
HAL Id: hal-00703207
https://hal.inria.fr/hal-00703207

Submitted on 1 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning with Triggers
Claire Dross, Sylvain Conchon, Andrei Paskevich

To cite this version:
Claire Dross, Sylvain Conchon, Andrei Paskevich. Reasoning with Triggers. [Research Report] RR-
7986, INRIA. 2012, pp.29. �hal-00703207�

https://hal.inria.fr/hal-00703207
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
9

8
6

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7986
Juin 2012

Project-Team ProVal

Reasoning with Triggers

Claire Dross, Sylvain Conchon, Johannes Kanig, Andrei Paskevich

RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université

4 rue Jacques Monod

91893 Orsay Cedex

Reasoning with Triggers

Claire Dross∗†‡, Sylvain Conchon∗†, Johannes Kanig‡, Andrei

Paskevich∗†

Project-Team ProVal

Research Report n➦ 7986 — Juin 2012 — 26 pages

Abstract: SMT solvers can decide the satisfiability of ground formulas modulo a combination
of built-in theories. Adding a built-in theory to a given SMT solver is a complex and time con-
suming task that requires internal knowledge of the solver. However, many theories (arrays [13],
reachability [11]), can be easily expressed using first-order formulas. Unfortunately, since universal
quantifiers are not handled in a complete way by SMT solvers, these axiomatics cannot be used as
decision procedures.
In this paper, we show how to extend a generic SMT solver to accept a custom theory description
and behave as a decision procedure for that theory, provided that the described theory is complete
and terminating in a precise sense. The description language consists of first-order axioms with
triggers, an instantiation mechanism that is found in many SMT solvers. This mechanism, which
usually lacks a clear semantics in existing languages and tools, is rigorously defined here; this
definition can be used to prove completeness and termination of the theory. We demonstrate on
two examples, how such proofs can be achieved in our formalism.

Key-words: Quantifiers, Triggers, SMT Solvers, Theories

∗ LRI, Université Paris-Sud 11,CNRS, Orsay F-91405
† INRIA Saclay-̂Ile de France, ProVal, Orsay F-91893
‡ AdaCore, Paris F-75009

Raisonner avec des Déclencheurs

Résumé : Les solveurs SMT décident de la satisfiabilité d’un ensemble de
formules closes modulo une combinaison de théories. Ajouter une théorie à cette
combinaison est une tâche longue et complèxe qui requiert une connaissance
approfondie du fonctionnement interne du solveur. Pourtant, de nombreuses
théories (les tableaux [13], l’atteignabilité sur les listes chainées [11]), peuvent
être exprimées facilement comme un ensemble de formules du premier ordre.
Malheureusement, les solveurs SMT ne traitant pas les quantificateurs de façon
complète, ces axiomatisations ne peuvent pas se substituer à l’écriture d’une
vrai procédure de décision.

Dans ce papier, nous montrons comment un solveur SMT pour les for-
mules closes peut être modifié pour qu’il accepte une théorie supplémentaire
sous forme d’axiomatique. L’axiomatique devra être complète, dans un certain
sens, pour que le solveur puisse l’utiliser comme procédure de décision. Pour
cela, elle pourra être agrémentée de déclencheurs, des annotations utilisées par
de nombreux solveurs pour guider l’instanciation. Ces annotations, habituelle-
ment utilisées comme heuristiques, ont une sémantique bien définies dans notre
formalisme. Cela permet de les prendre en compte lors de nos preuves de
complétude et de terminaison. Nous donnons finalement deux exemples de
théories complètes pour notre formalisation.

Mots-clés : Quantificateurs, Déclencheurs, Solveurs SMT, Théories

Reasoning with Triggers 3

Contents

1 Introduction 3

2 First-Order Logic with Triggers and Witnesses 5

2.1 Syntax . 5
2.2 Denotational Semantics . 5
2.3 Example . 6
2.4 The Extension of First-Order Logic is Conservative 7

3 Adding a Customizable Theory to a SMT Solver for Ground

Formulas 13

3.1 A Solver for Ground Formulas . 13
3.2 Deduction Rules for First-Order Formulas with Triggers 13
3.3 Properties . 15

4 Completeness and Termination of a theory 17

4.1 Non-Extensional Theory of Arrays 17
4.2 Axiomatics for Reachability in Finite Acyclic Imperative Lists . . 19

5 Conclusion 22

1 Introduction

SMT solvers are sound, complete, and efficient tools for deciding the satisfiabil-
ity of ground formulas modulo combinations of built-in theories such as linear
arithmetic, arrays, bit-vectors etc. Usually, they work on top of a SAT solver
which handles propositional formulas. Assumed literals are then handed to ded-
icated solvers for theory reasoning. These solvers are complete. Adding a new
theory to the framework is a complex and time consuming task that requires
internal knowledge of the solver. For some theories however, it is possible to
give a first-order axiomatization. Unfortunately, even if a few SMT solvers also
handle first-order formulas, for example, Simplify [7], CVC3 [9], Z3 [6] and Alt-
Ergo [3], these axiomatizations cannot be used as theories. Indeed, these solvers
are not complete when quantifiers are involved, even in the absence of theory
reasoning.

SMT solvers handle universal quantifiers through an instantiation mecha-
nism. They maintain a set of ground formulas (without quantifiers) on which
theory reasoning is done. This set is periodically augmented by heuristically
chosen instances of universally quantified formulas.

The heuristics for choosing new instances differ between SMT solvers. Nev-
ertheless, it is commonly admitted that user guidance is useful in this mat-
ter [7, 12]. The choice of instances can be influenced by manually adding in-
stantiation patterns, also known as triggers. These patterns are used to restrict
instantiation to known terms that have a given form. Here is an example of a
universally quantified formula with a trigger in SMT-LIB [2] notation:

(forall ((x Int)) (! (= (f x) c) :pattern ((g x))))

The syntax for triggers includes a bang (a general syntax for annotating for-
mulas) before the restricted formula (= (f x) c) and the keyword :pattern

RR n➦ 7986

4 C. Dross & S. Conchon & J. Kanig & A. Paskevich

to introduce the trigger (g x). The commonly agreed meaning of the above
formula can be stated as follows:

Assume (= (f t) c) only for terms t such that (g t) is known.

Intuitively, a term is known when it appears in a ground fact assumed by the
solver. However, that rule is quite vague and does not include answers to the
following questions: when does a term become known? Is that notion to be
considered modulo equality and modulo the built-in theories, and finally, when
is this rule applied exactly, and to which formulas? Different provers have found
different answers to these questions, consequence of the fact that triggers are
considered a heuristics and not a language feature with precise semantics.

We give a proper semantics for first-order formulas with triggers. In this
semantics, instantiation of universally quantified formulas is restricted to known
terms. This makes it possible to extend a generic SMT solver so that it behaves
as a decision procedure on an axiomatization representing a custom theory,
provided the theory is complete in our framework. This enables non-expert
users to add their own decision procedure to SMT solvers. Unlike first-order
axiomatization in SMT solvers handling quantifiers, a proof of completeness
and termination of the decision procedure can be attempted and, unlike manual
implementation of decision procedures inside SMT solvers, it does not require
internal knowledge of the solver.

In Sect. 2, we introduce a formal semantics for first-order logic with a no-
tation for instantiation patterns that restrict instantiation. It formalizes both
the notion of trigger and the dual notion of known term. We show that this
extension of first-order logic is conservative: formulas without triggers preserve
their satisfiability under this semantics. We present in Sect. 3 a theoretical way
of extending a generic ground SMT solver so that it can turn an axiomatization
T with triggers into a decision procedure, provided that T has some additional
properties. Finally, in Sect. 4, we demonstrate on the non-extensional theory of
arrays how our framework can be used to demonstrate that an axiomatization
with triggers indeed fulfills its requirements.

Related Work. Triggers are a commonly used heuristic in SMT solvers that
handle quantifiers. User manuals usually explain how they should be used to
achieve the best performance [7, 12, 9]. Triggers can be automatically com-
puted by the solvers. A lot of work has also been done on defining an efficient
mechanism for finding the instances allowed by a trigger. These techniques,
called E-matching, are described in [7, 13] for Simplify, in [5] for Z3, and in
[9] for CVC3. Other heuristics for generating instances include model-based
quantifier instantiation [8] and saturation processes closed to the superposition
calculus [4].

In this paper, triggers are not handled in the usual manner. On the one hand,
since SMT solvers are not complete in general when quantifiers are involved, they
favor efficiency over completeness in the treatment of triggers. For example, they
usually do not attempt to match triggers modulo underlying theories. On the
other hand, in our framework, triggers are used to define theories, and they
need therefore to be handled in a complete way.

Triggers can also be used in complete first-order theorem provers to guide
the proof search and improve the solver’s efficiency. This is done on a complete

Inria

Reasoning with Triggers 5

solver for a subset of first-order logic with linear arithmetics based on a sequent
calculus in [14].

As for using an SMT solver as a decision procedure, the related idea that a
set of first-order formulas can be saturated with a finite set of ground instances
has been explored previously. For example, in [10], decision procedures for
universally quantified properties of functional programs are designed using local
model reasoning. In the same way, Ge and de Moura describe fragments of first-
order logic that can be decided modulo theory by saturation [8]. Both of these
works define a restricted class of universally quantified formulas that can be
finitely instantiated. We do not impose such restrictions a priori but rather
require a dedicated proof of completeness.

2 First-Order Logic with Triggers and Witnesses

In this section, we extend classical first-order logic, denoted FOL, with construc-
tions to specify instantiation patterns and known terms. The semantics of this
extension, denoted FOL⋆, is defined through an encoding into usual first-order
logic. In the rest of the article, we write formulas in standard mathematical
notation.

2.1 Syntax

Informally, a trigger is a guard that prevents the usage of a formula until the
requested term is known. We write it [t]F , which should be read if the term t

and all its sub-terms are known then assume F . Note that we do not require
a trigger to be tied to a quantifier. We separate the actual instantiation of a
universal formula from the decision to use its result.

A dual construct for [t] F , which we call witness, is written 〈t〉 F and is
read assume that the term t and all its sub-terms are known and assume F .
This new construction explicitly updates the set of known terms, something for
which there is no proper syntax in existing languages.

The extended syntax of formulas can be summarized as follows:

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ∀x. F | ∃x. F | 〈t〉 F | [t] F | ¬F

We treat implication (→) and equivalence (↔) as abbreviations, in a standard
fashion.

2.2 Denotational Semantics

We define the semantics of our language via two encodings J K+ and J K− into
first-order language, given in Fig. 1. The notation J K± is used when the rule
is the same for both polarities and the polarity of the sub-formulas does not
change. We introduce a fresh unary predicate symbol known which denotes
the fact that a term is known. Given a term t or an atomic formula A,
we denote with T (t) (respectively, T (A)) the set of all the non-variable sub-
terms of t (resp. A). The expression known(T (t)) stands for the conjunction
∧

t′∈T (t) known(t
′).

We require universally quantified formulas to be instantiated with known
terms. This is consistent with the standard use of triggers: indeed, SMT solvers

RR n➦ 7986

6 C. Dross & S. Conchon & J. Kanig & A. Paskevich

JF1 ∧ F2K
± , JF1K

± ∧ JF2K
± J〈t〉 F K± , known(T (t)) ∧ JF K±

JF1 ∨ F2K
± , JF1K

± ∨ JF2K
± J[t] F K± , known(T (t))→ JF K±

J∀x. F K± , ∀x. known(x)→ JF K± J∃x. F K± , ∃x. known(x) ∧ JF K±

J¬F K+ , ¬JF K− J¬F K− , ¬JF K+

JAK+ , known(T (A))→ A JAK− , known(T (A)) ∧A

Figure 1: Semantics of FOL⋆-formulas (J K± denotes either J K+ or J K−)

require (or compute) a trigger containing each quantified variable for every
universal quantifier. Then every term that replaces a universally quantified
variable is necessarily known, since sub-terms of a known term are known, too.
Dually, every existentially quantified variable is assumed to be known. This
is necessary in order to allow instantiation with a witness from an existential
formula.

To maintain the invariant that the sub-terms of a known term are also known,
our interpretation of 〈t〉 F implies the presence of every non-variable sub-term
of t (the presence of variables is assured by interpretation of the quantifiers).
Dually, [t] F requires the presence of every non-variable sub-term of t; due to
the mentioned invariant, this is not a restriction.

Finally, whenever we encounter an atomic formula, regardless of its polarity,
we assume the presence of its sub-terms. This is also in agreement with the
standard use of triggers.

We define entailment in FOL⋆ as follows:

F ⊢⋆ G , known(ω), JF K− ⊢ JGK+

where ω is an arbitrary fresh constant supposed to be known a priori, and ⊢
stands for entailment in FOL.

A peculiar aspect of FOL⋆ is the cut rule is not admissible in it. Indeed, one
cannot prove ∀x . [f(x)] P (f(x)), ∀x . [f(g(x))] (P (f(g(x))) → Q(x)) ⊢⋆ Q(c),
since the term f(g(c)) is not known and neither of the premises can be instanti-
ated. However, Q(c) is provable via an intermediate lemma P (f(g(c)))→ Q(c).

2.3 Example

Consider the following set of formulas R from the previous section:

R = { f(0) ≈ 0, f(1) 6≈ 1, ∀x.[f(x+ 1)] f(x+ 1) ≈ f(x) + 1 }

We want to show that R is unsatisfiable in FOL⋆, that is to say, R ⊢⋆ ⊥. By
definition, we have to prove that known(ω), JRK− ⊢ ⊥.

JRK− =

known(T (f(0) ≈ 0)) ∧ f(0) ≈ 0,

known(T (f(1) 6≈ 1)) ∧ f(1) 6≈ 1,

∀x. known(x)→ known(T (f(x+ 1)))→
known(T (f(x+ 1) ≈ f(x) + 1)) ∧ f(x+ 1) ≈ f(x) + 1

The set of formulas JRK− is unsatisfiable in first-order logic with arithmetic.
Therefore, in our framework, the initial set R is unsatisfiable.

Inria

Reasoning with Triggers 7

2.4 The Extension of First-Order Logic is Conservative

Even if a formula does not contain triggers or witnesses, our encoding modifies it
to restrict instantiation of universal formulas. However, it preserves satisfiability
of formulas in classical first-order logic with equality.

Theorem 2.1 (Soundness). For every first-order formula F , if we have F ⊢⋆ ⊥,
then we also have F ⊢ ⊥.

Proof. Since known is a fresh predicate symbol, for every model M of F , there is
a modelM ′ of F such thatM ′ only differs fromM in the interpretation of known
and M ′ ⊢ ∀x.known(x). By immediate induction, (∀x.known(x)) ∧ F ⊢ JF K−.
As a consequence, M ′ is a model of JF K− and F 6⊢⋆ ⊥. Thus, by contra-position,
if F ⊢⋆ ⊥ then there is no model of F and F ⊢ ⊥.

Theorem 2.2 (Completeness). For any first-order formula F , if F ⊢ ⊥ then
F ⊢⋆ ⊥.

The rest of the section is dedicated to the proof of this theorem. We will
often resort to the following lemma:

Lemma 2.1. If F is an arbitrary FOL⋆-formula, t a ground term, and x a free
variable of F , then JF K−[x← t], known(T (t)) ⊢ JF [x← t]K−.

Instead of working with models, we choose an approach based on inference
trees in a certain paramodulation calculus. Since this calculus operates on
clauses, we must first show that skolemization and clausification preserve satis-
fiability. With a small abuse of notation, we use our encoding J K− on clauses.
Formally, if C is a clause, JCK− is J∀x.CK− where x are the free variables of C.

Definition 2.1. We introduce a function Sko that takes a first-order formula
in negative normal form and returns its skolemization, and a function Cls that
puts a formula in Skolem negative normal form into conjunctive normal form.

Lemma 2.2. For every first-order formula F in negative normal form, if we
have Sko(F) ⊢⋆ ⊥ then we also have F ⊢⋆ ⊥.

Proof. Skolemization preserves satisfiability. As a consequence, it is enough to
show that Sko(JF K−) ⊢ ⊥.

Let G be a sub-formula of F and σ a substitution mapping variables exis-
tentially quantified above G of F to their skolem functions. We prove that we
have Sko(JGK−)σ ∧

∧

t∈T (Image(σ)) known(t) ⊢ JSko(G)σK− by induction over
the form of G.

❼ G is a literal. We compute that Sko(JGK−) =
∧

t∈T (G) known(t) ∧ G

and JSko(G)σK− =
∧

t∈T (Gσ) known(t) ∧ Gσ. A non-variable sub-term
of Gσ s is either tσ for some non-variable sub-term t of G or a non-
variable sub-term of t ∈ Image(σ). In both cases, the presence of s is
implied by

∧

t∈T (G) known(tσ) ∧
∧

t∈T (Image(σ)) known(t). Thus, we have

Sko(JGK−)σ ∧
∧

t∈Image(σ) known(t) ∧
∧

y∈y known(y) ⊢ JSko(G)σK−.

❼ G is a disjunctionG1∨G2. We have Sko(JGK−) = Sko(JG1K
−)∨Sko(JG2K

−).
By induction hypothesis, we have Sko(JGkK

−)σ∧
∧

t∈T (Image(σ)) known(t)

implies JSko(Gk)σK− for k in 1..2. Consequently, we deduce Sko(JGK−)∧
∧

t∈T (Image(σ)) known(t) ⊢ JSko(G1)K
−∨JSko(G2)K

− which is JSko(G)K−.
The same is true for conjunctions.

RR n➦ 7986

8 C. Dross & S. Conchon & J. Kanig & A. Paskevich

Reflexivity

C ∨ t1 6≈ t2 · ρ µ = mgu(t1ρ, t2ρ)

C · ρµ

Paramodulation

C1 ∨ t1 ≈ t2 · ρ1 C2 ∨ L[s] · ρ2 µ = mgu(t1ρ1, sρ2)

C1 ∨ C2 ∨ L[t2] · (ρ1 ⊕ ρ2)µ

Factoring
1

C ∨ L1 ∨ L2 · ρ
µ = mgu(L1ρ, L2ρ) Lρµ = L1ρµ L≪ L1 L≪ L2

C ∨ L · ρµ

Figure 2: Basic paramodulation calculus BP

❼ G is a universally quantified formula ∀x. G′. We compute Sko(JGK−) =
∀x. known(x)→ JG′K−. By induction hypothesis, we have Sko(JG′K−)σ∧
∧

t∈T (Image(σ)) known(t) ⊢ JSko(G′)σK−. As a consequence, we deduce

that Sko(JGK−)∧
∧

t∈T (Image(σ)) known(t) ⊢ ∀x. known(x)→ JSko(G′)σK−.

❼ G is an existentially quantified formula ∃x. G′. c(x) is a Skolem function
such that Sko(JGK−) = known(c(x))∧ JG′K−[x← c(x)]. By induction hy-
pothesis, Sko(JG′K−)(σ⊕{x 7→ c(x)})∧

∧

t∈T (Image(σ⊕{x 7→c(x)})) known(t) ⊢

JSko(G′)σ ⊕ {x 7→ c(x)}K−. Consequently, Sko(JGK−) ⊢ JSko(G′)σ[x ←
c(x)]K− which is equal to JSko(G)K−.

Lemma 2.3. For every first-order formula F in negative normal form without
existential quantifiers, if Cls(F) ⊢⋆ ⊥ then F ⊢⋆ ⊥.

Proof. The result comes from the preservation of conjunction and disjunction
through the encoding and the two following facts: J(∀x. F1) ∨ (∀y. F2)K

− is
equal to ∀x, y. (known(x) → JF1K

−) ∨ (known(y) → JF2K
−) which implies

∀x. known(x) → (∀y. known(y) → (JF1K
− ∨ JF2K

−)) = J∀x, y. F1 ∨ F2K
−;

J(∀x. F1) ∧ (∀y. F2)K
− is equal to ∀x, y. (known(x) → JF1K

−) ∧ (known(y) →
JF2K

−) which implies ∀x. known(x) → (∀y. known(y) → (JF1K
− ∧ JF2K

−)) =
J∀x, y. F1 ∧ F2K

−.

We define a basic paramodulation calculus BP in Fig. 2. This calculus works
on closures, i.e., pairs consisting of a clause and a substitution. If a closure C · σ
can be inferred from a set of closures E, then {Dµ | D · µ ∈ E} ⊢ Cσ. If σ
and ρ are substitutions, we denote their composition with σρ and their disjoint
union with σ ⊕ ρ. Given two formulas F1 and F2, we write F1 ≪ F2 if F1 is
more general than F2, i.e., there is a substitution σ such that F1σ = F2.

Lemma 2.4. The calculus BP is sound and complete.

1In traditional factoring rules, either L1 or L2 is kept in the conclusion C ∨ Li. Our
Factoring rule is not more restrictive. Indeed, such a literal L can always be computed for
two unifiable literals L1 and L2.

Inria

Reasoning with Triggers 9

We give in appendix a proof of completeness of BP similar to the one in [1].

Definition 2.2. We define an inference tree T to be a deduction by one or more
steps of BP starting from a set of clauses (called leaves) associated with empty
substitutions. We denote the set of leaves with ET and the inferred closure with
CT · ρT and call CT the conclusion of T and ρT the unifier of T . An inference
tree T is called a refutation if CT is the empty clause.

Definition 2.3. We say that a step S of BP involves a literal L if either S is
a reflexivity step and L the resolved disequality, S is a factoring step and L is
one of the identified literals, or S is a paramodulation step and L is the literal
rewritten or the equality used to rewrite it.

To prove Theorem 2.2, we start with a refutation of the set E = Cls(Sko(F))
and show that the set known(ω), JEK− is unsatisfiable. Then, by Lemmas 2.2
and 2.3, known(ω), JF K− is unsatisfiable, too. For our proof, we will need a more
general statement, namely: for every inference tree T , the set known(ω), JET K−

implies every ground part of JCT K−. Formally, this lemma can be stated as
follows:

Lemma 2.5. Given an inference tree T and a ground clause C such that
the set Cls(JCT K−) contains the clause (

∧

x∈vars(CT) known(x) → C), we have

JET K−, known(ω) ⊢ C.

Proof. We proceed by induction on T using the following well-founded ordering:
an inference tree T1 is said to be strictly smaller than T2 if either:

❼ There is a variable x in ET2
such that T1 is T2 with x replaced by some

term t≫ xρT2
.

❼ T1 is composed of strictly fewer inference steps than T2.

If CT ∈ ET , then JET K− ⊢ JCT K−. Since (
∧

x∈vars(CT) known(x)→ C) is in

Cls(JCT K−), we have known(ω), JET K− ⊢ C[vars(CT)← ω]. Since C is ground,
known(ω), JET K− ⊢ C.

If ET is ground, a simple structural induction on T gives JET K− ⊢ JCT K−.

Lemma 2.6. For every inference tree T with no variable, JET K− ⊢ JCT K−.

Proof. We prove by induction over the form of T , that, for all clause C ∈
ClsJCT K−, we have JET K− ⊢ C.

❼ If the last step of T is an application of Reflexivity:

S

C1 ∨ t 6≈ t · ∅

C1 · ∅

The inference tree S is strictly smaller than T . By induction hypothesis,
since C ∨ t 6≈ t ∈ ClsJCSK−, we have JESK− ⊢ C ∨ t 6≈ t. We consequently
have JET K− = JESK− ⊢ C.

RR n➦ 7986

10 C. Dross & S. Conchon & J. Kanig & A. Paskevich

❼ If the last step of T is an application of Factoring:

S

C1 ∨ L ∨ L · ∅

C1 ∨ L · ∅

The inference tree S is strictly smaller than T . By construction, C = C ′
1∨

L′ where C ′
1 ∈ Cls(JC1K

−) and L′ ∈ Cls(JLK−). By induction hypothesis,
since C ′

1 ∨ L′ ∨ L′ ∈ ClsJCSK−, we have JESK− ⊢ C ′
1 ∨ L′ ∨ L′. We

consequently have JET K− ⊢ JESK− ⊢ C.

❼ If the last step of T is an application of Paramodulation:

S1

C1 ∨ s ≈ t · ∅

S2

C2 ∨ L[s] · ∅

C1 ∨ C2 ∨ L[t] · ∅

The inference trees S1 and S2 are strictly smaller than T . By construction,
C = C ′

1 ∨ C ′
2 ∨ K where C ′

1 ∈ Cls(JC1K
−), C ′

2 ∈ Cls(JC2K
−) and K ∈

Cls(JL(t)K−). If K = known(t′), t′ ∈ T (t), then K ∈ Js ≈ tK− and
JET K− ⊢ JES1

K− ⊢ C ′
1∨K by induction hypothesis. Otherwise, K = L′[t].

By definition of J K−, L′[s] ∈ Cls(JL[s]K−) and, by induction hypothesis,
JET K− ⊢ JES1

K− ⊢ C ′
1 ∨ s ≈ t and JET K− ⊢ JES2

K− ⊢ C ′
2 ∨ L′[s]. In both

cases, JET K− ⊢ C.

Since C ∈ Cls(JCT K−), we obtain known(ω), JET K− ⊢ C.
If ET ρT is not ground, we consider a tree T ′, which is T where the free

variables of ET ρT are replaced with ω. It is smaller than T with respect to
our ordering and C ∈ Cls(JCT ′K−), since C is ground. By induction hypothesis,
known(ω), JET ′K− ⊢ C. By Lemma 2.1, we obtain known(ω), JET K− ⊢ C.

Otherwise, the substitution ρT is ground, is non-empty, and ranges over
all the variables of ET . We want to reduce T by instantiating one of the free
variables x of ET with xρT . Using Lemma 2.1 and the induction hypothesis,
we obtain known(ω), JET K−, known(T (xρT)) ⊢ C. Then it suffices to find a
variable x such that known(ω), JET K− ⊢ C ∨ known(T (xρT)).

The idea is to find a literal L involved in T that contains a ground term t

such that t = xρT for some x in ET . We cut off every branch involving L in
T and obtain a tree T ′, strictly smaller than T , and such that CT ′ contains L

and literals of CT (or instances thereof, if one of the erased inference steps was
factoring). With the induction hypothesis, we deduce that known(ω), JET ′K− ⊢
C ∨ known(T (t)) (recall that JLK− ↔ known(T (L)) ∧ L). Since ET ′ ⊆ ET , we
obtain known(ω), JET K− ⊢ C ∨ known(T (t)).

More formally, we can show that there is a ground term t in the range of ρT
and a branch B of T such that CB contains L, t ∈ T (L), and the next step of
T involves L.

Lemma 2.7. For every inference tree T such that the substitution ρT is ground,
is non-empty, and ranges over all the variables of ET , there is a term t ∈
Image(ρT) and a branch B of T such that CB = C ∨ L, t ∈ T (L) and the next
step of T involves L.

Inria

Reasoning with Triggers 11

Proof. Since ρT is ground, non-empty and ranges over all the variables of ET ,
there is a ground term t ∈ Image(ρT).

By induction over the size of a tree T , we show that, if there is a ground
term t ∈ T (t′) with t′ ∈ Image(ρT), then there is a ground term s such that
either s ∈ Image(ρT) or s = t and a branch B of T such that s ∈ T (L) for L

one of the literals of CB involved in the next step of T .

❼ If the inference tree T has only one node, either t is a sub-term of an
involved literal or one of its proper sub-terms is in Image(ρT). In the
second case, by immediate induction, there is a term s of Image(ρT) that
appears in an involved literal.

❼ Otherwise, by construction of ρT , there is a branch B of T such that
t′ ∈ T (LρB), L being one of the literals of B involved in the next step of
T .

– t ∈ T (L). The term s = t has the required properties.

– There is a term t′ ∈ Image(ρB) such that t ∈ T (t′). The branch B is
strictly smaller than T . By induction hypothesis, there is a ground
term s such that either s ∈ Image(ρB) or s = t and a branch B′ of
B such that s ∈ T (L) for L one of the literals of CB′ involved in the
next step of T . Since B′ is also a branch of T , the proof is over.

– There is a term t′ ∈ Image(ρB) such that t′ ∈ T (t). By induction
hypothesis, there is a ground term s such that either s ∈ Image(ρB)
or s = t′ and a branch B′ of B such that s ∈ T (L) for L one of the
literals of CB′ involved in the next step of T . Since t′ ∈ Image(ρB),
the conclusion follows in both cases.

By a direct induction over the form of T , there is a tree T ′ strictly smaller
than T such that ET ′ ⊆ ET , CT ′ = L ∨D′ and there is a clause D ⊆ CT such
that D ≪ D′.

Lemma 2.8. For every branch B of a tree T and for every literal L ∈ CB

involved in the next step of T , there is a tree T ′ with strictly fewer deductions
than T such that ET ′ ⊆ ET and CT ′ = L ∨ C ′ where C ′ is such that there is a
clause C ⊆ CT such that C ≪ C ′ and C ′ρT ′ ≪ CρT .

Proof. We proceed by induction over the number of steps following B in T .

❼ If the next step following B in T is the last one, then it is straightforward
to check, by case analysis, that T ′ = B has the requested properties.

❼ Otherwise we proceed by case analysis over the last step of the proof.

– If the last step of T is an application of Reflexivity:

S

C1 ∨ t1 6≈ t2 · ρS
µ = mgu(t1ρS , t2ρS)

C1 · ρSµ

RR n➦ 7986

12 C. Dross & S. Conchon & J. Kanig & A. Paskevich

By induction hypothesis, there is S′ strictly smaller than S such that
CS′ = L ∨ C ′ and there is C ⊆ CS such that C ≪ C ′ and C ′ρS′ ≪
CρS . If C ⊆ C1, the tree S

′ has the requested properties. Otherwise,
since C ′ρS′ ≪ CρS , the last step of the proof can be reproduced. As
a consequence, CT ′ can be written L∨C ′ with C ′ρT ′ = (C\t1 6≈ t2)ρT
and C ′ ⊆ CS′ less general than C \ t1 6≈ t2.

– If the last step of T is an application of Factoring:

S

C1 ∨ L1 ∨ L2 · ρS
µ = mgu(L1ρS , L2ρS) LρSµ = L1ρSµ L≪ L1 L≪ L2

C1 ∨K · ρSµ

By induction hypothesis, there is S′ strictly smaller than S such that
CS′ = L ∨ C ′ and there is C ⊆ CS such that C ≪ C ′ and C ′ρS′ ≪
CρS . If C ⊆ C1∨Li, the tree S

′ has the requested properties, Li being
less general than K. Otherwise, since C ′ρS′ is more general than
CρS , the last step of the proof can be reproduced. As a consequence,
CT ′ can be written L∨C ′ ∨K ′. Since CS′ is less general than C, K ′

can be less general than K and C ′ ⊆ CS′ .

– If the last step of T is an application of Paramodulation:

S

C1 ∨ t1 ≈ t2 · ρS

. . .

C2 ∨ L[s] · ρ
µ = mgu(t1ρS , sρ)

C1 ∨ C2 ∨ L[t2] · (ρS ⊕ ρ)µ

By induction hypothesis, there is S′ strictly smaller than S such that
CS′ = L∨C ′ and there is C ⊆ CS such that C ′ is less general than C

and C ′ρS′ is more general than CρS . If C ⊆ C1, the tree S′ has the
requested properties. Otherwise, since C ′ρS′ is more general than
CρS and C ′ is less general than C, the last step of the proof can be
reproduced.

– If the last step of T is an application of Paramodulation:

. . .

C1 ∨ t1 ≈ t2 · ρ

S

C2 ∨ L[s] · ρS
µ = mgu(t1ρ, sρS)

C1 ∨ C2 ∨ L[t2] · (ρ⊕ ρS)µ

By induction hypothesis, there is S′ strictly smaller than S such that
CS′ = L∨C ′ and there is C ⊆ CS such that C ′ is less general than C

and C ′ρS′ is more general than CρS . If C ⊆ C2, the tree S′ has the
requested properties. Otherwise, since C ′ρS′ is more general than
CρS , the last step of the proof can be reproduced.

Then there is C ′ ⊆ C such that (
∧

x∈vars(C
T ′) known(x)→ C ′∨known(t′)) ∈

Cls(JCT ′K−) for every t′ ∈ T (t). Since T ′ is strictly smaller than T , we obtain,
by induction hypothesis, that known(ω), JET ′K− ⊢ C ′ ∨ known(t′) for every
t′ ∈ T (t). Thus, known(ω), JET K− ⊢ C ∨ known(T (t)).

Inria

Reasoning with Triggers 13

3 Adding a Customizable Theory to a SMT Solver

for Ground Formulas

In this section, we define a wrapper over a generic SMT solver for ground for-
mulas that accepts a theory written as a set of formulas with triggers. This
solver is a theoretical model and it is not meant to be efficient. We prove it
sound with respect to our framework.

It is easy to show that conversion to NNF does not change the semantics of
a FOL⋆-formula.

Definition 3.1. We define a skolemization transformation SkoT for FOL⋆-
formulas in negative normal form. Given a formula F = ∃x.G, we have
SkoT (F) , 〈c(y)〉 SkoT (G[x ← c(y)]), where y is the set of free variables
of F , and c is a fresh function symbol.

We put the witness 〈c(y)〉 to preserve satisfiability. Indeed, Sko(∃x. [x]⊥) is
[c]⊥ which is satisfiable, while ∃x. [x]⊥ is not. In the following, we work with
FOL⋆-formulas in Skolem negative normal form.

3.1 A Solver for Ground Formulas

To reason about FOL⋆-formulas, we use a solver S for ground formulas.

Definition 3.2. We denote implication over ground formulas with theories ⊢o
to distinguish it from implication in first-order logic with theories ⊢.

We make a few assumptions about the interface of the ground solver S:

❼ It returns Unsat(U) when called on an unsatisfiable set of ground formulas
R where U is an unsatisfiable core of R. We assume that U is a set of
formulas that occur in R such that R ⊢o U and U ⊢o ⊥.

❼ It returns Sat(M) when called on a satisfiable set of ground formulas R

where M is a model of R. We assume that M is a set of literals of R such
that M ⊢o R.

We write R S Unsat(U) (resp. R S Sat(M)) to express that the solver S

returns Unsat(U) (resp. Sat(M)) when launched on a set of ground formulas R.

3.2 Deduction Rules for First-Order Formulas with Trig-

gers

The solver Lift(S) takes a set of formulas with triggers T and a set of ground
formulas S as input and decides whether S is satisfiable modulo T . It is con-
structed on top of a solver for ground formulas S and works on a set of ground
formulas R that is augmented incrementally. While the solver S returns a model
M of R, new facts are deduced from M and added to R.

The set R initially contains the formulas from the input S as well as those
from the theory T where literals, quantified formulas, and formulas with triggers
or witnesses are replaced by fresh atoms. The atom replacing a formula F is

written F and is called a protected formula.

RR n➦ 7986

14 C. Dross & S. Conchon & J. Kanig & A. Paskevich

Definition 3.3. We say that a model M produces a pair F, t of a formula F

and a term t if either F is the atom ⊤ and there is a literal L in M from S

such that t ∈ T (L), F is a protected witness 〈s〉 G ∈M and t ∈ T (s), or F a

protected literal L ∈M and t ∈ T (L). We write it M ↑ F, t.

The following deduction rules are used to retrieve information from the pro-
tected formulas of a model M :

Pos Unfold

〈t〉 F ∈M

〈t〉 F → F

Lit Unfold

L ∈M

L → L

Neg Unfold

[t] F ∈M M ↑ G, t
′

M ∪ {t 6≈ t
′} S Unsat(U ∪ {t 6≈ t

′})

[t] F ∧G ∧ U → F

Inst

∀x. F ∈M M ↑ G, t M ∪ {¬F [x← t]} S Sat(M ′)

∀x. F ∧G→ F [x← t]

Rule Inst adds to R an instantiation of a universal formula with a known
term. It is restricted by the premise M ∪ {¬F [x ← t]} S Sat(M ′) so that
it does not instantiate a quantified formula if the result of the instantiation is
already known. Rule Pos Unfold (resp. Lit Unfold) unfolds formulas with
witnesses (resp. literals). Rule Neg Unfold removes a trigger when it is equal
to a known term. Note that every deduction rule returns an implication: in a
model where, say, 〈t〉 F is not true, F does not need to be true either.

The solver for FOL⋆-formulas Lift(S) returns Unsat on R, as soon as S

returns Unsat on the current set of formulas. It returns Sat on R if the ground
solver S returns a model M from which nothing new can be deduced by the
above deduction rules.

Here is an example of execution of the solver Lift(S) on the set of ground
formulas S modulo the theory T :

S = {f(0) ≈ 0, f(1) 6≈ 1}

T = {∀x.[f(x+ 1)] f(x+ 1) ≈ f(x) + 1}

Let us show how the solver Lift(S) can deduce that

R0 =

{

f(0) ≈ 0, f(1) 6≈ 1,

∀x.[f(x+ 1)] f(x+ 1) ≈ f(x) + 1

}

is unsatisfiable.

1. The ground solver returns the only possible model M0 of R0, namely R0

itself. Since f(0) ≈ 0 ∈M0, M0 produces the pair ⊤, 0. As a consequence,
the rule Inst can instantiate x with 0 in the universal formula:

R1 = R0 ∪

∀x. [f(x+ 1)] f(x+ 1) ≈ f(x) + 1 ∧ ⊤ →

[f(0 + 1)] f(0 + 1) ≈ f(0) + 1

Inria

Reasoning with Triggers 15

2. The solver returns the modelM1 = M0∪{ [f(0 + 1)] f(0 + 1) ≈ f(0) + 1 }

of R1. Since f(1) 6≈ 1 ∈ M1, M1 produces the pair ⊤, f(1). Based on re-
sults from the theory of arithmetics, the ground solver can deduce that
f(0 + 1) 6≈ f(1) is unsatisfiable. Thus the rule Neg Unfold can add
another formula to R1:

R2 = R1 ∪

[f(0 + 1)] f(0 + 1) ≈ f(0) + 1 ∧ ⊤ →

f(0 + 1) ≈ f(0) + 1

3. The ground solver returns the model M2 = M1 ∪ { f(0 + 1) ≈ f(0) + 1 }

of R2. With the rule Lit Unfold, we can now unfold the protected literal

f(0 + 1) ≈ f(0) + 1 :

R3 = R2 ∪ { f(0 + 1) ≈ f(0) + 1 → f(0 + 1) ≈ f(0) + 1}

4. Any model of R3 contains f(0 + 1) ≈ f(0) + 1, f(0) ≈ 0 and f(1) 6≈ 1.
The ground solver returns Unsat() on R3. As expected, the initial set S
is reported to be unsatisfiable modulo T .

3.3 Properties

In this section, we prove that our solver is sound and complete on a particular
class of axiomatics. In the following section, we demonstrate on an example
how our framework can be used to check that a given axiomatics is in this class.

Completeness We say that a set of formulas with triggers T is complete if, for
every finite set of literals G, JG ∪ T K− and G ∪ T , triggers being ignored,
are equisatisfiable in FOL.

Termination We say that a set of formulas with triggers T is terminating if,
from every finite set of literals G, there can only be a finite number of
instances of formulas of T . In our framework, we enforce three rules to
enable reasoning about termination:

❼ instantiation is always done with known terms

❼ new known terms cannot be deduced if they are protected by a trigger

❼ an instance of a formula F with a term t is not generated if an
instance of F has already been generated with t′ equal to t.

Our solver is sound and complete if it works modulo a complete and terminating
theory T :

Theorem 3.1. If Lift(S) returns Unsat on a set of ground formulas S modulo
a theory T then S ∪ T , triggers being ignored, is unsatisfiable in FOL.

Proof. Let M be a model returned by S and S be the set of terms contained in
literals of M . It is straightforward to check that, for every deduction rule with
conclusion F , known(S) ⊢ JF K−. As a consequence, if the solver returns Unsat
on G modulo T , then JS ∪ T K− ∪ ∀x.known(x) ⊢ ⊥.

RR n➦ 7986

16 C. Dross & S. Conchon & J. Kanig & A. Paskevich

Theorem 3.2. If Lift(S) returns Sat on a set of ground formulas S modulo a
complete theory T then S ∪ T , triggers being ignored, is satisfiable in FOL.

Proof. If S ⊇ R is saturated by the deduction rules and M is a model of S
produced by S, then we define M ′ as the set containing every literal in M

and known(t) for every term t such that M ↑ (, t). We then extend M ′ with
¬known(t) for each t such that M ′ 0 known(t). We show that M ′ is a model of
JMK−.

We define a partial well-founded order on FOL⋆-formulas in Skolem negative
normal form. A formula F1 is smaller than a formula F2 if and only if there is a
ground substitution σ and a proper sub-formula F ′

2 of F2 such that F ′
2σ = F1.

Lemma 3.1. Let F be a FOL⋆-formula such that M ⊢o F . Assume that, for all
formulas F ′ ∈M at least as small as F , M ′ ⊢ JF ′K−. We show that, if M ⊢o F

then M ′ ⊢ JF K−.

Proof. By definition of ⊢o, there is a subset SF of M such that SF ⊢o F and
every element of SF is either a literal or a positive sub-formula of F . By hy-
pothesis, M ′ ⊢ JSF K−. As a consequence, M ′ ⊢ JF K−.

We show by well-founded induction over the formulas F ∈ M that M ′ ⊢
JF K−.

❼ If F is a literal, by definition of M ′, M ′ ⊢ L.

❼ If F is a protected literal L , by definition of M ′, M ′ ⊢ known(t) for every
t ∈ T (L). Since S is saturated, M ⊢o L and M ′ ⊢ L. Thus, M ′ ⊢ JF K−.

❼ If F is a protected formula 〈t〉 F ′ , by definition of M ′, M ′ ⊢ known(t′)

for every t′ ∈ T (t). Since S is saturated, M ⊢o F → F ′ and M ⊢o F ′.
Since F ′ is strictly smaller than F , by induction hypothesis, we apply
Lemma 3.1 and deduce M ′ ⊢ JF ′K−. Thus, M ′ ⊢ JF K−.

❼ If F is a protected formula [t] F ′ , either M ′ ⊢ ¬known(t) and, by defi-

nition of J K−, M ′ ⊢ JF K− or there is a pair G, t′ such that M ↑ G, t′ and
M ′ ⊢ t ≈ t′. By definition of M ′, if M ′ ⊢ t ≈ t′ then M ⊢o t ≈ t′. By
saturation of S, there is a subset U of M such that M ⊢o F ∧G∧U → F ′.
Thus, M ⊢o F ′. Since F ′ is strictly smaller than F , by induction hy-
pothesis, we can apply Lemma 3.1 and deduce M ′ ⊢ JF ′K−. We obtain
M ′ ⊢ JF K−.

❼ If F is a protected universally quantified formula ∀(x). F ′ and t a term,

either M ′ ⊢ ¬known(t) and, by definition of J K−, M ′ ⊢ known(t) →
JF ′K−[x← t] orM ′ ⊢ known(t) and there is a pair G, t′ such thatM ↑ G, t′

and M ′ ⊢ t ≈ t′. Since S is saturated, M ⊢o F ∧ G → F ′[x ← t′] and
M ⊢o F ′[x← t′]. Since F ′[x← t′] is strictly smaller than F , by induction
hypothesis, we can apply Lemma 3.1 and deduce M ′ ⊢ JF ′[x ← t′]K−.
Since M ′ ⊢ t ≈ t′, we also have M ′ ⊢ JF ′[x ← t]K−. As a consequence,
M ′ ⊢ known(t)→ JF ′K−[x← t]. Since t can be any term, M ′ ⊢ JF K−.

Inria

Reasoning with Triggers 17

Theorem 3.3. If the theory T is terminating, then the solver Lift(S) will ter-
minate on any set of ground literal S.

Proof. We prove that Lit Unfold, Pos Unfold, and Neg Unfold cannot be
applied an infinite number of times on a finite set R. Lit Unfold (resp. Pos
Unfold) can be applied once per ground literal (resp. ground formula with a
witness) that appears in R and Neg Unfold can be applied once per pair of
a ground formula with a trigger that appears in R and a term produced by a
ground sub-formula of R.

4 Completeness and Termination of a theory

Within our framework, we can reason about a theory T written as a set of
formulas with triggers and demonstrate that it has the requested properties for
our solver Lift(S) to be sound and complete. This section demonstrates how it
can be done on an axiomatization of the non-extensional theory of arrays and
a more complex axiomatization of reachability in finite acyclic imperative lists.

4.1 Non-Extensional Theory of Arrays

We show that Greg Nelson’s proof of completeness for his decision procedure
for arrays [13] can be turned into a proof of completeness of our solver on an
axiomatization with carefully chosen triggers. For terms a, x and v, we write
access(a, x) the access in the array a at the index x and update(a, x, v) the
update of the array a by the element v at the index x. The following set of first-
order formulas T is an axiomatization of the classical theory from McCarthy:

∀a, x, v. [update(a, x, v)] access(update(a, x, v), x) ≈ v (1)

∀a, x1, x2, v. [access(update(a, x1, v), x2)] x1 6≈ x2 →

access(update(a, x1, v), x2) ≈ access(a, x2)(2)

∀a, x1, x2, v. [access(a, x2)] [update(a, x1, v)] x1 6≈ x2 →

access(update(a, x1, v), x2) ≈ access(a, x2)(3)

Note that (2) and (3) are in fact duplications of the same first order formula
with different triggers2. Both of them are needed for completeness. For example,
without (2) (resp. (3)), the set of formulas {y 6≈ x, access(update(a, y, v1), x) 6≈
access(update(a, y, v2), x)} (resp. the set of formulas {y 6≈ x, access(a1, x) 6≈
access(a2, x), update(a1, y, v) = update(a2, y, v)}) cannot be proven unsatisfi-
able.

We prove that this axiomatics is complete and terminating.

Termination: If G is a set of ground literals, there can only be a finite number
of instances from G and T . From (1), at most one term access(update(a, x, v), x)
can be created per update term update(a, x, v) of G. No new update term can
be created, so there will be only one instantiation of (1) per update term of G.
Equations (2) and (3) can create at most one access term per couple comprising
an index term (sub-term of an access term at the rightmost position) and an

2Most provers have a dedicated syntax for using several triggers for the same axiom.

RR n➦ 7986

18 C. Dross & S. Conchon & J. Kanig & A. Paskevich

update term. We deduce that at most one term per couple comprising the
equality classes of an index term and an update term of G can be deduced.

Completeness: The set of formulas T gives a complete axiomatics. We prove
that for every set of ground formulas G such that JG ∪ T K− is satisfiable, JG ∪
T K− ∪ ∀t.known(t) is also satisfiable. Since assuming known(t) for every term
t removes triggers and witnesses, this shows that G ∪ T is satisfiable, triggers
being ignored.

The proof is similar to the proof of Greg Nelson’s decision procedure for
arrays [13]. We first define the set of every array term a′ such that access(a′, x)
is equated to a given term access(a, x) by (2) or (3):

Definition 4.1. For a set of formulas S and two terms a and x known in S,
we define the set Sa,x to be the smallest set of terms containing a and closed by

(i) if a′ ∈ Sa,x then every known term update(a′, y, v) such that S 0 y ≈ x is
in Sa,x and

(ii) for every term update(a′, y,) ∈ Sa,x, if S 0 y ≈ x then a′ is in Sa,x.

We now prove that, for every access or update term t, if S is a satisfiable set
of ground formulas saturated by T then it can be extended to another satisfiable
set S′ saturated by T that contains t = t. Since, by definition of J K−, Jt = tK−

is equivalent to
∧

t′∈T (t) known(t), this is enough to have the completeness of
T .

This proof is an induction over the size of t. We assume that every sub-term
of t has already been added. If known(t) is already implied by JSK−, then we are
done. If t is neither an access nor an update term, then assuming the presence
of t does not allow any new deduction.

Assume t is an update term update(a, x, v). With the presence of t, (1)
deduces the literal access(t, x) ≈ v. This cannot lead to an inconsistency since
nothing can be known about t otherwise t would be known in JSK−. Equations
(2) and (3) deduce access(t, y) = access(a′, y) for all terms a′ and y such that
JSK− ⊢ known(access(a′, y)) and t ∈ Sa′,y. Like the first one, this deductions
cannot cause an inconsistency. The new set S′ obtained by adding these literals
to S is saturated by T . Indeed, if it is not, one of the formulas of T can deduce
something that is not in S′. It cannot be (1) since we have applied it to the
only new update term of S′. If it is (2) or (3) then it comes from a term
access(a′, y) ∈ S′ and S′

t,y = S′
a′,y. By construction of S′, the result is in S′.

Assume t is an access term access(a, x). With the presence of t, (2) and (3)
deduce t = access(a′, x) for every a′ ∈ Sa,x. This deduction cannot cause an
inconsistency. Indeed, nothing can be known about access(a′, x) otherwise t

would have been known in S by (2) and (3). The new set S′ obtained by adding
these literals to S is saturated by T . Indeed, if it is not, one of the formulas of
R can deduce something that is not in S′. It cannot be (1) since there is no new
update term in S′. If it is (2) or (3) then it comes from a term access(a′, y) ∈ S′

and S′
a,y = S′

a′,y. By construction of S′, the result is in S′.

Inria

Reasoning with Triggers 19

4.2 Axiomatics for Reachability in Finite Acyclic Imper-

ative Lists

We define an axiomatics for reachability in finite acyclic imperative lists. It is
inspired by the axiomatics in [11]. Disjoint parts of memory are represented
as functional arrays. Each array maps indexes to options that represent next
indexes in a chained data structure. Lists can be modified by updating the
corresponding array.

We first need an axiomatization for options. We use three symbols: the
two constructors None and Some and a predicate symbol, option that allows
declaring that a term is an option. To allow option to appear in triggers, we use
a fresh constant ⊤ and define option(v) to be syntactic sugar for option(v) ≈ ⊤.
We do not assume ⊤ to be part of any theory. We introduce the set Roption of
axioms:

∀v. [option(v)] option(v)→ (v ≈ None ∨ ∃x. v ≈ Some x) (4)

∀x. [Some x] Some x 6≈ None (5)

∀x1, x2. [Some x1, Some x2] Some x1 ≈ Some x2 → x1 ≈ x2 (6)

If G is a set of ground terms, there can only be a finite number of applications
of the rule Inst from G ∪ Roption . Indeed, the set of formulas Roption creates
at most a Skolem constant x per known term option(v) by (4).

We can now design an axiomatics for reachability in finite acyclic imperative
lists. In addition to symbols for options and arrays, we introduce a predicate
symbol, acyclic, used to specify that a given list is finite and acyclic. Equations
from (1) to (6) are used to handle arrays and options. Fig. 3 gives the new
axioms for finite acyclic lists.

Equation (7) states that elements of arrays are options. Equations (8) and
(9) are applications of the reflexivity rule for reachability. For the sake of sim-
plicity, we do not rewrite the same formula when it has several triggers but use
pipes instead. Equations (10), (11) and (12) express that, on acyclic lists, reach-
ability is a partial order. Equations (13), (14), (15) and (16) relate reachability
to the next element in the chained data-structure. All the remaining formulas
are used to describe how reachability properties on lists are modified when the
list is updated. We call R the set of formulas involving these eighteen axioms
plus the six axioms for arrays and options.

Definition 4.2. We say that a term a is an array term in a set of literals S if
it appears as the first argument of a reach term of S. In the same way, x is an
index term in S if it appears as the second argument of a reach term or as the
only argument of a Some term of S.

We first need to show that, if G is a finite set of ground formulas, the solver
terminates on G ∪ R. Take a finite set of ground formulas containing G and
saturated through (1), (2) and (3). Equation (7) can then be used to deduce at
most an option term per access term. From this new finite set, formula (4) can
deduce a finite number of new terms. Equations from (1) to (7) can no longer
create any term. The remaining formulas can only deduce reach terms. It will
deduce at most a reach term per triplet of an array term and two index terms.

Now, we would like to prove that R is complete on finite acyclic lists. We
consider a finite set of ground formulas G. It can be written as a disjunction
of conjunctions of literals. Let C be a conjunction of G. We assume that, if an

RR n➦ 7986

20 C. Dross & S. Conchon & J. Kanig & A. Paskevich

∀a, x. [access(a, x)] option(access(a, x)) (7)

∀a, x. [access(a, x) | update(a, x,None)] reach(a, x, x) (8)

∀a, x1, x2. [update(a, x1,Some x2) | reach(a, x1, x2)]

reach(a, x1, x1) ∧ reach(a, x2, x2) (9)

∀a, x1, x2. [acyclic(a), reach(a, x1, x2), reach(a, x2, x1)]

acyclic(a)→ reach(a, x1, x2)→ reach(a, x2, x1)→ x1 ≈ x2 (10)

∀a, x1, x2, x3. [reach(a, x1, x2), reach(a, x2, x3)]

reach(a, x1, x2)→ reach(a, x2, x3)→ reach(a, x1, x3) (11)

∀a, x1, x2, x3. [reach(a, x1, x2), reach(a, x1, x3)] reach(a, x1, x2)→

reach(a, x1, x3)→ reach(a, x2, x3) ∨ reach(a, x3, x2) (12)

∀a, x1, x2. [access(a, x1), Some x2] access(a, x1) ≈ Some x2 → reach(a, x1, x2) (13)

∀a, x1, x2. [access(a, x1), reach(a, x1, x2)]

access(a, x1) ≈ None → reach(a, x1, x2)→ x1 ≈ x2 (14)

∀a, x1, x2. [access(a, x1), reach(a, x1, x2), Some x3]

access(a, x1) ≈ Some x3 → reach(a, x1, x2)→ x1 ≈ x2 ∨ reach(a, x3, x2) (15)

∀a, x1, x2. [acyclic(a), access(a, x1), reach(a, x2, x1), Some x3]

acyclic(a)→ access(a, x1) ≈ Some x3 → reach(a, x2, x1)→ x2 6≈ x3 (16)

∀a, e1, e2. [acyclic(update(a, e1,Some e2))]

acyclic(update(a, e1,Some e2))→ ¬reach(a, e2, e1) (17)

∀a, e, x1, x2, k. [reach(update(a, e, k), x1, x2)]

reach(update(a, e, k), x1, x2)→ reach(a, x1, e) ∨ reach(a, x1, x2) (18)

∀a, e1, e2, x1, x2. [reach(update(a, e1,Some e2), x1, x2)]

reach(update(a, e1,Some e2), x1, x2)→ reach(a, x1, e1)→

e1 ≈ x2 ∨ (reach(a, x1, x2) ∧ ¬reach(a, e1, x2)) ∨ reach(a, e2, x2) (19)

∀a, e, x1, x2. [reach(update(a, e,None), x1, x2)]

reach(update(a, e,None), x1, x2)→ reach(a, x1, e)→

e ≈ x2 ∨ (reach(a, x1, x2) ∧ ¬reach(a, e, x2)) (20)

∀a, e, x1, x2, k. [update(a, e, k), reach(a, x1, x2)] reach(a, x1, x2)→

(reach(a, e, x2) ∧ reach(a, x1, e)) ∨ reach(update(a, e, k), x1, x2) (21)

∀a, e, x, k. [update(a, e, k), reach(a, x, e)]

reach(a, x, e)→ reach(update(a, e, k), x, e) (22)

∀a, e1, e2, x1, x2. [update(a, e1,Some e2), reach(a, x1, x2), reach(a, e2, x2)]

reach(a, x1, x2)→ reach(a, e2, x2)→ reach(update(a, e1,Some e2), x1, x2) (23)

∀a, e1, e2, x1, x2. [update(a, e1,Some e2), reach(a, x1, e1), reach(a, e2, x2)]

reach(a, x1, e1)→ reach(a, e2, x2)→ reach(update(a, e1,Some e2), x1, x2) (24)

Figure 3: Axiomatization of finite acyclic lists

Inria

Reasoning with Triggers 21

array term t appears in C, then C ⊢ acyclic(t). We now prove that, if JR∪CK−

is satisfiable, then C has a model. That is to say, there is a collection of finite
acyclic lists on which every assumption of C holds. Note that every formula F

of R is written ∀x. [t1 . . . tn] L1 → · · · → Lm → C1 ∨ · · · ∨ Ck where Ci is a
conjunction of literals and Li a literal. We define the premises of F to be the
set {known(x), known(t1), . . . , known(tn), L1, . . . , Lm} and its conclusion to be
the disjunction C1∨ · · ·∨Ck. We say that a set of ground literals S is saturated
through R if, whenever the premises of a formula F ∈ R are true in S for some
ground substitution σ, there is at least a conjunction C in the conclusion of F
such that S ⊢ Cσ.

We consider a set S of literals saturated through R. Since no formula of R
can create new array terms, we can assume that, if an array term t appears in
S, then S ⊢ acyclic(t). Since there can only be a finite number of instantiations
from R ∪ G, we can also assume S to be finite. In the rest of the section, we
create a model for S by adding a direct link between reachable indexes.

Definition 4.3. We define the set of indexes reachable in an array a from an
index x as reacha,x , {y | S ⊢ reach(a, x, y)}. By (12) and (10), the minimal
option reachable from x in a can be defined uniquely (a is acyclic) as:

nexta,x ,

{

None if reacha,x = {x}
Some y y ∈ reacha,x, x 6≈ y, ∀z ∈ reacha,x. z ≈ x ∨ z ∈ reacha,y

}

We define a set S′ containing S and the literal access(a, x) ≈ nexta,x for every
array term a and every index term x in S. We prove, by case analysis, that the
rules for reachability are sufficient to deduce from S, for every a′ ∈ Sa,x

3, that
nexta,x ≈ nexta′,x.

The set Sa,x is constructed iteratively by including array terms b such that
either a can be written b[e← k] and S 0 e ≈ x or b can be written a[e← k] and
S 0 e ≈ x. We prove that, in the first case, S ⊢ nexta,x ≈ nextb,x. The proof of
the second case is omitted.

If reacha,x = {x} then, by construction of next , nexta,x = None. We show
that we have reachb,x = {x}. By (22), we cannot have S ⊢ reach(b, x, e)
or e would be in reacha,x. As a consequence, by (21), we cannot have S ⊢
reach(b, x, y) for any y such that S 0 y ≈ x. We deduce that nextb,x = None.

Otherwise, nexta,x = Some y with S 0 y ≈ x. We show that S ⊢ reach(b, x, y)
and, with nextb,x = Some z, S ⊢ reach(b, y, z). This obviously implies that
z ≈ y. First, we need an intermediate lemma:

Lemma 4.1. For any index terms z1 and z2, if we have S ⊢ reach(a, z1, z2)
then either S ⊢ reach(b, z1, z2) or S ⊢ reach(b, z1, e), S ⊢ k ≈ Some e2 and
S ⊢ reach(b, e2, z).

Proof. By (18), we have either S ⊢ reach(b, z1, z2) or S ⊢ reach(b, z1, e). If we
have S 0 reach(b, z1, z2), by (20), S ⊢ k ≈ Some e2. By (19), we then have
S ⊢ reach(b, e2, z).

If k = None, by Lemma 4.1 we have S ⊢ reach(b, x, y). Now let us show
that, if nextb,x = Some z, S ⊢ reach(a, y, z). Since S ⊢ reach(b, x, z) and

3Recall that Sa,x is the set of every array term a′ such that access(a, x) ≈ access(a′, x)
can be deduced from S by (2) and (3).

RR n➦ 7986

22 C. Dross & S. Conchon & J. Kanig & A. Paskevich

S 0 z ≈ x, by (21), we have either S ⊢ reach(a, x, z), or S ⊢ reach(b, x, e) and
S ⊢ reach(b, e, z). In the last case, by definition of next , S ⊢ z ≈ e. By (22), if
S ⊢ z ≈ e then S ⊢ reach(a, x, z). Thus, S ⊢ reach(a, x, z) and, by definition of
next , S ⊢ reach(a, y, z). By Lemma 4.1, we get S ⊢ reach(b, y, z).

If k = Some e2, we first show that S ⊢ reach(b, x, y). By Lemma 4.1, we
have either S ⊢ reach(b, x, y) or S ⊢ reach(b, x, e) and S ⊢ reach(b, e2, y). In
the second case, by (22), we have S ⊢ reach(a, x, e). By definition of next , S ⊢
reach(a, y, e). From Lemma 4.1, we deduce either S ⊢ reach(b, y, e) which, by
transitivity, gives S ⊢ reach(b, e2, e). This contradicts (17). As a consequence,
S ⊢ reach(b, x, y). Now let us show that, if nextb,x = Some z, S ⊢ reach(a, y, z).
Since S ⊢ reach(b, x, z), by (21), either S ⊢ reach(a, x, z) or S ⊢ reach(b, x, e)
and S ⊢ reach(b, e, z). In the second case, by definition of next , S ⊢ z ≈ e

and we have S ⊢ reach(a, x, z) by (22). Thus we have S ⊢ reach(a, x, z). By
definition of next , we have S ⊢ reach(a, y, z) and then, by Lemma 4.1, either
S ⊢ reach(b, y, z) or S ⊢ reach(b, y, e) and S ⊢ reach(b, e2, z). The second case
is not possible by minimality of z.

We have proven that, for every a′ ∈ Sa,x, S ⊢ nexta,x ≈ nexta′,x. What is
more, by (7), if the term access(a, x) appears in S then it is either equal to None
or Some y and, by (14) or (15), S ⊢ access(a, x) ≈ nexta,x. As a consequence,
assuming access(a, x) ≈ nexta,x cannot introduce any contradiction and S′ is
still satisfiable. What is more, by construction of S′, exactly every positive
reach literal of S can be deduced using (13) and (11) from array terms of S′

and all the others must be false by (14). As a consequence, the model for the
array terms of S′ is a model of S′.

5 Conclusion

We have presented a new first-order logic with a syntax for triggers and given
it a clear semantics. We have shown that a solver accepting a theory written
as a set of formulas with triggers T can be implemented on top of an off-the-
shelf SMT solver, and we have identified properties requested from T for the
resulting solver to be sound and complete on ground formulas. Finally, we have
demonstrated, on the non-extensional theory of arrays, that our framework can
be used to prove that a theory expressed as a set of first-order formulas with
triggers indeed has the requested properties.

In future work, we would like to integrate our technique of quantifier han-
dling directly inside a DPLL(T)-based solver. Once a solver implementing our
semantics exists, a static analysis could be done to detect too restrictive or
too permissive axiomatizations, and matching loops. We believe that such an
analysis will help theory designers avoid common pitfalls when writing axiom-
atizations.

References

[1] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Sny-
der. Basic paramodulation. Research Report MPI-I-93-236, Max-Planck-
Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany,

Inria

Reasoning with Triggers 23

September 1993. Revised version in Information and Computation 121(2),
pp. 172–192, 1995.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard
version 2.0. Technical report, University of Iowa, december 2010.

[3] François Bobot, Sylvain Conchon, Évelyne Contejean, and Stéphane Les-
cuyer. Implementing polymorphism in SMT solvers. In SMT’08, volume
367 of ACM ICPS, pages 1–5, 2008.

[4] L. de Moura and N. Bjørner. Engineering dpll (t)+ saturation. Automated
Reasoning, pages 475–490, 2008.

[5] Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for SMT
solvers. CADE’07, 2007.

[6] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
TACAS, 2008.

[7] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover
for program checking. J. ACM, 52(3):365–473, 2005.

[8] Y. Ge and L. De Moura. Complete instantiation for quantified formulas
in satisfiabiliby modulo theories. In Computer Aided Verification, pages
306–320. Springer, 2009.

[9] Yelting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verifica-
tion conditions using satisfiability modulo theories. CADE, 2007.

[10] Swen Jacobs and Viktor Kuncak. Towards complete reasoning about ax-
iomatic specifications. In Proceedings of VMCAI, pages 278–293. Springer,
2011.

[11] S. Lahiri and S. Qadeer. Back to the future: revisiting precise program
verification using smt solvers. In ACM SIGPLAN Notices, volume 43,
pages 171–182. ACM, 2008.

[12] Michal Moskal. Programming with triggers. Proceedings of the 7th Inter-
national Workshop on Satisfiability Modulo Theories, pages 20–29, 2009.

[13] Greg Nelson. Techniques for program verification. Technical Report CSL81-
10, Xerox Palo Alto Research Center, 1981.

[14] P. Rümmer. E-matching with free variables. 2012.

RR n➦ 7986

24 C. Dross & S. Conchon & J. Kanig & A. Paskevich

Proof of completeness of BP

Soundness of BP an be checked straightforwardly. As a consequence, we focus
in this section on the proof of refutational completeness of BP.

We assume given a reduction ordering ≺ which is total on ground terms.
We identify a positive literal s ≈ t with the multi-set (of multi-sets) {{s}, {t}},
and a negative literal s 6≈ t with the multi-set {{s, t}}. This gives an ordering
on literals (≺mul)mul and on clauses ((≺mul)mul)mul .

We say that a literal L[s′]p is order-reducible (at position p) by an equation
s ≈ t, if s′ = sρ, sρ ≻ tρ and L ≻ sρ ≈ tρ .

A non-variable position p in a clause Cσ is called a substitution position in
the closure C, σ if it can be written as p = p′q, where p′ is a variable position
in C.

We say that a ground closure C · σ is reduced with respect to a rewrite
system R (or R-reduced) at a position p if Cσ is order-irreducible by R at or
below p. The closure C · σ is simply called reduced with respect to R if it is
reduced at all substitution positions.

We say that a clause C ∨ s ≈ t is reductive for s ≈ t if t � s and s ≈ t is a
strictly maximal literal in the clause.

Let N be a set of closures saturated by the system. For each ground instance
C of a closure of N , we define two sets EC and RC of equations. To construct
the sets associated with the clause C, we assume that EC′ and RC′ have been
defined for all ground instances C ′ of N for which C ≻ C ′. We then define:

RC =
⋃

C≻C′

EC′

EC =

{

{s ≈ t} If C is a productive clause.
∅ Otherwise.

where C is said to be productive if and only if:

❼ C = D ∨ s ≈ t is a reduced ground instance of N with respect to RC ,

❼ C is false in RC ,

❼ C is reductive for s ≈ t and

❼ for all L ∈ C, L is order-irreducible by RC .

We also define R =
⋃

C EC . By construction of R and RC , we now have a few
properties:

Lemma .1. If a ground closure C · σ is RC-reduced then it is R-reduced.

Proof. If C is not reduced with respect to R, then there is some clause D which
produces an equation s ≈ t, and some literal L in C which is reducible at a
substitution position by s ≈ t and such that s ≈ t ≺ L. Since s ≈ t is strictly
maximal in D, clearly D ≺ C, and C is not reduced with respect to RC .

Lemma .2. If a ground clause C is true in RC then it is also true in R and
RD for every clause D ≻ C.

Inria

Reasoning with Triggers 25

Proof. If C contains a literal that is true in RC then the result is obvious.
Otherwise, C contains a disjunction s 6≈ t such that s ≈ t is not true in RC . By
construction, the new rewrite rules of R and RD involve terms that are strictly
greater than s and t. As a consequence, s ≈ t is false both in R and RD.

Theorem .1. If N is a saturated set of closures which does not contain the
empty clause, R a rewrite system constructed from N according to the definition,
and C = C̃ρσ is an R-reduced ground instance of a closure C̃ · ρ in N , then:

1. If C is order-reducible by RC , then C is true in RC .

2. If C contains at least a negative equation, then C is true in RC .

3. If C is false in RC then C is a productive clause of the form C = D∨s ≈ t

(where s ≈ t is the equation produced) and D is false in R.

4. C is true in R and in RD for every D ≻ C.

Proof. For any such clause C, we assume that the four properties are true for
every clause strictly smaller than C and we show that they also hold for C:

1. If C is order-reducible by RC , then C can be written L[s] ∨ C ′ and there
is an equation s ≈ t ≺ L[s] in RC . By construction of RC , s ≈ t comes
from a productive ground instance D̃ · τ of a closure of N where D̃ can
be written s̃ ≈ t̃ ∨ D̃′. Since C is R-reduced, the rewrite cannot appear
at a substitution position. As a consequence, C̃ can be written L̃[s̃′] ∨ C̃ ′

and we can apply a paramodulation step.

We get a closure L̃[t̃]∨ C̃ ′ ∨ D̃′ · µ, for a substitution µ more general than
τ ⊕ ρσ. By definition of saturation, L̃[t̃] ∨ C̃ ′ ∨ D̃′ · µ is in N . Since D̃, τ

is productive, D̃, τ is RD-reduced. By Lemma .1, it is also R-reduced.
Since both C̃ · ρσ and D̃ · τ are R-reduced, so is L̃[t̃]∨ C̃ ′ ∨ D̃′ · τ ⊕ ρσ.
Since D is reductive for s ≈ t, s ≈ t is strictly greater than the literals of
D′ = D̃′τ and s ≻ t. As a consequence, L[t] ∨ C ′ ∨D′ is strictly smaller
than C. The property (3) holds for L[t] ∨ C ′ ∨D′ which is true in RC .

Since D′ is false in RD, D′ is also false in RC . As a consequence, L[t]∨C ′

is true in RC and, since s ≈ t ∈ RC , so is C.

2. If C is order-reducible by RC , then, by property (1), C is true in RC .
Assume C is order-irreducible by RC . By hypothesis, C can be written
C ′ ∨ s 6≈ s′.

Since s 6= s′ appears in C and is order-irreducible by RC , it is also order-
irreducible by R. As a consequence, if s 6= s′ then s 6≈ s′ is true in R and
so is C.

Otherwise, C̃ can be written C̃ ′ ∨ s̃ 6≈ s̃′ where s̃ρ and s̃′ρ are unifiable.
As a consequence, a reflexivity step can be applied to C̃, ρ. We get a
closure C̃ ′, µ, for a substitution µ more general than ρσ. By definition of
saturation, C̃ ′ · µ ∈ N . Since C̃ · ρσ is R-reduced, so is C̃ ′ · ρσ. Since
C ≻ C ′, the property (3) holds for C ′ which is true in RC .

Since C ′ ⊆ C, C is also true in RC .

RR n➦ 7986

26 C. Dross & S. Conchon & J. Kanig & A. Paskevich

3. By property (2), if C is false in RC then it contains no negative equation.
Since C cannot be empty, let s ≈ t, with s � t, be one of the maximal
equations of C. We assume that s ≻ t since otherwise, C would contain a
tautology s ≈ s and therefore be true in any rewrite system.

If s ≈ t is not strictly maximal in C then, since ≻ is total on ground
clauses, C̃ can be written s̃ ≈ t̃ ∨ s̃′ ≈ t̃′ ∨ C̃ ′ with (s̃ ≈ t̃)ρ and (s̃′ ≈ t̃′)ρ
unifiable. As a consequence, a factoring step can be applied. We get a
closure C̃ ′ ∨ x ≈ y · µ, for a substitution µ more general than ρσ. By
definition of saturation, C̃ ′ ∨ x ≈ y · µ ∈ N . Since (x ≈ y)ρσ is equal
to s ≈ t, C̃ ′ ∨ x ≈ y · ρσ is R-reduced. We also have C ≻ C ′ ∨ s ≈ t.
As a consequence, the property (3) holds for C ′ ∨ s ≈ t which is true in
RC . Since C ′ ∨ s ≈ t ⊆ C, C is also true in RC . This contradicts the
hypothesis.

Since s ≻ t and s ≈ t is strictly maximal in C, C is reductive for s ≈ t.
By property (1), C is also order-irreducible by RC . What is more, by
hypothesis, C is also R-reduced and false in RC . Since RC ⊆ R, C is
RC-reduced. As a consequence, C is a productive clause for RC .

4. If C is true in RC , by Lemma .2, it is also true in R and RD. Otherwise,
by property (3), C is a productive clause for RC . By definition of R and
RD, C is true in R and in RD for every D ≻ C.

Corollary .1. For every unsatisfiable set of clauses K, the empty clause can
be deduced from the set of closures {C · ∅ | C ∈ K} by paramodulation.

Proof. If the empty clause cannot be deduced from {C · ∅ | C ∈ K}, then
there is a saturated set of closures N including {C · ∅ | C ∈ K} that does not
contain the empty clause. Let R be the rewrite system computed from N . We
show that R is a model of K.

For each ground instance Cτ ofK, we consider ρ such that, for every variable
x of C, xρ is the normal form of xτ . By construction, C · ρ is a ground instance
of the closure C ·∅ ∈ N that is reduced by R. As a consequence, by theorem .1,
Cρ is true in R. By definition of ρ, so is Cτ . As a consequence, R is a model of
K and K is satisfiable.

Inria

RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université

4 rue Jacques Monod

91893 Orsay Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

