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Abstract. With increasing interest among mainstream users to run HPC appli-
cations, Infrastructure-as-a-Service (IaaS) cloud computing platforms represent
a viable alternative to the acquisition and maintenance of expensive hardware,
often out of the financial capabilities of such users. Also, one of the critical
needs of HPC applications is an efficient, scalable and persistent storage. Un-
fortunately, storage options proposed by cloud providers are not standardized
and typically use a different access model. In this context, the local disks on
the compute nodes can be used to save large data sets such as the data gener-
ated by Checkpoint-Restart (CR). This local storage offers high throughput and
scalability but it needs to be combined with persistency techniques, such as block
replication or erasure codes. One of the main challenges that such techniques face
is to minimize the overhead of performance and I/O resource utilization (i.e., stor-
age space and bandwidth), while at the same time guaranteeing high reliability
of the saved data. This paper introduces a novel persistency technique that lever-
ages Reed-Solomon (RS) encoding to save data in a reliable fashion. Compared
to traditional approaches that rely on block replication, we demonstrate about
50% higher throughput while reducing network bandwidth and storage utiliza-
tion by a factor of 2 for the same targeted reliability level. This is achieved both
by modeling and real life experimentation on hundreds of nodes.

1 Introduction

In recent years High Performance Computing (HPC) applications have seen an increas-
ing adoption among mainstream users, both in academia and industry. Unlike “hero”
applications that are designed to run on powerful (and expensive!) supercomputers,
mainstream users typically need to run medium-sized jobs that need no more than a cou-
ple of thousands of cores. For these types of jobs, Infrastructure-as-a-Service (IaaS) [4]
cloud platforms present a viable alternative to purchasing dedicated resources: with
thousands of virtual machines (VMs) routinely allocated by large IaaS providers [2],
users can easily lease a virtual environment on the cloud for their HPC applications.

However, running HPC applications in an efficient fashion on IaaS clouds is chal-
lenging. One such open challenge is how to handle storage. Unlike supercomputing in-
frastructure, where storage is typically handled using a POSIX-compatible parallel file



system (e.g., GPFS [22] or PVFS [10]), IaaS clouds feature a large variety of specialized
storage solutions that are not standardized, which makes it difficult to port HPC appli-
cations. Furthermore, these storage services are often geared towards high-availability
rather than high performance, not to mention that they incur costs proportional to the
I/O space and bandwidth utilization. One solution to this problem is to rely on the local
storage available to the VM instances. In a common IaaS configuration, local storage is
plentiful (several hundreds of GB), up to an order of magnitude faster [17] and does
not incur any extra operational costs. Furthermore, most HPC applications can directly
take advantage of local storage or require little modifications to do so, which greatly
increases scalability.

Despite its obvious advantages, local storage has a major issue: it relies on com-
modity components that are prone to failures [24]. Even if local disks did not fail, they
would become inaccessible if their hosting compute nodes failed, effectively leading to
loss of data. As a consequence, we need to deal with the reliability of local storage in
order to be able to leverage it in our context. However, this invariably introduces an ad-
ditional overhead, both performance-wise and resource-wise. Current cloud storage ser-
vices achieve reliability and availability by replicating data, often three or more copies.
However, data replication is highly space and bandwidth consuming, and it leads to an
inefficient use of available resources. In this paper we explore the use of Reed-Solomon
(RS) [21] based erasure encoding to address the reliability requirement for local storage
in a scalable and efficient fashion. We aim to achieve a low overhead for our scheme,
such that it can sustain a high I/O data access throughput and a high reliability level
with minimal storage space and bandwidth utilization.

Our contributions can be summarized as follows:

– We propose a novel Reed-Solomon based encoding algorithm specifically opti-
mized to conserve total system bandwidth in scenarios where large amounts of data
are concurrently dumped to the local disks, which ultimately diminishes operational
costs and frees up more bandwidth for the applications themselves. (Section 3.1)

– We introduce a formal model to compare data-replication and RS encoding analyt-
ically in order to predict the storage space and network bandwidth utilization for
different levels of reliability. (Section 4)

– We show how to implement our approach in practice by integrating it into BlobCR [19],
a distributed checkpoint-restart framework that is specifically designed to take per-
sistent snapshots of local storage for HPC applications that are running on IaaS
clouds. (Section 3.2)

– We evaluate our approach experimentally on hundreds of nodes of the Grid’5000
testbed [7], both with synthetic benchmarks and a real-life application. These ex-
periments demonstrate significant improvement in performance and resource uti-
lization when compared to replication for the same reliability level. (Section 5)

2 Related work

There is a rich storage ecosystem around IaaS clouds. Cloud providers typically offer
their own storage solutions, which are not standardized and expose a different access



model than POSIX: key-value stores based on REST-ful access APIs [3], distributed
file systems specialized for MapReduce workloads [23], database management sys-
tems [14], etc. Besides the disadvantages presented in Section 1, most of these solutions
are optimized for high-availability, under the assumption that data is frequently read and
only seldom updated. HPC applications on the other hand typically generate new data
often and need to read it back only rarely (e.g. checkpointing). The idea of leveraging
local storage for HPC applications running on IaaS clouds in a reliable fashion was in-
troduced before by our previous work: we presented BlobCR [19], a checkpoint-restart
framework that is able to take snapshots of local storage that survive failures. However,
in order to survive failures, BlobCR relies on replication, which can lead to excessive
use of storage space and bandwidth.

Different studies of block replication and erasure codes were performed before in
the context of RAID systems [8], whose implementation is at hardware level, as well
as for distributed data storage [25] implemented at the software level. More recently,
DiskReduce [12] and Zhe Zhang et al. [26] study the feasibility of replacing three-way
replication with erasure codes in cloud storage / large data centers. They are probably
the closest work to the technique proposed in this paper, going in a similar direction
and complementing our own approach: while they focus on space reduction and perfor-
mance, in this work we focus on limiting the network bandwidth consumption as much
as possible by using a novel low-communication RS encoding, which significantly de-
creases the application performance overhead.

RS encoding algorithms [15, 11] similar to the proposal presented in our previous
work create encoding groups that encompass blocks stored on different nodes. Other
encoding techniques, such as bitwise XOR [16] also encode distributed blocks. Such
algorithms are suitable for scenarios such as coordinated checkpoint where multiple
distant processes need to reliably store data at the same time; in such context, distributed
blocks of data can be encoded after synchronization. However, these algorithms cannot
be used for a storage system where isolated writes will need to be performed without
imposing any synchronization with other processes. Therefore, a fundamental algorithm
change is necessary in order to encode isolated blocks of data.

3 Our approach: a RS-encoding algorithm proposal

In this section we introduce a novel low-communication RS encoding algorithm that
guarantees high reliability with a low bandwidth consumption. The key observation
leading to this choice is the widening gap between the cost of computational power
and network bandwidth, for which reason we try to conserve network bandwidth at the
expense of slightly higher CPU utilization.

We start with a quick overview of the RS encoding. As we can see in Figure 1(a),
the RS encoding takes a data vector and encodes it by performing a matrix-vector mul-
tiplication with a distribution matrix. To recover any m failures, any sub-square matrix
of the distribution matrix (including minor) must be non-singular. Thus, in practice we
usually use a Cauchy or a Vandermonde matrix [20]. While using RS encoding to en-
code distributed data, the data vector is composed by blocks of data of distant nodes.
In Figure 1(b), we can see the data to be encoded in the case of diskless checkpoint-



(a) Reed-Solomon encoding (b) Reed-Solomon for distributed data

Fig. 1. Reed-Solomon encoding study

ing. Each process Pi holds blocks of data Bi j where j is the block index, going from
1 to NB (Number of Blocks in the checkpoint file). The first data vector will be com-
posed of the first block of each checkpoint file, the second vector of the second block
of each checkpoint file, and so on. There are several ways to implement this compu-
tation, for example, one can use MPI reductions [15], a pipeline algorithm [11] or the
star algorithm proposed in our previous work [13]. However, all these algorithms re-
quire synchronizations while encoding the data. Furthermore, these algorithms produce
as much (or more) communications than data replication; therefore, none of them is
suitable for our purpose.

3.1 Low-communication RS encoding algorithm

In an ideal setting where all m encodings generated by RS are stored on different nodes
(assuming that the data blocks themselves are stored on different nodes as well), the
system can tolerate m simultaneous erasures. However, this ideal scenario is costly in
terms of resource utilization, as it results in the need to employ dedicated parity nodes.
Thus, to leverage the available resources better, one idea is to store the encodings on
the same nodes where the data itself is stored. The distributed algorithm (Algorithm 1)
presented in our previous work [13, 5] illustrates this idea. We propose to generate as
many encodings as the group size (m = k), while evenly distributing the encodings
among the same nodes where the data blocks are stored. Thus, one node failure will
lead to two erasures and each group will be able to tolerate up to 50% of failed nodes.

In order to avoid synchronizations between processes during the encoding, we pro-
pose a novel low-communication algorithm (Algorithm 2). Instead of encoding the ith

block of each one of the k nodes, we encode the first k blocks of each node and then we
scatter the k blocks of original data plus the k encodings on the k nodes of the group.
Notice that both algorithms encode the same amount of data and store all the original
and parity data on the encoding nodes, thus offering the same level of reliability.



Algorithm 1 Distributed RS encod-
ing algorithm
1: . r : the process rank
2: . NB : the number of blocks
3: . k : the group size
4: . m : the number of encodings
5: for i← 1..NB do
6: Bri← read ith block
7: for j← 1..m do
8: T ←M(r+ j)r ∗Bri
9: Send T to Pr+ j

10: F ← Recv from Pr− j
11: Eri← Eri +F
12: end for
13: writeEri
14: end for

Algorithm 2 Low-communication RS en-
coding algorithm
1: for i← 0..(NB/k)−1 do
2: for j← 1..k do
3: Br(i∗k+ j)← read (i∗ k+ j)th block
4: end for
5: for j← 1..k do
6: for l← 1..m do
7: Ei j← Ei j +M jl ∗Br(i∗k+l)
8: end for
9: end for

10: for j← 1..k do
11: Send Br(i∗k+ j+r) and Ei( j+r) to Pj+r
12: Recv FB j and FE j from Pj−r
13: Write FB j and FE j
14: end for
15: end for

With respect to bandwidth consumption, Algorithm 1 needs to transfer NB ∗m
blocks in total. Since m = k, its communication cost is thus CommAlg1 = NB ∗ k. On
the other hand, for Algorithm 2 we have CommAlg2 =

NB
k ∗ k ∗2 = NB∗2. By compar-

ing the two formulas one can easily notice that the low-communication algorithm is
more bandwidth friendly than the distributed algorithm. Particularly, in the case of the
distributed algorithm the data transferred over the network will increase proportionally
with the group size k, while the low-communication algorithm will keep it constant.

Figure 2(a) shows a performance comparison and time breakdown of both encod-
ing algorithms measured on Tsubame2 [1], for different numbers of cores (96 and 192
cores). Although communications and computation are overlapped in both cases, the
low-communication algorithm is 24% faster because of the data locality. Reducing com-
munications not only decreases the stress on the network but also increases cache effi-
ciency. For isolated writes on a storage system, one can design a system that implements
a multi-stage striping: each chunk of data that makes up the local storage can be itself
divided into the k blocks that are fed to the low-communication encoding algorithm.

3.2 Integration in practice

In order to illustrate the benefits of the algorithm presented in the previous section in
practice, we have integrated our approach into BlobCR [19], a distributed checkpoint-
restart framework based on BlobSeer [18] that is specifically designed to take persis-
tent snapshots of local storage for HPC applications that are running on IaaS clouds.
BlobCR exposes local storage to the VM instances as virtual disks that can be attached
to them. The initial content of the virtual disk is striped into chunks and stored in a
distributed fashion among the participating storage elements. Whenever a virtual disk
is attached to a VM instance, an initially empty mirror of it is created on the local disk.



Reads to the virtual disk fetch any remote chunks not present in the mirror, gradually
filling it on-demand. Writes to the virtual disk are always performed on the mirror. A
special primitive can be used to persistently save the mirror as a new snapshot of the
virtual disk that is globally shared. This is done by distributing all locally modified
chunks among the storage elements, then by consolidating these changes using cloning
and shadowing.

In order to provide high reliability for the chunks that make up the disk snapshots,
BlobCR relies on the reliability scheme implemented in BlobSeer, which by default is
replication: each chunk is stored to multiple local disks. We implemented an alterna-
tive reliability scheme based on the algorithm presented in Section 3.1 which was then
integrated into BlobSeer. More precisely, instead of replicating each chunk to multiple
local disks, we perform a second level of striping that splits each chunk into k small,
equally sized blocks. These blocks form a group to which erasure coding is applied in
order to obtain a second group of k blocks that hold parity information. Once this step
has completed, we distribute the 2∗k blocks among a set of 2∗k different remote disks.

(a) Performance of Algorithm 1 vs. Algo-
rithm 2 (1 GB/core)

(b) Reliability of replication vs. RS encoding
(1000 nodes)

Fig. 2. Performance compared to previous work and reliability modeling

4 Reliability, storage and network bandwidth study

In this section we develop a model to predict the performance, storage and network
bandwidth cost of both approaches (data replication and RS encoding) for comparable
levels of reliability. As explained in Section 3, the distributed encoding algorithm is not
suitable for storage systems, therefore we do not include it in this comparison.

First, we focus on the reliability level of both approaches. We use the reliability
model presented in our previous work [6] to compute the probability of catastrophic
failures, i.e., failures that lead to unrecoverable data loss. This will depend on the num-
ber of simultaneous erasures and the probability of those erasures to hit the replicated



or parity data of a given data chunk. Figure 2(b) shows the difference of reliability for
five different settings: our approach using a group size of four and eight (denoted rs-4
and rs-8) vs. replication using a replication factor of two, three and four (denoted rep-2,
rep-3 and rep-4 respectively). Notice that rep-4 comes very close (without surpassing)
to rs-4 in terms of reliability only when the replication factor reaches 4. For this reason,
we consider rep-4 and rs-4 comparable in terms of reliability for the rest of this paper.

A fair comparison between both techniques should study the storage overhead and
performance overhead necessary to guarantee a comparable level of reliability. The
replication technique replicates chunks of data and stores them on multiple remote
disks. Similarly, the RS encoding technique generates parity data and stores it on mul-
tiple remote nodes. Let us assume that we want to reliably write a chunk of z bytes of
data. We assume a replication factor of k and an RS encoding group size of k. In the
replication approach we store a total of Strrep = z∗ k bytes of data. In contrast, for the
RS technique we need to split the chunk in k blocks, encode them and finally store a
total of Strrs = k ∗ z

k ∗ 2 = z ∗ 2 bytes in the system. As we can see, the replication ap-
proach becomes prohibitively expensive quickly, while RS encoding is scalable in terms
of storage. In addition, the amount of data transferred over the network is equal to the
amount of data stored for both approaches, which means that data replication transfers
more data than RS encoding for a similar level of reliability. For instance, rep-4 trans-
fers and stores two times more data than rs-4. However, we also should notice that the
RS technique imposes an overhead due to the encoding work. In the next section we
measure and compare the performance overhead of both approaches.

5 Experimental evaluation

This section evaluates the benefits of our proposal both in synthetic settings and for
scientific HPC applications.

5.1 Experimental setup

The experiments were performed on Grid’5000 [7], an experimental testbed for dis-
tributed computing that federates nine sites in France. We used 100 nodes of the griffon
cluster from the Nancy site, each of which is equipped with a quadcore Intel Xeon
X3440 x86 64 CPU with hardware support for virtualization, local disk storage of
278 GB (access speed '55 MB/s using SATA II AHCI driver) and 16 GB of RAM.
The nodes are interconnected with Gigabit Ethernet (measured 117.5 MB/s for TCP
sockets with MTU = 1500 B with a latency of '0.1 ms).

The hypervisor running on all compute nodes is KVM 0.14.0, while the operat-
ing system is a recent Debian Sid Linux distribution. For all experiments, a 2 GB raw
disk image file based on the same Debian Sid distribution was used to boot the guest
operating system of the virtual machine instances that run the user application.

5.2 Synthetic benchmarks

Our first series of experiments evaluates the performance of our approach vs. replication
in two synthetic benchmarking scenarios. We compare the same five settings as in Sec-
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tion 4. In all five settings we aim to measure the maximal theoretical performance levels
that can be achieved during checkpointing. We chose checkpointing because it is one of
the tasks that stress the most the storage. More specifically, we measure the sustained
throughput when checkpointing local modifications to the virtual disk that amount to
512MB. We omit running any application in parallel with the checkpointing process in
order to better control the experimental setting and eliminate any influence caused by
the computation. Instead, the local modifications are simply randomly generated data
that is written to the virtual disk before checkpointing.

The first benchmarking scenario evaluates how the chunk size impacts the sustained
throughput. To this end, we deploy BlobCR on all available nodes (100) and run a
single checkpointing process in each of the five settings using a variable chunk size,
ranging from 128K to 2048K. The results are depicted in Figure 3(a). As expected, rep-
2, rep-3 and rep-4 roughly achieve 1/2, 1/3 and 1/4 of the maximal throughput, with
a slightly increasing trend as the chunk size gets larger (which is the consequence of
fewer messages and thus lower overhead due to latency). This trend is observable for
rs-4 and rs-8 too, slightly more pronounced due to the larger number of messages (i.e.
4 and 8 respectively per chunk).

When comparing our approach to replication, the advantage of lower amount of data
transfer is clearly visible: for 2048K chunks, rs-4 achieves a throughput that is 38%
higher than rep-4 while guaranteeing a comparable reliability level. At the same time,
it reduces bandwidth and storage space utilization by more than 100% as predicted by
our model (See Section 4). Comparing rs-4 to rep-2 (which consumes the same amount
of bandwidth and storage space), we observe a decrease in throughput of less than 20%.
This overhead is a worthwhile investment, considering that rs-4 increases the reliability
level over rep-2 by several orders of magnitude. Even for small chunk sizes (going
as low as 128KB), the advantage of our approach is clearly visible: the throughput
achieved by rs-4 is only 24% lower than rep-2 and more than 25% higher than rep-



4. Finally, we note better scalability for our approach: rs-8 is already 33% faster than
rep-4, while increasing the reliability level yet again several orders of magnitude.

So far we have analyzed our approach vs. replication for a single checkpointing
process only. Our second benchmarking scenario evaluates how the five settings com-
pare in a highly concurrent setting where an increasing number of checkpointing pro-
cesses need to save the checkpointing data simultaneously and thus compete for the
system bandwidth. We fix the chunk size to 512K and gradually increase the number
of checkpointing processes, from one up to 75, while measuring the average sustained
throughput. These results are represented in Figure 3(b).

As can be observed, all five approaches suffer a performance degradation with in-
creasing number of checkpointing processes. In case of rep-2, the throughput drops
from 47 MB/s to little over 20 MB/s. Although starting lower than rep-2, both rs-4 and
rs-8 catch up with rep-2 under concurrency: the average throughput drops to 20 MB/s
and 19 MB/s respectively. This shows that competition for system bandwidth effec-
tively hides the encoding overhead of our approach at larger scales, enabling it to be
more scalable: we sustain virtually the same throughput as rep-2 for the same storage
space and bandwidth utilization, albeit at a much higher resilience level. Compared to
rep-3 and rep-4, where the throughput drops to little over 10 MB/s, we can observe an
even more dramatic improvement than in the case of a single checkpointing process: we
sustain a throughput almost 100% higher while keeping the same reliability level (rs-4)
and even increasing it several levels of magnitude (rs-8).

5.3 Real-life application: CM1
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In the previous section we have evaluated the throughput of our persistent storage
under concurrency for an ideal environment where no application is running. However,
in real life the application continues running after requesting a virtual disk snapshot
to be taken, while the virtual disk snapshot is persisted in the background. This limits



the amount of resources available to the persistency process: (1) there is less overall
available system bandwidth, as the application generates network traffic; (2) there is
less available computational power on each compute node, as the application processes
run inside the virtual machine and consume CPU.

To illustrate the impact of these limitations in real life, we have chosen CM1: a
three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model suit-
able for idealized studies of atmospheric phenomena. This application is used to study
small-scale phenomena that occur in the atmosphere of the Earth (such as hurricanes)
and is representative of a large class of HPC applications that perform stencil (nearest-
neighbor) computations.

We perform a weak scalability experiment that solves an increasingly large problem
(constant workload per core), starting from 16 processes up to 256 processes. As input
data for CM1, we have chosen a 3D hurricane that is a version of the Bryan and Rotunno
simulations [9]. The processes are distributed in pairs of four among virtual machine
instances that are allotted 4 cores, such that each process has its own dedicated core.
This represents the worst case scenario for our approach, as the block encoding must
compete with the application processes. We compare two approaches that offer the same
reliability level: rs-4 and rep-4. The checkpointing frequency is fixed such that a single
checkpoint is taken throughout the application run-time.

The results are depicted in Figure 4. As expected, the average checkpointing through-
put (Figure 4(a)) is smaller than in the ideal case (See Section 5.2) and drops with
increasing number of processes. The combined effects of both concurrent checkpoint-
ing and application communication quickly saturate the system bandwidth in the case
of rep-4, which leads to a dramatic drop in average checkpointing throughput from
22 MB/s to 8 MB/s. Our approach on the other hand is more scalable: it presents a drop
from 16 MB/s to 12 MB/s. Unlike the ideal case, this time rs-4 is significantly slower
because less computation power is available for encoding. Nevertheless, it is still 50%
faster than rep-4 in the worst case and has the potential to become even 150% faster if
a dedicated core can be spared for the encoding. Taking a look at the completion times
(Figure 4(b)), rs-4 is again much more scalable: the completion time increases from
60s to 100s, which is 35% less than the increase observed in the case of rep-4 (135s).
This advantage of rs-4 over rep-4 can be traced back to the twice as lower bandwidth
consumption, which effectively increases the bandwidth available to the application.

6 Conclusions

A large class of HPC applications can take advantage of local storage in order to im-
prove performance and scalability while reducing resource utilization, however doing
so raises reliability issues. In this paper we have presented a scalable Reed-Solomon
based algorithm that provides a high degree of reliability for local storage at the cost of
very low computational overhead and using a minimal amount of communication.

We demonstrated the benefits of our approach both theoretically through a perfor-
mance and resource utilization model, as well as in practice through extensive experi-
ments performed on the G5K testbed. Compared to transitional approaches that rely on
replication, we show up to 50% higher throughput and 2x lower bandwidth / storage



space consumption for the same reliability level, which improves overall performance
of a real life HPC application (CM1) up to 35%.

Based on these results, we plan to explore in future work the issue of reliability
of local storage in greater detail. In particular, we are investigating how to extend our
approach to enable high availability of data under concurrent read scenarios: in this
context, parity information could be used to avoid contention to the original data. This
is important for a large number of HPC applications that need to share the same initial
datasets between processes.
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