose s is some adequate representation of the state of a program. Let P
be a source program. The judgement (P, s) ⇓ s′ is the big-step evaluation of P
transforming state s into a state s′. Let us write s[v/x] to denote a state s in
which the variable x is assigned a value v. Suppose now that its annotation
satisfies the following property:

(An(P), s[c/cost]) ⇓ s′[c+ δ/cost] (1)

where c and δ are some non-negative numbers. Then, the definition of the instru-
mentation and the fact that the soundness proofs of the compilation functions
have been lifted to the labelled languages allows to conclude that

(C(L(P)), s[c/cost]) ⇓ (s′[c/cost], λ) (2)

where C = Ck ◦ · · · ◦ C1 and λ is a sequence (or a multi-set) of labels whose ‘cost’
corresponds to the number δ produced by the annotated program. Then, the
commutation properties of erasure and compilation functions allows to conclude
that the erasure of the compiled labelled code erk+1(C(L(P))) is actually equal
to the compiled code C(P) we are interested in. Given this, the following question
arises: under which conditions the sequence λ, i.e., the increment δ, is a sound
and possibly precise description of the execution cost of the object code?

To answer this question, we observe that the object code we are interested in
is some kind of assembly code and its control flow can be easily represented as a
control flow graph. The idea is then to perform two simple checks on the control
flow graph. The first check is to verify that all loops go through a labelled node.
If this is the case then we can associate a finite cost with every label and prove
that the cost annotations are sound. The second check amounts to verify that
all paths starting from a label have the same cost. If this check is successful then
we can conclude that the cost annotations are precise.

2.3 A toy compiler

As a first case study, we apply the labelling approach to a toy compiler.
The syntax of the source, intermediate and target languages is given in Fig-

ure 1. The three languages considered can be shortly described as follows: Imp is
a very simple imperative language with pure expressions, branching and looping
commands, Vm is an assembly-like language enriched with a stack, and Mips is
a Mips-like assembly language [8] with registers and main memory.

The semantics of Imp is defined over configurations (S,K, s) where S is a
statement, K is a continuation and s is a state. A continuation K is a list of

Syntax for Imp

id ::= x || y || . . .
n ::= 0 || −1 || +1 || . . .
v ::= n || true || false
e ::= id || n || e+ e
b ::= e < e
S ::= skip || id := e || S;S
|| if b then S else S
|| while b do S

P ::= prog S

Syntax for Vm

instrVm ::= cnst(n) || var(n)
|| setvar(n) || add
|| branch(k) || bge(k) || halt

Syntax for Mips

instrMips ::= loadiR,n || loadR, l
|| storeR, l || addR,R,R
|| branch k || bgeR,R, k || halt

Figure1: Syntax definitions.

commands which terminates with a special symbol halt. The semantics of Vm
is defined over stack-based machine configurations C ` (i, σ, s) where C is a
program, i is a program counter, σ is a stack and s is a state. The semantics of
Mips is defined over register-based machine configurations C ` (i,m) where C is
a program, i is a program counter and m is a machine memory (with registers
and main memory).

The first compilation function C relies on the stack of the Vm language to im-
plement expression evaluation while the second compilation function C′ allocates
(statically) the base of the stack in the registers and the rest in main memory.
This is of course a naive strategy but it suffices to expose some of the problems
that arise in defining a compositional approach. The formal definitions of these
compilation functions C from Imp to Vm and C′ from Vm to Mips are standard
and thus eluded. (See Appendix A for formal details about semantics and the
compilation chain.)

Applying the labelling approach to this toy compiler results in the following
diagram. The next sections aim at describing this diagram in details.

Imp Imp`I
oo

er Imp

		

C // Vm`

erVm

��

C′ // Mips`

erMips

��
Imp

L

II

C // Vm
C′ // Mips

erVm ◦ C = C ◦ er Imp

erMips ◦ C′ = C′ ◦ erVm
er Imp ◦ L = idImp

An Imp = I ◦ L

2.4 Labelled languages: Syntax and Semantics

Syntax The syntax of Imp is extended so that statements can be labelled: S ::=
. . . || ` : S. A new instruction emit(`) (resp. (emit `)) is introduced in the syntax
of Vm (resp. Mips).

Semantics The small step semantics of Imp statements is extended as described
by the following rule.

(` : S,K, s)
`−→ (S,K, s)

We denote with λ, λ′, . . . finite sequences of labels. In particular, the empty
sequence is written ε. We also identify an unlabelled transition with a transition
labelled with ε. Then, the small step reduction relation we have defined on
statements becomes a labelled transition system. We derive a labelled big-step

semantics as follows: (S, s) ⇓ (s′, λ) if (S, halt, s)
λ1−→ · · · λn−−→ (skip, halt, s′) and

λ = λ1 · · ·λn.
Following the same pattern, the small step semantics of Vm and Mips are

turned into a labelled transition system as follows:

C ` (i, σ, s)
`−→ (i+ 1, σ, s) if C[i] = emit(`) .

M ` (i,m)
`−→ (i+ 1,m) if M [i] = (emit `) .

The evaluation predicate for labelled Vm is defined as (C, s) ⇓ (s′, λ) if C `
(0, ε, s)

λ1−→ · · · λn−−→ (i, ε, s′), λ = λ1 · · ·λn and C[i] = halt. The evaluation

predicate for labelled Mips is defined as (M,m) ⇓ (m′, λ) if M ` (0,m)
λ1−→

· · · λn−−→ (j,m′), λ = λ1 · · ·λn and M [j] = halt.

2.5 Erasure functions

There is an obvious erasure function er Imp from the labelled language to the
unlabelled one which is the identity on expressions and boolean conditions, and
traverses commands removing all labels.

The erasure function erVm amounts to remove from a Vm code C all the
emit(`) instructions and recompute jumps accordingly. Specifically, let n(C, i, j)
be the number of emit instructions in the interval [i, j]. Then, assuming C[i] =
branch(k) we replace the offset k with an offset k′ determined as follows:

k′ =

{
k − n(C, i, i+ k) if k ≥ 0
k + n(C, i+ 1 + k, i) if k < 0

The erasure function erMips is also similar to the one of Vm as it amounts to
remove from a Mips code all the (emit `) instructions and recompute jumps ac-
cordingly. The compilation function C′ is extended to Vm` by simply translating
emit(`) as (emit `):

C′(i, C) = (emit `) if C[i] = emit(`)

2.6 Compilation of labelled languages

The compilation function C is extended to Imp` by defining:

C(` : b, k) = (emit(`)) · C(b, k) C(` : S) = (emit(`)) · C(S) .

Proposition 1. For all commands S in Imp`, we have that:

(1) erVm(C(S)) = C(er Imp(S)).

(2) If (S, s) ⇓ (s′, λ) then (C(S), s) ⇓ (s′, λ).

The following proposition relates Vm` code and its compilation and it is
similar to proposition 1. Here m ‖−σ, s means “the low-level Mips memory m
realizes the Vm stack σ and state s”.

Proposition 2. Let C be a Vm` code. Then:

(1) erMips(C′(C)) = C′(erVm(C)).

(2) If (C, s) ⇓ (s′, λ) and m ‖−ε, s then (C′(C),m) ⇓ (m′, λ) and m′ ‖−ε, s′.

2.7 Labellings and instrumentations

Assuming a function κ which associates an integer number with labels and a
distinct variable cost which does not occur in the program P under consideration,
we abbreviate with inc(`) the assignment cost := cost + κ(`). Then we define
the instrumentation I (relative to κ and cost) as follows:

I(` : S) = inc(`); I(S) .

The function I just distributes over the other operators of the language. We
extend the function κ on labels to sequences of labels by defining κ(`1, . . . , `n) =
κ(`1) + · · · + κ(`n). The instrumented Imp program relates to the labelled one
as follows.

Proposition 3. Let S be an Imp` command. If (I(S), s[c/cost]) ⇓ s′[c+ δ/cost]
then ∃λ κ(λ) = δ and (S, s[c/cost]) ⇓ (s′[c/cost], λ).

Definition 1. A labelling is a function L from an unlabelled language to the
corresponding labelled one such that er Imp ◦L is the identity function on the Imp
language.

Proposition 4. For any labelling function L, and Imp program P , the following
holds:

erMips(C′(C(L(P))) = C′(C(P)) . (3)

Proposition 5. Given a function κ for the labels and a labelling function L, for
all programs P of the source language if (I(L(P)), s[c/cost]) ⇓ s′[c+ δ/cost] and
m ‖−ε, s[c/cost] then (C′(C(L(P))),m) ⇓ (m′, λ), m′ ‖−ε, s′[c/cost] and κ(λ) =
δ.

2.8 Sound and precise labellings

With any Mips` code M , we can associate a directed and rooted (control flow)
graph whose nodes are the instruction positions {0, . . . , |M | − 1}, whose root
is the node 0, and whose directed edges correspond to the possible transitions
between instructions. We say that a node is labelled if it corresponds to an
instruction emit `.

Definition 2. A simple path in a Mips` code M is a directed finite path in
the graph associated with M where the first node is labelled, the last node is
the predecessor of either a labelled node or a leaf, and all the other nodes are
unlabelled.

Definition 3. A Mips` code M is soundly labelled if in the associated graph the
root node 0 is labelled and there are no loops that do not go through a labelled
node. Besides, we say that a soundly labelled code is precise if for every label `
in the code, the simple paths starting from a node labelled with ` have the same
cost.

In a soundly labelled graph there are finitely many simple paths. Thus, given a
soundly labelled Mips code M , we can associate with every label ` a number κ(`)
which is the maximum (estimated) cost of executing a simple path whose first
node is labelled with `. Thus for a soundly labelled Mips code the sequence of
labels associated with a computation is a significant information on the execution
cost.

For an example of command which is not soundly labelled, consider ` :
while 0 < x do x := x + 1, which when compiled, produces a loop that does
not go through any label. On the other hand, for an example of a program
which is not precisely labelled consider ` : (if 0 < x then x := x+ 1 else skip). In
the compiled code, we find two simple paths associated with the label ` whose
cost will be quite different in general.

Proposition 6. If M is soundly (resp. precisely) labelled and (M,m) ⇓ (m′, λ)
then the cost of the computation is bounded by κ(λ) (resp. is exactly κ(λ)).

The next point we have to check is that there are labelling functions (of the source
code) such that the compilation function does produce sound and possibly precise
labelled Mips code. To discuss this point, we introduce in table 1 a labelling
function Lp for the Imp language. This function relies on a function “new” which
is meant to return fresh labels and on an auxiliary function L′p which returns a
labelled command and a binary directive d ∈ {0, 1}. If d = 1 then the command
that follows (if any) must be labelled.

Proposition 7. For all Imp programs P , C′(C(Lp(P)) is a soundly and precisely
labelled Mips code.

Once a sound and possibly precise labelling L has been designed, we can
determine the cost of each label and define an instrumentation I whose compo-
sition with L will produce the desired cost annotation.

Lp(prog S) = prog Lp(S)
Lp(S) = let ` = new , (S′, d) = L′p(S) in ` : S′

L′p(S) = (S, 0) if S = skip or S = (x := e)
L′p(if b then S1 else S2) = (if b then Lp(S1) else Lp(S2), 1)
L′p(while b do S) = (while b do Lp(S), 1)
L′p(S1;S2) = let (S′1, d1) = L′p(S1), (S′2, d2) = L′p(S2) in

case d1
0 : (S′1;S′2, d2)
1 : let ` = new in (S′1; ` : S′2, d2)

Table1: A labelling for the Imp language

Definition 4. Given a labelling function L for the source language Imp and a
program P in the Imp language, we define an annotation for the source program
as follows:

An Imp(P) = I(L(P)) .

Proposition 8. If P is a program and C′(C(L(P))) is a sound (sound and pre-
cise) labelling then (An Imp(P), s[c/cost]) ⇓ s′[c + δ/cost] and m ‖−ε, s[c/cost]
entails that (C′(C(P)),m) ⇓ m′, m′ ‖−ε, s′[c/cost] and the cost of the execution
is bounded by (is exactly) δ.

3 A C compiler producing cost annotations

We now consider an untrusted C compiler prototype in ocaml in order to exper-
iment with the scalability of our approach. Its architecture is described below:

C → Clight → Cminor → RTLAbs (front end)
↓

Mips or 8051 ← LIN ← LTL ← ERTL ← RTL (back-end)

The most notable difference with CompCert [10] is that we target the In-
tel 8051 [9] and Mips assembly languages (rather than PowerPc). The compila-
tion from C to Clight relies on the CIL front-end [12]. The one from Clight to RTL
has been programmed from scratch and it is partly based on the Coq definitions
available in the CompCert compiler. Finally, the back-end from RTL to Mips is
based on a compiler developed in ocaml for pedagogical purposes7; we extended
this back-end to target the Intel 8051. The main optimizations the back-end per-
forms are liveness analysis and register allocation, and graph compression. We
ran some benchmarks to ensure that our prototype implementation is realistic.
The results are given in appendix B.9.

This section informally describes the labelled extensions of the languages
in the compilation chain (see Appendix B for details), the way the labels are
propagated by the compilation functions, and the (sound and precise) labelling

7 http://www.enseignement.polytechnique.fr/informatique/INF564/

of the source code. A related experiment concerning a higher-order functional
language of the ML family is described in [2].

3.1 Labelled languages

Both the Clight and Cminor languages are extended in the same way by labelling
both statements and expressions (by comparison, in the toy language Imp we
just used labelled statements). The labelling of expressions aims to capture pre-
cisely their execution cost. Indeed, Clight and Cminor include expressions such
as a1?a2; a3 whose evaluation cost depends on the boolean value a1. As both
languages are extended in the same way, the extended compilation does nothing
more than sending Clight labelled statements and expressions to those of Cminor.

The labelled versions of RTLAbs and the languages in the back-end simply
consist in adding a new instruction whose semantics is to emit a label without
modifying the state. For the CFG based languages (RTLAbs to LTL), this new
instruction is emit label → node. For LIN, Mips and 8051, it is emit label . The
translation of these label instructions is immediate.

3.2 Labelling of the source language

As for the toy compiler, the goals of a labelling are soundness, precision, and
possibly economy. Our labelling for Clight resembles that of Imp for their common
instructions (e.g. loops). We only consider the instructions of Clight that are not
present in Imp8.

Ternary expressions They may introduce a branching in the control flow. We
achieve precision by associating a label with each branch.

Program Labels and Gotos Program labels and gotos are intraprocedural. Their
only effect on the control flow is to potentially introduce an unguarded loop.
This loop must contain at least one cost label in order to satisfy the soundness
condition, which we ensure by adding a cost label right after each program label.

Function calls In the general case, the address of the callee cannot be inferred
statically. But in the compiled assembly code, we know for a fact that the callee
ends with a return statement that transfers the control back to the instruction
following the function call in the caller. As a result, we treat function calls ac-
cording to the following invariants: (1) the instructions of a function are covered
by the labels inside this function, (2) we assume a function call always returns
and runs the instruction following the call. Invariant (1) entails in particular
that each function must contain at least one label. Invariant (2) is of course an
over-approximation of the program behavior as a function might fail to return
because of an error or an infinite loop. In this case, the proposed labelling re-
mains correct: it just assumes that the instructions following the function call
will be executed, and takes their cost into consideration. The final computed
cost is still an over-approximation of the actual cost.

8 We do not consider expressions with side-effects because they are eliminated by CIL.

4 A tool for reasoning on cost annotations

Frama− C is a set of analysers for C programs with a specification language
called ACSL. New analyses can be dynamically added through a plug-in system.
For instance, the Jessie plug-in allows deductive verification of C programs with
respect to their specification in ACSL, with various provers as back-end tools.

We developed the Cost plug-in for the Frama− C platform as a proof of
concept of an automatic environment exploiting the cost annotations produced
by the CerCo compiler. It consists of an ocaml program of 5 Kloc which in first
approximation takes the following actions: (1) it receives as input a C program,
(2) it applies the CerCo compiler to produce a related C program with cost
annotations, (3) it applies some heuristics to produce a tentative bound on the
cost of executing the C functions of the program as a function of the value of their
parameters, (4) the user can then call the Jessie tool to discharge the related proof
obligations. In the following we elaborate on the soundness of the framework,
the algorithms underlying the plug-in, and the experiments we performed with
the Cost tool.

4.1 Soundness

The soundness of the whole framework depends on the cost annotations added
by the CerCo compiler, the synthetic costs produced by the Cost plug-in, the
verification conditions (VCs) generated by Jessie, and the external provers dis-
charging the VCs. The synthetic costs being in ACSL format, Jessie can be used
to verify them. Thus, even if the added synthetic costs are incorrect (relatively
to the cost annotations), the process in its globality is still correct: indeed, Jessie
will not validate incorrect costs and no conclusion can be made about the WCET
of the program in this case. In other terms, the soundness does not really depend
on the action of the Cost plug-in, which can in principle produce any synthetic
cost. However, in order to be able to actually prove a WCET of a C function,
we need to add correct annotations in a way that Jessie and subsequent auto-
matic provers have enough information to deduce their validity. In practice this
is not straightforward even for very simple programs composed of branching
and assignments (no loops and no recursion) because a fine analysis of the VCs
associated with branching may lead to a complexity blow up.

4.2 Inner workings

The cost annotations added by the CerCo compiler take the form of C instruc-
tions that update by a constant a fresh global variable called the cost variable.
Synthesizing a WCET of a C function thus consists in statically resolving an
upper bound of the difference between the value of the cost variable before and
after the execution of the function, i.e. find in the function the instructions that
update the cost variable and establish the number of times they are passed
through during the flow of execution. The plug-in proceeds as follows.

– Each function is independently processed and is associated a WCET that
may depend on the cost of the other functions. This is done with a mix
between abstract interpretation [5] and syntactic recognition of specific loops.

– As result of the previous step, a system of inequations is built and its solution
is attempted by an iterative process. At each iteration, one replaces in all
the inequations the references to the cost of a function by its associated cost
if it is independent of the other functions. This step is repeated till a fixpoint
is reached.

– ACSL annotations are added to the program according to the result of the
above fixpoint. The two previous steps may fail in finding a concrete WCET
for some functions, because of imprecision inherent in abstract interpreta-
tion, and because of recursive definitions in the source program not solved
by the fixpoint. At each program point that requires an annotation (function
definitions and loops), annotations are added if a solution was found for the
program point.

– The most difficult instructions to handle are loops. We consider loops for
which we can syntactically find a counter (its initial, increment and last
values are domain dependent). Other loops are associated an undefined cost
(>). When encountering a loop, the analysis first sets the cost of its entry
point to 0. The cost inside the loop is thus relative to the loop. Then, for
each exit point, we fetch the value of the cost at that point and multiply it
by an upper bound of the number of iterations (obtained through arithmetic
over the initial, increment and last values of the counter); this results in an
upper bound of the cost of the whole loop, which is sent to the successors of
the considered exit point.

Figure 2 shows the action of the Cost plug-in on a C program. The most
notable differences are the added so-called cost variable, some associated update
(increment) instructions inside the code, and an ensures clause that specifies
the WCET of the is sorted function with respect to the cost variable. One can
notice that this WCET depends on the inputs of the function. Running Jessie
on the annotated and specified program generates VCs that are all proved by
the automatic prover AltErgo9.

4.3 Experiments

The Cost plug-in has been developed in order to validate CerCo’s framework for
modular WCET analysis. The plug-in allows (semi-)automatic generation and
certification of WCET for C programs. Also, we designed a wrapper for support-
ing Lustre files. Indeed, Lustre is a data-flow language to program synchronous
systems and the language comes with a compiler to C. The C function pro-
duced by the compiler implements the step function of the synchronous system
and computing the WCET of the function amounts to obtain a bound on the
reaction time of the system.

9 AltErgo prover. http://ergo.lri.fr/

int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;

return res; }

(a) The initial C source code.

int cost = 0;

/*@ ensures (cost ≤ \old(cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost += 97; cost tmp0 = cost;

/*@ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant (cost ≤ cost tmp0+i*195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost += 91;

if (tab[i] > tab[i+1]) { cost += 104; res = 0; }
else cost += 84; }

cost += 4; return res; }

(b) The annotated source code generated by Cost.

Figure2: An example of the Cost plug-in action.

We tested the Cost plug-in and the Lustre wrapper on the C programs gen-
erated by the Lustre compiler. We also tested it on some basic algorithms and
cryptographic functions; these examples, unlike those generated by the Lustre
compiler include arrays and for-loops. Table 3 provides a list of concrete pro-
grams and describes their type, functionality, the number of lines of the source
code, and the number of VCs generated. In each case, the Cost plug-in computes
a WCET and AltErgo is able to discharge all VCs. Obviously the generation of
synthetic costs is an undecidable and open-ended problem. Our experience just
shows that there are classes of C programs which are relevant for embedded ap-
plications and for which the synthesis and verification tasks can be completely
automatized.

Acknowledgement The master students Kayvan Memarian and Ronan Saillard con-

tributed both to the Coq proofs and the CerCo compiler in the early stages of their

development.

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic function
L: C generated from a Lustre file

Figure3: Experiments on CerCo and the Cost plug-in.

References

1. R.M. Amadio, N. Ayache, K. Memarian, R. Saillard, Y. Régis-Gianas. Compiler
Design and Intermediate Languages. Deliverable 2.1 of [3].

2. R.M. Amadio, Y. Régis-Gianas. Certifying and reasoning on cost annotations of
functional programs. In Proc. FOPARA 2011, Springer LNCS 7177, 2012.

3. Certified complexity (Project description). ICT-2007.8.0 FET Open, Grant 243881.
4. L. Correnson, P Cuoq, F Kirchner, V Prevosto, A Puccetti, J Signoles,

B Yakobowski. Frama-C user manual. CEA-LIST, Software Safety Laboratory,
Saclay, F-91191. http://frama-c.com/

5. P. Cousot, R. Cousot. Abstract Interpretation Frameworks. Journal of Logic
and Computation, volume 2, number 4, pages 511–547, Oxford University Press,
Oxford, UK, 1992.

6. C. Ferdinand, R. Heckmann, T. Le Sergent, D. Lopes, B. Martin, X. Fornari, and
F. Martin. Combining a high-level design tool for safety-critical systems with a
tool for WCET analysis of executables. In Embedded Real Time Software, 2008.

7. X. Fornari. Understanding how SCADE suite KCG generates safe C code. White
paper, Esterel Technologies, 2010.

8. J. Larus. Assemblers, linkers, and the SPIM simulator. Appendix of Computer
Organization and Design: the hw/sw interface, by Hennessy and Patterson, 2005.

9. MCS 51 Microcontroller Family User’s Manual. Publication number 121517, by
Intel Corporation, 1994,

10. X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-
115, 2009.

11. X. Leroy. Mechanized semantics, with applications to program proof and compiler
verification. Marktoberdorf summer school, 2009.

12. G. Necula, S. McPeak, S.P. Rahul, and W. Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In Proceedings of
Conference on Compiler Construction, Springer LNCS 2304:213–228, 2002.

13. R. Wilhelm et al. The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

A A toy compiler

We formalize the toy compiler introduced in section 2 and sketch the related
proofs. The related, browsable formal development in Coq is available at http:
//www.pps.jussieu.fr/~yrg/cerco.

A.1 Imp: language and semantics

The syntax of the Imp language is described below. This is a rather standard
imperative language with while loops and if-then-else.

id ::= x || y || . . . (identifiers)
n ::= 0 || −1 || +1 || . . . (integers)
v ::= n || true || false (values)
e ::= id || n || e+ e (numerical expressions)
b ::= e < e (boolean conditions)
S ::= skip || id := e || S;S || if b then S else S || while b do S (commands)
P ::= prog S (programs)

Let s be a total function from identifiers to integers representing the state.
If s is a state, x an identifier, and n an integer then s[n/x] is the ‘updated’ state
such that s[n/x](x) = n and s[n/x](y) = s(y) if x 6= y. The big-step operational
semantics of Imp expressions and boolean conditions is defined as follows:

(v, s) ⇓ v (x, s) ⇓ s(x)

(e, s) ⇓ v (e′, s) ⇓ v′
(e+ e′, s) ⇓ (v +Z v

′)

(e, s) ⇓ v (e′, s) ⇓ v′
(e < e′, s) ⇓ (v <Z v

′)

A continuation K is a list of commands which terminates with a special
symbol halt: K ::= halt || S · K. Table 2 defines a small-step semantics of Imp
commands whose basic judgement has the shape: (S,K, s) → (S′,K ′, s′). We
define the semantics of a program prog S as the semantics of the command S
with continuation halt. We derive a big step semantics from the small step one
as follows: (S, s) ⇓ s′ if (S, halt, s)→ · · · → (skip, halt, s′).

A.2 Vm: language and semantics

Following [11], we define a virtual machine Vm and its programming language.
The machine includes the following elements: (1) a fixed code C (a possibly
empty sequence of instructions), (2) a program counter pc, (3) a store s (as for
the source program), (4) a stack of integers σ.

Given a sequence C, we denote with |C| its length and with C[i] its ith element
(the leftmost element being the 0th element). The operational semantics of the
instructions is formalized by rules of the shape C ` (i, σ, s) → (j, σ′, s′) and it
is fully described in table 3. Notice that Imp and Vm semantics share the same
notion of store. We write, e.g., n · σ to stress that the top element of the stack

(x := e,K, s) → (skip,K, s[v/x]) if (e, s) ⇓ v

(S;S′,K, s) → (S, S′ ·K, s)

(if b then S else S′,K, s) →
{

(S,K, s) if (b, s) ⇓ true
(S′,K, s) if (b, s) ⇓ false

(while b do S,K, s) →
{

(S, (while b do S) ·K, s) if (b, s) ⇓ true
(skip,K, s) if (b, s) ⇓ false

(skip, S ·K, s) → (S,K, s)

Table2: Small-step operational semantics of Imp commands

Rule C[i] =

C ` (i, σ, s)→ (i+ 1, n · σ, s) cnst(n)
C ` (i, σ, s)→ (i+ 1, s(x) · σ, s) var(x)
C ` (i, n · σ, s)→ (i+ 1, σ, s[n/x]) setvar(x)
C ` (i, n · n′ · σ, s)→ (i+ 1, (n+Z n

′) · σ, s) add

C ` (i, σ, s)→ (i+ k + 1, σ, s) branch(k)
C ` (i, n · n′ · σ, s)→ (i+ 1, σ, s) bge(k) and n <Z n

′

C ` (i, n · n′ · σ, s)→ (i+ k + 1, σ, s) bge(k) and n ≥Z n
′

Table3: Operational semantics Vm programs

exists and is n. We will also write (C, s) ⇓ s′ if C ` (0, ε, s)
∗→ (i, ε, s′) and

C[i] = halt.
Code coming from the compilation of Imp programs has specific properties

that are used in the following compilation step when values on the stack are
allocated either in registers or in main memory. In particular, it turns out that
for every instruction of the compiled code it is possible to predict statically the
height of the stack whenever the instruction is executed. We now proceed to
define a simple notion of well-formed code and show that it enjoys this property.
In the following section, we will define the compilation function from Imp to Vm
and show that it produces well-formed code.

Definition 5. We say that a sequence of instructions C is well formed if there
is a function h : {0, . . . , |C|} → N which satisfies the conditions listed in table 4
for 0 ≤ i ≤ |C| − 1. In this case we write C : h.

The conditions defining the predicate C : h are strong enough to entail that
h correctly predicts the stack height and to guarantee the uniqueness of h up to
the initial condition.

Proposition 9. (1) If C : h, C ` (i, σ, s)
∗→ (j, σ′, s′), and h(i) = |σ| then

h(j) = |σ′|. (2) If C : h, C : h′ and h(0) = h′(0) then h = h′.

C[i] = Conditions for C : h

cnst(n) or var(x) h(i+ 1) = h(i) + 1
add h(i) ≥ 2, h(i+ 1) = h(i)− 1
setvar(x) h(i) = 1, h(i+ 1) = 0
branch(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = h(i+ 1) = h(i+ k + 1) = 0
bge(k) 0 ≤ i+ k + 1 ≤ |C|, h(i) = 2, h(i+ 1) = h(i+ k + 1) = 0
halt i = |C| − 1, h(i) = h(i+ 1) = 0

Table4: Conditions for well-formed code

A.3 Compilation from Imp to Vm

In table 5, we define compilation functions C from Imp to Vm which operate
on expressions, boolean conditions, statements, and programs. We write sz (e),
sz (b), sz (S) for the number of instructions the compilation function associates
with the expression e, the boolean condition b, and the statement S, respectively.

C(x) = var(x) C(n) = cnst(n) C(e+ e′) = C(e) · C(e′) · add

C(e < e′, k) = C(e′) · C(e) · bge(k)

C(x := e) = C(e) · setvar(x) C(S;S′) = C(S) · C(S′)

C(if b then S else S′) = C(b, k) · C(S) · (branch(k′)) · C(S′)
where: k = sz (S) + 1, k′ = sz (S′)

C(while b do S) = C(b, k) · C(S) · branch(k′)
where: k = sz (S) + 1, k′ = −(sz (b) + sz (S) + 1)

C(prog S) = C(S) · halt

Table5: Compilation from Imp to Vm

We follow [11] for the proof of soundness of the compilation function for
expressions and boolean conditions.

Proposition 10. The following properties hold:

(1) If (e, s) ⇓ v then C · C(e) · C ′ ` (i, σ, s)
∗→ (j, v · σ, s) where i = |C| and

j = |C · C(e)|.
(2) If (b, s) ⇓ true then C · C(b, k) · C ′ ` (i, σ, s)

∗→ (j + k, σ, s) where i = |C|
and j = |C · C(b, k)|.
(3) If (b, s) ⇓ false then C · C(b, k) · C ′ ` (i, σ, s)

∗→ (j, σ, s) where i = |C| and
j = |C · C(b, k)|.

Next we focus on the compilation of statements. We introduce a ternary
relation R(C, i,K) which relates a Vm code C, a number i ∈ {0, . . . , |C| − 1}
and a continuation K. The intuition is that relative to the code C, the instruction
i can be regarded as having continuation K. (A formal definition is available in
Appendix 11.) We can then state the correctness of the compilation function as
follows.

Proposition 11. If (S,K, s)→ (S′,K ′, s′) and R(C, i, S·K) then C ` (i, σ, s)
∗→

(j, σ, s′) and R(C, j, S′ ·K ′).

As announced, we can prove that the result of the compilation is a well-
formed code.

Proposition 12. For any program P there is a unique h such that C(P) : h.

A.4 Mips: language and semantics

We consider a Mips-like machine [8] which includes the following elements: (1)
a fixed code M (a sequence of instructions), (2) a program counter pc, (3) a
finite set of registers including the registers A, B, and R0, . . . , Rb−1, and (4) an
(infinite) main memory which maps locations to integers.

We denote with R,R′, . . . registers, with l, l′, . . . locations and with m,m′, . . .
memories which are total functions from registers and locations to (unbounded)
integers. We denote with M a list of instructions. The operational semantics is
formalized in table 6 by rules of the shape M ` (i,m) → (j,m′), where M is a
list of Mips instructions, i, j are natural numbers and m,m′ are memories. We
write (M,m) ⇓ m′ if M ` (0,m)

∗→ (j,m′) and M [j] = halt.

Rule M [i] =

M ` (i,m)→ (i+ 1,m[n/R]) loadi R,n
M ` (i,m)→ (i+ 1,m[m(l)/R]) load R, l
M ` (i,m)→ (i+ 1,m[m(R)/l])) store R, l
M ` (i,m)→ (i+ 1,m[m(R′) +m(R′′)/R]) add R,R′, R′′

M ` (i,m)→ (i+ k + 1,m) branch k
M ` (i,m)→ (i+ 1,m) bge R,R′, k and m(R) <Z m(R′)
M ` (i,m)→ (i+ k + 1,m) bge R,R′, k and m(R) ≥Z m(R′)

Table6: Operational semantics Mips programs

A.5 Compilation from Vm to Mips

In order to compile Vm programs to Mips programs we make the following hy-
potheses: (1) for every Vm program variable x we reserve an address lx, (2) for

every natural number h ≥ b, we reserve an address lh (the addresses lx, lh, . . . are
all distinct), and (3) we store the first b elements of the stack σ in the registers
R0, . . . , Rb−1 and the remaining (if any) at the addresses lb, lb+1,

We say that the memory m represents the stack σ and the store s, and write
m ‖−σ, s, if the following conditions are satisfied: (1) s(x) = m(lx), and (2) if
0 ≤ i < |σ| then σ[i] = m(Ri) if i < b, and σ[i] = m(li) if i ≥ b.

C[i] = C′(i, C) =

cnst(n)

{
(loadi Rh, n) if h = h(i) < b
(loadi A,n) · (store A, lh) otherwise

var(x)

{
(load Rh, lx) if h = h(i) < b
(load A, lx) · (store A, lh) otherwise

add


(add Rh−2, Rh−2, Rh−1) if h = h(i) < (b− 1)
(load A, lh−1) · (add Rh−2, Rh−2, A) if h = h(i) = (b− 1)
(load A, lh−1) · (load B, lh−2) if h = h(i) > (b− 1)
(add A,B,A) · (store A, lh−2)

setvar(x)

{
(store Rh−1 lx) if h = h(i) < b
(load A, lh−1) · (store A, lx) if h = h(i) ≥ b

branch(k) (branch k′) if k′ = p(i+ k + 1, C)− p(i+ 1, C)

bge(k)


(bge Rh−2, Rh−1, k

′) if h = h(i) < (b− 1)
(load A, lh−1) · (bge Rh−2, A, k

′) if h = h(i) = (b− 1)
(load A, lh−2) · (load B, lh−1) · (bge A,B, k′) if h = h(i) > (b− 1), k′ =

p(i+ k + 1, C)− p(i+ 1, C)
halt halt

Table7: Compilation from Vm to Mips

The compilation function C′ from Vm to Mips is described in table 7. It
operates on a well-formed Vm code C whose last instruction is halt. Hence, by
proposition 12(3), there is a unique h such that C : h. We denote with C′(C) the
concatenation C′(0, C) · · · C′(|C| − 1, C). Given a well formed Vm code C with
i < |C| we denote with p(i, C) the position of the first instruction in C′(C) which
corresponds to the compilation of the instruction with position i in C. This is
defined as10 p(i, C) = Σ0≤j<id(i, C), where the function d(i, C) is defined as
d(i, C) = |C′(i, C)|. Hence d(i, C) is the number of Mips instructions associated
with the ith instruction of the (well-formed) C code. The functional correctness
of the compilation function can then be stated as follows.

Proposition 13. Let C : h be a well formed code. If C ` (i, σ, s) → (j, σ′, s′)

with h(i) = |σ| and m ‖−σ, s then C′(C) ` (p(i, C),m)
∗→ (p(j, C),m′) and

m′ ‖−σ′, s′.
10 There is an obvious circularity in this definition that can be easily eliminated by

defining first the function d following the case analysis in table 7, then the function
p, and finally the function C′ as in table 7.

A.6 Notation

Let
t−→ be a family of reduction relations where t ranges over the set of labels

and ε. Then we define:

t⇒=

{
(
ε−→)∗ if t = ε

(
ε−→)∗◦ t−→ ◦(ε−→)∗ otherwise

where as usual R∗ denote the reflexive and transitive closure of the relation R
and ◦ denotes the composition of relations.

A.7 Proof of proposition 1

(1) By induction on the structure of the command S.

(2) By iterating the following proposition.

Proposition 14. If (S,K, s)
t→ (S′,K ′, s′) and R(C, i, S ·K) with t = ` or t = ε

then C ` (i, σ, s)
t⇒ (j, σ, s′) and R(C, j, S′ ·K ′).

This is an extension of proposition 11 and it is proven in the same way with
an additional case for labelled commands. ut

A.8 Proof of proposition 2

(1) The compilation of the Vm instruction emit(`) is the Mips instruction
(emit `).

(2) By iterating the following proposition.

Proposition 15. Let C : h be a well formed code. If C ` (i, σ, s)
t→ (j, σ′, s′)

with t = ` or t = ε, h(i) = |σ| and m ‖−σ, s then C′(C) ` (p(i, C),m)
t⇒

(p(j, C),m′) and m′ ‖−σ′, s′.

A.9 Proof of proposition 3

We extend the instrumentation to the continuations by defining:

I(S ·K) = I(S) · I(K) I(halt) = halt .

Then we examine the possible reductions of a configuration (I(S), I(K), s[c/cost]).

– If S is an unlabelled statement such as while b do S′ then I(S) = while b do I(S′)
and assuming (b, s) ⇓ true the reduction step is:

(I(S), I(K), s[c/cost])→ (I(S′), I(S) · I(K), s[c/cost]) .

Noticing that I(S) · I(K) = I(S ·K), this step is matched in the labelled
language as follows:

(S,K, s[c/cost])→ (S′, S ·K, s[c/cost]) .

– On the other hand, if S = ` : S′ is a labelled statement then I(S) =
inc(`); I(S′) and, by a sequence of reductions steps, we have:

(I(S), I(K), s[c/cost])
∗→ (I(S′), I(K), s[c+ κ(`)/cost]) .

This step is matched by the labelled reduction:

(S,K, s[c/cost])
`−→ (S′,K, s[c/cost]) .

ut

A.10 Proof of proposition 4

By diagram chasing using propositions 1(1), 2(1), and the definition 1 of la-
belling. ut

A.11 Proof of proposition 5

Suppose that:

(I(L(P)), s[c/cost]) ⇓ s′[c+ δ/cost] and m ‖−s[c/cost] .

Then, by proposition 3, for some λ:

(L(P), s[c/cost]) ⇓ (s′[c/cost], λ) and κ(λ) = δ .

Finally, by propositions 1(2) and 2(2) :

(C′(C(L(P))),m) ⇓ (m′, λ) and m′ ‖−s′[c/cost] .

ut

A.12 Proof of proposition 6

We discuss first the case for sound labelling. If λ = `1 · · · `n then the computation
is the concatenation of simple paths labelled with `1, . . . , `n. Since κ(`i) bounds
the cost of a simple path labelled with `i, the cost of the overall computation
is bounded by κ(λ) = κ(`1) + · · ·κ(`n). For the sound and precise labelling the
proof above is repeated, by replacing the word bounds by is exactly and the
words bounded by by exactly. ut

A.13 Proof of proposition 7

In both labellings under consideration the root node is labelled. An obvious
observation is that only commands of the shape while b do S introduce loops in
the compiled code. We notice that both labelling introduce a label in the loop
(though at different places). Thus all loops go through a label and the compiled
code is always sound.

To show the precision of the second labelling Lp, we note the following prop-
erty.

Lemma 1. A soundly labelled graph is precise if each label occurs at most once
in the graph and if the immediate successors of the bge nodes are either halt (no
successor) or labelled nodes.

Indeed, in a such a graph starting from a labelled node we can follow a
unique path up to a leaf, another labelled node, or a bge node. In the last case,
the hypotheses in the lemma 1 guarantee that the two simple paths one can
follow from the bge node have the same length/cost. ut

A.14 Proof of proposition 8

By applying consecutively propositions 5 and propositions 6. ut

A.15 Proof of proposition 11

Given a Vm code C, we define an ‘accessibility relation’
C
; as the least binary

relation on {0, . . . , |C| − 1} such that:

i
C
; i

C[i] = branch(k) (i+ k + 1)
C
; j

i
C
; j

We also introduce a ternary relation R(C, i,K) which relates a Vm code C,
a number i ∈ {0, . . . , |C| − 1} and a continuation K. The relation is defined as
the least one that satisfies the following conditions.

i
C
; j C[j] = halt

R(C, i, halt)

i
C
; i′ C = C1 · C(S) · C2

i′ = |C1| j = |C1 · C(S)| R(C, j,K)

R(C, i, S ·K)

.

The following properties are useful.

Lemma 2. (1) The relation
C
; is transitive.

(2) If i
C
; j and R(C, j,K) then R(C, i,K).

The first property can be proven by induction on the definition of
C
; and the

second by induction on the structure of K.

Next we can focus on the proposition. The notation C
i· C ′ means that

i = |C|. Suppose that:

(S,K, s)→ (S′,K′, s′) (1) and R(C, i, S ·K) (2) .

From (2), we know that there exist i′ and i′′ such that:

i
C
; i′ (3), C = C1

i′· C(S)
i′′· C2 (4), and R(C, i′′,K) (5)

and from (3) it follows that:

C ` (i, σ, s)
∗→ (i′, σ, s) (3′) .

We are looking for j such that:

C ` (i, σ, s)
∗→ (j, σ, s′) (6), and R(C, j, S′ ·K′) (7) .

We proceed by case analysis on S. We just detail the case of the conditional
command as the the remaining cases have similar proofs. If S = if e1 < e2 then
S1 else S2 then (4) is rewritten as follows:

C = C1
i′· C(e1) · C(e2).bge(k1)

a· C(S1)
b· branch(k2)

c· C(S2)
i′′· C2

where c = a + k1 and i′′ = c + k2. We distinguish two cases according to the
evaluation of the boolean condition. We describe the case (e1 < e2) ⇓ true. We
set j = a.

– The instance of (1) is (S,K, s)→ (S1,K, s).

– The reduction required in (6) takes the form C ` (i, σ, s)
∗→ (i′, σ, s)

∗→
(a, σ, s′), and it follows from (3′), the fact that (e1 < e2) ⇓ true, and propo-
sition 10(2).

– Property (7), follows from lemma 2(2), fact (5), and the following proof tree:

j
C
; j b

C
; i′′ R(C, i′′,K)

R(C, b,K)

R(C, j, S1 ·K)

.

ut

B A C compiler

This section gives an informal overview of the compiler, in particular it highlights
the main features of the intermediate languages, the purpose of the compilation
steps, and the optimisations. The CerCo compiler can be both downloaded and
tested as a web application at the URL http://www.pps.jussieu.fr/~yrg/

cerco.

B.1 Clight

Clight is a large subset of the C language that we adopt as the source language
of our compiler. It features most of the types and operators of C. It includes
pointer arithmetic, pointers to functions, and struct and union types, as well
as all C control structures. The main difference with the C language is that
Clight expressions are side-effect free, which means that side-effect operators
(=,+=,++,. . .) and function calls within expressions are not supported. Given a C
program, we rely on the CIL tool [12] to deal with the idiosyncrasy of C concrete
syntax and to produce an equivalent program in Clight abstract syntax. We refer
to the CompCert project [10] for a formal definition of the Clight language. Here
we just recall in figure 4 its syntax which is classically structured in expressions,
statements, functions, and whole programs. In order to limit the implementation
effort, our current compiler for Clight does not cover the operators relating to
the floating point type float. So, in a nutshell, the fragment of C we have
implemented is Clight without floating point.

There is a notable difficulty to compile the C language into 8051 assembly
code due to the fact that 8051’s machine word are 8bits long and C has 32bits
primitive datatypes. To deal with the dissimilarity in that case, we first trans-
late the Clight input program into a Clight input program that only uses 8bits
primitive datatypes.

B.2 Cminor

Cminor is a simple, low-level imperative language, comparable to a stripped-
down, typeless variant of C. Again we refer to the CompCert project for its
formal definition and we just recall in figure 5 its syntax which as for Clight is
structured in expressions, statements, functions, and whole programs.

Translation of Clight to Cminor As in Cminor stack operations are made explicit,
one has to know which variables are stored in the stack. This information is
produced by a static analysis that determines the variables whose address may
be ‘taken’. Also space is reserved for local arrays and structures. In a second
step, the proper compilation is performed: it consists mainly in translating Clight
control structures to the basic ones available in Cminor.

Expressions: a ::= id variable identifier
| n integer constant
| sizeof(τ) size of a type
| op1 a unary arithmetic operation
| a op2 a binary arithmetic operation
| ∗a pointer dereferencing
| a.id field access
| &a taking the address of
| (τ)a type cast
| a?a : a conditional expression

Statements: s ::= skip empty statement
| a = a assignment
| a = a(a∗) function call
| a(a∗) procedure call
| s; s sequence
| if a then s else s conditional
| switch a sw multi-way branch
| while a do s “while” loop
| do s while a “do” loop
| for(s,a,s) s “for” loop
| break exit from current loop
| continue next iteration of the current loop

| return a? return from current function
| goto lbl branching
| lbl : s labelled statement

Switch cases: sw ::= default : s default case
| case n : s; sw labelled case

Variable declarations: dcl ::= (τ id)∗ type and name

Functions: Fd ::= τ id(dcl){dcl; s} internal function
| extern τ id(dcl) external function

Programs: P ::= dcl;Fd∗; main = id global variables, functions, entry point

Figure4: Syntax of the Clight language

Signatures: sig ::= sig int (int|void) arguments and result

Expressions: a ::= id local variable
| n integer constant
| addrsymbol(id) address of global symbol
| addrstack(δ) address within stack data
| op1 a unary arithmetic operation
| op2 a a binary arithmetic operation
| κ[a] memory read
| a?a : a conditional expression

Statements: s ::= skip empty statement
| id = a assignment
| κ[a] = a memory write

| id? = a(a) : sig function call
| tailcall a(a) : sig function tail call

| return(a?) function return
| s; s sequence
| if a then s else s conditional
| loop s infinite loop
| block s block delimiting exit constructs

| exit n terminate the (n+ 1)th enclosing block
| switch a tbl multi-way test and exit
| lbl : s labelled statement
| goto lbl jump to a label

Switch tables: tbl ::= default:exit(n)
| case i: exit(n);tbl

Functions: Fd ::= internal sig id id n s internal function: signature, parameters,
local variables, stack size and body

| external id sig external function

Programs: P ::= prog (id = data)∗ (id = Fd)∗ id global variables, functions and entry point

Figure5: Syntax of the Cminor language

B.3 RTLAbs

RTLAbs is the last architecture independent language in the compilation pro-
cess. It is a rather straightforward abstraction of the architecture-dependent RTL
intermediate language available in the CompCert project and it is intended to
factorize some work common to the various target assembly languages (e.g. op-
timizations) and thus to make retargeting of the compiler a simpler matter.

We stress that in RTLAbs the structure of Cminor expressions is lost and that
this may have a negative impact on the following instruction selection step. Still,
the subtleties of instruction selection seem rather orthogonal to our goals and
we deem the possibility of retargeting easily the compiler more important than
the efficiency of the generated code.

Syntax. In RTLAbs, programs are represented as control flow graphs (CFGs for
short). We associate with the nodes of the graphs instructions reflecting the
Cminor commands. As usual, commands that change the control flow of the
program (e.g. loops, conditionals) are translated by inserting suitable branching
instructions in the CFG. The syntax of the language is depicted in table 8.
Local variables are now represented by pseudo registers that are available in
unbounded number. The grammar rule op that is not detailed in table 8 defines
usual arithmetic and boolean operations (+, xor, ≤, etc.) as well as constants
and conversions between sized integers.

Translation of Cminor to RTLAbs. Translating Cminor programs to RTLAbs pro-
grams mainly consists in transforming Cminor commands in CFGs. Most com-
mands are sequential and have a rather straightforward linear translation. A
conditional is translated in a branch instruction; a loop is translated using a
back edge in the CFG.

B.4 RTL

As in RTLAbs, the structure of RTL programs is based on CFGs. RTL is the
first architecture-dependant intermediate language of our compiler which, in its
current version, targets the Mips and 8051 assembly languages.

Syntax. RTL is very close to RTLAbs. It is based on CFGs and explicits the
Mips or the 8051 instructions corresponding to the RTLAbs instructions. Type
information disappears: everything is represented using machine words. More-
over, each global of the program is associated to an offset. The syntax of the
language can be found in table 9. The grammar rules unop, binop, uncon, and
bincon, respectively, represent the sets of unary operations, binary operations,
unary conditions and binary conditions of the target assembly language.

Translation of RTLAbs to RTL. This translation is mostly straightforward. A
RTLAbs instruction is often directly translated to a corresponding assembly in-
struction. There are a few exceptions: some RTLAbs instructions are expanded

return type ::= int || void signature ::= (int→)∗ return type

memq ::= int8s || int8u || int16s || int16u || int32 fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| psd reg := op(psd reg∗)→ node (operation)
|| psd reg := &var name → node (address of a global)
|| psd reg := &locals[n]→ node (address of a local)
|| psd reg := fun name → node (address of a function)
|| psd reg := memq(psd reg [psd reg])→ node (memory load)
|| memq(psd reg [psd reg]) := psd reg → node (memory store)
|| psd reg := fun ref (psd reg∗) : signature → node (function call)
|| fun ref (psd reg∗) : signature (function tail call)
|| test op(psd reg∗)→ node,node (branch)
|| return psd reg? (return)

fun def ::= fun name(psd reg∗) : signature
result :psd reg?
locals :psd reg∗

stack :n
entry :node
exit :node
(node :instruction)∗

init datum ::= reserve(n) || int8(n) || int16(n) || int32(n) init data ::= init datum+

global decl ::= var var name{init data} fun decl ::= extern fun name(signature) || fun def

program ::= global decl∗

fun decl∗

Table8: Syntax of the RTLAbs language

size ::= Byte || HalfWord ||Word fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| psd reg := n→ node (constant)
|| psd reg := unop(psd reg)→ node (unary operation)
|| psd reg := binop(psd reg , psd reg)→ node (binary operation)
|| psd reg := &globals[n]→ node (address of a global)
|| psd reg := &locals[n]→ node (address of a local)
|| psd reg := fun name → node (address of a function)
|| psd reg := size(psd reg [n])→ node (memory load)
|| size(psd reg [n]) := psd reg → node (memory store)
|| psd reg := fun ref (psd reg∗)→ node (function call)
|| fun ref (psd reg∗) (function tail call)
|| test uncon(psd reg)→ node,node (branch unary condition)
|| test bincon(psd reg , psd reg)→ node,node (branch binary condition)
|| return psd reg? (return)

fun def ::= fun name(psd reg∗) program ::= globals : n
result :psd reg? fun def ∗

locals :psd reg∗

stack :n
entry :node
exit :node
(node :instruction)∗

Table9: Syntax of the RTL language

in two or more assembly instructions. When the translation of a RTLAbs instruc-
tion requires more than a few simple assembly instruction, it is translated into
a call to a function defined in the preamble of the compilation result.

B.5 ERTL

As in RTL, the structure of ERTL programs is based on CFGs. ERTL explicits
the calling conventions of the Mips assembly language. In the back-end for 8051,
we defined our own calling convention since there were none.

Syntax. The syntax of the language is given in table 10. The main difference
between RTL and ERTL is the use of hardware registers. Parameters are passed in
specific hardware registers; if there are too many parameters, the remaining are
stored in the stack. Other conventionally specific hardware registers are used: a
register that holds the result of a function, a register that holds the base address
of the globals, a register that holds the address of the top of the stack, and some
registers that need to be saved when entering a function and whose values are
restored when leaving a function. Following these conventions, function calls do
not list their parameters anymore; they only mention their number. Two new
instructions appear to allocate and deallocate on the stack some space needed by
a function to execute. Along with these two instructions come two instructions to
fetch or assign a value in the parameter sections of the stack; these instructions
cannot yet be translated using regular load and store instructions because we
do not know the final size of the stack area of each function. At last, the return
instruction has a boolean argument that tells whether the result of the function
may later be used or not (this is exploited for optimizations).

Translation of RTL to ERTL. The work consists in expliciting the conventions
previously mentioned. These conventions appear when entering, calling and leav-
ing a function, and when referencing a global variable or the address of a local
variable.

Optimizations. A liveness analysis is performed on ERTL to replace unused
instructions by a skip. An instruction is tagged as unused when it performs an
assignment on a register that will not be read afterwards. Also, the result of the
liveness analysis is exploited by a register allocation algorithm whose result is
to efficiently associate a physical location (a hardware register or an address in
the stack) to each pseudo register of the program.

B.6 LTL

As in ERTL, the structure of LTL programs is based on CFGs. Pseudo regis-
ters are not used anymore; instead, they are replaced by physical locations (a
hardware register or an address in the stack).

size ::= Byte || HalfWord ||Word fun ref ::= fun name || psd reg

instruction ::= || skip→ node (no instruction)
|| NewFrame→ node (frame creation)
|| DelFrame→ node (frame deletion)
|| psd reg := stack[slot , n]→ node (stack load)
|| stack[slot , n] := psd reg → node (stack store)
|| hdw reg := psd reg → node (pseudo to hardware)
|| psd reg := hdw reg → node (hardware to pseudo)
|| psd reg := n→ node (constant)
|| psd reg := unop(psd reg)→ node (unary operation)
|| psd reg := binop(psd reg , psd reg)→ node (binary operation)
|| psd reg := fun name → node (address of a function)
|| psd reg := size(psd reg [n])→ node (memory load)
|| size(psd reg [n]) := psd reg → node (memory store)
|| fun ref (n)→ node (function call)
|| fun ref (n) (function tail call)
|| test uncon(psd reg)→ node,node (branch unary condition)
|| test bincon(psd reg , psd reg)→ node,node (branch binary condition)
|| return b (return)

fun def ::= fun name(n) program ::= globals : n
locals :psd reg∗ fun def ∗

stack :n
entry :node
(node :instruction)∗

Table10: Syntax of the ERTL language

Syntax. Except for a few exceptions, the instructions of the language are those of
ERTL with hardware registers replacing pseudo registers. Calling and returning
conventions were explicited in ERTL; thus, function calls and returns do not need
parameters in LTL. The syntax is defined in table 11.

size ::= Byte || HalfWord ||Word fun ref ::= fun name || hdw reg

instruction ::= || skip→ node (no instruction)
|| NewFrame→ node (frame creation)
|| DelFrame→ node (frame deletion)
|| hdw reg := n→ node (constant)
|| hdw reg := unop(hdw reg)→ node (unary operation)
|| hdw reg := binop(hdw reg , hdw reg)→ node (binary operation)
|| hdw reg := fun name → node (address of a function)
|| hdw reg := size(hdw reg [n])→ node (memory load)
|| size(hdw reg [n]) := hdw reg → node (memory store)
|| fun ref ()→ node (function call)
|| fun ref () (function tail call)
|| test uncon(hdw reg)→ node,node (branch unary condition)
|| test bincon(hdw reg , hdw reg)→ node,node (branch binary condition)
|| return (return)

fun def ::= fun name(n) program ::= globals : n
locals :n fun def ∗

stack :n
entry :node
(node :instruction)∗

Table11: Syntax of the LTL language

Translation of ERTL to LTL. The translation relies on the results of the liveness
analysis and of the register allocation. Unused instructions are eliminated and
each pseudo register is replaced by a physical location. In LTL, the size of the
stack frame of a function is known; instructions intended to load or store values
in the stack are translated using regular load and store instructions.

Optimizations. A graph compression algorithm removes empty instructions gen-
erated by previous compilation passes and by the liveness analysis.

B.7 LIN

In LIN, the structure of a program is no longer based on CFGs. Every function
is represented as a sequence of instructions.

Syntax. The instructions of LIN are very close to those of LTL. Program labels,
gotos and branch instructions handle the changes in the control flow. The syntax
of LIN programs is shown in table 12.

size ::= Byte || HalfWord ||Word fun ref ::= fun name || hdw reg

instruction ::= || NewFrame (frame creation)
|| DelFrame (frame deletion)
|| hdw reg := n (constant)
|| hdw reg := unop(hdw reg) (unary operation)
|| hdw reg := binop(hdw reg , hdw reg) (binary operation)
|| hdw reg := fun name (address of a function)
|| hdw reg := size(hdw reg [n]) (memory load)
|| size(hdw reg [n]) := hdw reg (memory store)
|| call fun ref (function call)
|| tailcall fun ref (function tail call)
|| uncon(hdw reg)→ node (branch unary condition)
|| bincon(hdw reg , hdw reg)→ node (branch binary condition)
|| asm label : (assembly label)
|| goto mips label (goto)
|| return (return)

fun def ::= fun name(n) program ::= globals : n
locals :n fun def ∗

instruction∗

Table12: Syntax of the LIN language

Translation of LTL to LIN. This translation amounts to transform in an effi-
cient way the graph structure of functions into a linear structure of sequential
instructions.

B.8 Assembly

We refer to [9] for a description of the 8051 assembly language. In order to
compute tight bounds, the CerCo compiler actually generates 8051 binaries. For
instance, the number of memory words associated with branching instructions
can only be determined at this level (the number depends on the length of the
offset).

In the following we describe the simpler Mips assembly language. A program
in Mips is a sequence of instructions. The Mips code produced by the compi-
lation of a Clight program starts with a preamble in which some useful and

non-primitive functions are predefined (e.g. conversion from 8 bits unsigned in-
tegers to 32 bits integers). The subset of the Mips assembly language that the
compilation produces is defined in table 13.

load ::= lb || lhw || lw store ::= sb || shw || sw fun ref ::= fun name || hdw reg

instruction ::= || nop (empty instruction)
|| li hdw reg , n (constant)
|| unop hdw reg , hdw reg (unary operation)
|| binop hdw reg , hdw reg , hdw reg (binary operation)
|| la hdw reg , fun name (address of a function)
|| load hdw reg , n(hdw reg) (memory load)
|| store hdw reg , n(hdw reg) (memory store)
|| call fun ref (function call)
|| uncon hdw reg ,node (branch unary condition)
|| bincon hdw reg , hdw reg ,node (branch binary condition)
|| mips label : (Mips label)
|| j mips label (goto)
|| return (return)

program ::= globals : n
entry : mips label∗

instruction∗

Table13: Syntax of the Mips language

Translation of LIN to Mips. This final translation is simple enough. Stack allo-
cation and deallocation are explicited and the function definitions are sequen-
tialized.

B.9 Benchmarks

To ensure that our prototype compiler is realistic, we performed some prelim-
inary benchmarks on a 183MHz MIPS 4KEc processor, running a linux based
distribution. We compared the wall clock execution time of several simple C
programs compiled with our compiler against the ones produced by Gcc set up
with optimization levels 0 and 1. As shown by Figure 6, our prototype compiler
produces executable programs that are on average faster than Gcc’s without
optimizations.

gcc -O0 acc gcc -O1

badsort 55.93 34.51 12.96
fib 76.24 34.28 45.68

mat det 163.42 156.20 54.76
min 12.21 16.25 3.95

quicksort 27.46 17.95 9.41
search 463.19 623.79 155.38

Figure6: Benchmarks results (execution time is given in seconds).

