
HAL Id: hal-00705289
https://hal.inria.fr/hal-00705289

Submitted on 7 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Two-Phase Online Prediction Approach for Accurate
and Timely Adaptation Decision

Chen Wang, Jean-Louis Pazat

To cite this version:
Chen Wang, Jean-Louis Pazat. A Two-Phase Online Prediction Approach for Accurate and Timely
Adaptation Decision. International Conference on Service Computing, IEEE, Jun 2012, honolulu,
Hawaii, United States. �hal-00705289�

https://hal.inria.fr/hal-00705289
https://hal.archives-ouvertes.fr


A Two-Phase Online Prediction Approach for

Accurate and Timely Adaptation Decision

Chen Wang and Jean-Louis Pazat

IRISA/INRIA, Campus de Beaulieu, 35042, Rennes Cedex, France

Email: {chen.wang, jean-louis.pazat}@inria.fr

Abstract—A Service-Based Application (SBA) is built by defin-
ing a workflow that composes and coordinates different Web
services available via the Internet. In the context of on-demand
SBA execution, suitable services are selected and integrated at
runtime to meet different non-functional requirements (such as
price and execution time). In such dynamic and distributed
environment, an important issue is to guarantee the end-to-
end Quality of Service (QoS). As a consequence, SBA provider
is required to monitor each running SBA instance, analyze its
runtime execution states, then identify proper adaptation plans
if necessary, and finally apply the relative countermeasures. One
of the main challenges is to accurately trigger the adaptation
process as early as possible.

In this paper, we present a two-phase decision approach that
can accurately analyze the adaptation needs for on-demand SBA
execution model. Our approach is based on the online prediction
techniques: an adaptation decision is determined by predicting
an upcoming end-to-end QoS degradation through two-phase
evaluations. Firstly, the end-to-end QoS is estimated at runtime
based on monitoring techniques; if a QoS degradation is tent to
happen, in the second phase, both static and adaptive strategies
are introduced to assess whether it is the best timing to draw
the final adaptation decision. Our approach is evaluated and
validated by a series of realistic simulations.

Keywords-SBA; adaptation decision; SLA; quality prediction;
classification;

I. INTRODUCTION

Service-Oriented Architecture (SOA) is adopted today by

many enterprises as a flexible solution for building Service-

Based Applications (SBA). An SBA is a dynamic and dis-

tributed software system that integrates and coordinates a set

of third-party Web services (named as the constituent services)

accessible over the Internet. In this scenario, the SBA’s end-

to-end Quality of Service (QoS) is determined by the QoS of

all constituent services. For example, the execution time of an

SBA instance depends on how fast each constituent service

responds. However, in this loosely coupled environment, the

execution of SBA may fail, or fail to meet the required quality

level: a constituent service may take longer time to respond

due to the network congestion; moreover, infrastructure fail-

ures can cause a service completely responseless.

In this context, Service Level Agreement (SLA) plays an

important role as a guarantee of non-functional quality. SLA

is a mutually-agreed contract between service requester and

provider, which dictates the expectations as well as obligations

in regards to how a service is expected to be provided: on one

hand, the expected quality level is formulated by specifying

agreed target values for a collection of QoS attributes; on

the other hand, some penalty measures are defined in case

of failing to meet these quality expectations. SLA violations

can lead to some undesirable results, such as reputation

degradation and penalty payment. To prevent SLA violation,

it is essential for SBA providers to guarantee the end-to-end

QoS by taking adaptation countermeasures if needed.

One of the key challenges is to determine the need for

adaptation in order to draw accurate adaptation decisions.

All existing approaches can be classified into two categories:

offline analysis [1], [2], [3] and online prediction [4], [5], [6].

Offline approaches can decide when and how to improve the

end-to-end quality of SBA by reasoning the causes of the

past SLA violations. The adaptation aims at preventing SLA

violations for the future executions rather than the ongoing

ones. By contrast, online approaches predict an upcoming SLA

violation, and thereby decide to trigger preventive adaptation

in order to improve the QoS of the running execution instance

before the SLA violation really happens.

This paper investigates an online prediction approach for

on-demand executions of SBA. In this context, in response

to different non-functional preferences and constraints (e.g.

price and execution time), each constituent service is selected

at runtime from a set of functional-equivalent candidates with

different QoS [7]. As a result, any two distinct executions

are instantiated with different configurations, defined as both

local and global QoS expectations. Therefore, it is challenging

to accurately predict potential SLA violations for all running

SBA instances with irrelevant configurations.

In this paper, we introduce a two-phase online prediction

approach to decide the best adaptation timing for on-demand

executions of SBA. The first phase suspects an SLA violation

by predicting an upcoming end-to-end QoS degradation; the

prediction is based on the monitoring techniques and the

estimation on the future execution. Later in the second phase,

both static and adaptive strategies are introduced to predict

the reliability of the suspicion in order to decide whether it

is necessary to trigger preventive adaptations. Our approach

is evaluated by a series of realistic simulations, the results

show that our approach can determine both accurate and timely

runtime adaptation decisions for on-demand SBA executions.

The rest of paper is organized as follows: Section II provides

the background of our problem. In Section III, some of

the main existing decision approaches are discussed and our

approach is introduced. Later, Section IV and Section V



Fig. 1. Illustrative Example: Travel Agency

present respectively the two phases of our approach in depth.

In Section VI, the performance of our approach is studied

based on a set of realistic simulations. Finally, the conclusion

and the future work are addressed in Section VII.

II. BACKGROUND

A. Illustrative Example

In this paper, we use a travel agency as an illustrative

example to present our approach. As shown in Figure 1, an

SBA is implemented to propose traveling plans for its clients.

A request composes a set of parameters such as identifica-

tion information (e.g. email address and password), dates of

traveling and the destination. In order to respond to client’s

requests, a workflow is defined to coordinate a collection of

interrelated tasks: firstly, the client’s identity is verified by task

t1 and the inputs from the requester are validated and analyzed

by task t2. Then, the execution is diverged into two parallel

execution branches: task t3 and task t4 look for the round-trip

flight tickets from all airline companies. Concurrently, task

t5 searches available hotels in the destination city, and the

weather information is provided by task t6. Both branches

converge before task t7, which generates all propositions of

traveling plans based on the client’s criterion, such as total

budget. Finally, task t8 sorts all the propositions according to

the client’s preferences and returns the results.

The SBA requires service collaboration across enterprise

boundaries: each task can be bound to either an internal service

(e.g. task t1, t2, t7, t8) or an external one provided by the third-

party enterprises (e.g. task t3, t4, t5, t6). Constituent services

are on demand selected at runtime: as an example, for premium

clients, fast services are selected and bound in order to return

the propositions of traveling plans as quickly as possible; on

the other side, for normal clients, cheaper and slower services

are used and the execution may take respectively longer time.

B. Global and Local SLA

As introduced, the SLA defines both aspects of expected

QoS and penalty measures. First of all, the definition and

execution of penalty is beyond the interests of this paper.

Furthermore, we assume that a set of QoS attributes can be

considered as deterministic: their values cannot be changed

at runtime once negotiated (e.g. price). Accordingly, the SLA

violation can be only caused by non-deterministic QoS at-

tributes, whose real values are affected by the distributed and

TABLE I
GLOBAL & LOCAL SLAS

t1 t2 t3 t4 t5 t6 t7 t8 SBA

time (ms) 600 800 1500 1500 1800 1000 1200 1000 6800

Business Process

Monitor Analyze Plan Execute
events decision actions

applymessage

Fig. 2. MAPE Control-Feedback Loop

dynamic runtime environment, such as response time. For the

reason of simplicity, an SLA is therefore modeled as a set

of target values for only non-deterministic QoS attributes. As

a proof on concept, our discussion will only focus on the

response time in the remainder of this paper.

The SBA plays the roles of service provider as well as

consumer. For both roles, it negotiates an SLA with each

of its counterparts, as shown in Figure 1: the SLA between

the SBA and each constituent service is defined as local

SLA, and the one negotiated with the SBA requester is

defined as global SLA. A local SLA reflects the expected

time consumption for executing the corresponding task ti,
denoted as lsla(ti)=<qt(ti)>, whereas the global SLA dictates

the expected end-to-end execution time of SBA, denoted as

gsla=<gct>. Obviously, the definition of the global SLA

depends on the local ones. As an example, Table I lists the

expected execution time defined in both global and local SLAs

for an instance of the illustrative example shown in Figure 1.

C. Prevention of Global SLA Violation

In order to enhance the reputation and to avoid penalties,

it is mandatory for service providers to prevent global SLA

violation for every running execution instance. The general

solution for runtime prevention of SLA violation is to im-

plement the MAPE control-feedback loop (Monitor-Analyze-

Plan-Execute) [8], as depicted in Figure 2: 1) Monitor: firstly,

each execution instance of SBA is monitored by intercepting

communication messages in order to collect a series of events;

2) Analyze: these events are used to evaluate the quality state

of a running execution instance and to analyze the need for

adaptation; 3) Plan: once an adaptation decision is determined,

a suitable adaptation plan (e.g. a list of actions to improve the

end-to-end quality) is identified; 4) Execute: finally the relative

countermeasures are applied to the ongoing SBA instance.

D. Problem Definition

One of the key challenges to efficiently implement the

MAPE loop is to accurately draw adaptation decision (Analyze

step). Our research work studies an online prediction approach

to analyze the need for adaptation by forecasting whether

the SLA is tent to be violated in the future. An eligible

online prediction approach has to meet the following require-

ments (challenges): 1) Effectiveness. An effective approach can

successfully predict as many SLA violations as possible. 2)

Precision. An effective approach might not be precise due

to many false predictions, which will lead to unnecessary

adaptations and thereby bring additional cost and complexity:

on one hand, runtime adaptation is costly since more resources



are required to identify and to execute an adaptation plan; on

the other hand, the time consumption of a runtime adaptation

process may potentially delay the execution of SBA. 3) Timing.

It is desirable to decide as early as possible: late decisions

are usually precise but less useful, since the best adaptation

opportunities might be missed, and the benefit of preventive

adaptation is diminished. 4) Efficiency. The decision algorithm

must be efficient (fast decision) in order to meet the critical

time constraint at runtime.

III. RELATED WORK AND MOTIVATION

A. Related Work

The existing online prediction approaches in the literature

can forecast SLA violations caused by either functional fail-

ures or non-functional deviations. In the former case, the

recovery from functional failures requires extra execution time

and additional cost, which can lead to global SLA violations.

Some research work use online testing techniques to test all

constituent services in parallel to the execution of an SBA

instance. By this means, an upcoming functional failure can be

forecasted before its real occurrence. [9] presents the PROSA

framework, which defines key activities to initiate online test-

ing either on the binding level or on the service composition

level, and thereby proactively triggers the adaptation process.

[10] investigates how to guarantee functional correctness of

conversational services. The authors propose a novel approach

to enables proactive adaptations through just-in-time testing.

Online testing approach is helpful to detect potential functional

failures but it can hardly be aware of the deviation of the end-

to-end QoS. Furthermore, it requires each consistent service

to provide a test mode (e.g. free interfaces for testing).

Our research work belongs to the latter case, which pre-

dicts SLA violation by asserting non-functional deviations

that might happen at the end of the execution (e.g. delay).

Some research work use runtime verification techniques to

determine the necessity of adaptation and to trigger preventive

adaptation. In [6], the authors introduce SPADE approach:

after the execution of each task, if the local SLA is violated,

SPADE uses both monitored data and the assumptions to verify

whether the global SLA can be still satisfied. If it reveals

that the global SLA is tent to be violated, the adaptation is

accordingly triggered. However, early verifications are largely

based on the assumptions rather than monitored data, thus they

are inaccurate and can lead to many unnecessary adaptations.

Other research work use machine learning techniques in

order to provide precise predictions and avoid unnecessary

adaptations. In [4], a set of concrete points are defined in the

workflow as checkpoints. Each checkpoint is associated with

a predictor, which is implemented by a regression classifier.

When the execution of the workflow reaches to a check-

point, the corresponding predictor is activated and uses the

knowledge learned from past executions to predict whether

the global SLA will be violated. This work is extended in [5]

by proposing the PREvent framework, which integrates event-

based monitoring, runtime prediction of SLA violations and

Fig. 3. 2-Phase Online Prediction Approach

automated runtime adaptations. Such checkpoint-based predic-

tion approach has some limitations: firstly, some misbehavior

(e.g. huge delay) between two checkpoints cannot be handled

in time. In the meantime, the best adaptation opportunity

might be lost. Furthermore, poorly selected checkpoint(s) may

lead to undesirable results, such as unnecessary adaptations.

But the selection of optimal checkpoints is complicated and

challenging, especially for complex workflows.

B. Our Approach: Two-Phase Decision Approach

In order to provide both accurate and timely predictions

of SLA violation, we propose a two-phase online prediction

approach. As shown in Figure 3, an adaptation decision is

determined through the following steps: 1) listen to the events

emitted from the Monitor component (refer to Figure 2), once

the execution of a task ti is completed, go to step 2. 2) If

the execution of workflow has not yet been finished, go to

step 3; otherwise, the algorithm is terminated with the state

silence, which means that during the entire execution, no SLA

violation has been predicted (no adaptation decision has been

made). 3) Estimate the values of QoS attributes defined in the

global SLA (e.g. execution time) based on the monitored data

and the estimation of the execution in the future. 4) Compare

the estimated value with the target value defined in the global

SLA, if a violation is tent to happen, a suspicion of SLA

violation is reported and go to step 5; otherwise, return to

step 1. 5) Evaluate the trustworthy level of the suspicion in

order to decide whether to accept or to neglect this suspicion.

6) If the suspicion is accepted, our approach terminates with

the state warning by predicting an upcoming SLA violation

and drawing the adaptation decision; otherwise, the suspicion

is neglected and go back to step 1.

The core of our approach is two-phase evaluations: the

estimation phase (step 3, 4) evaluates whether the global

SLA is tent to be violated and the decision phase (step 5,

6) evaluates how likely the suspected violation will really

happen. An additional evaluation can bring more precise

adaptation decisions since all inaccurate early suspicions can

be neglected in the decision phase. Additionally, without the

limitation of the predefined checkpoints, it is possible to react

to any misbehavior in time. In the following, Section IV

and Section V will use the execution time as an example to

highlight respectively these two phases.

IV. ESTIMATION PHASE

To estimate the end-to-end execution time of a running

SBA instance, two kinds of information are required: 1) the

measured execution time of the tasks whose executions have

already been completed; 2) the probable time consumption of



uncompleted tasks, including the tasks that are being executed

as well as the ones whose executions have not been started

yet. Based on the monitoring techniques [5], we assume that

the former information is known at the time of estimation,

which is accessible from an internal database. In this section,

we firstly highlight how to estimate local execution time for

uncompleted tasks, and then we introduce an efficient tool for

rapid estimation of the global execution time.

A. Estimation of Local Execution Time

The local execution time of a task ti depends on how fast

the corresponding constituent service SB(ti) responds. As a

result, some research work [5] propose to use arithmetic mean

value of the last n measured response time of SB(ti) as the

estimation of the local execution time for ti, denoted as qE(ti).
However, the performance of this method is affected by the

outliers. Suppose that the last 10 measures of response time

are: 940ms, 1,020ms, 1,050ms, 1,000ms, 970ms, 1,100ms,

1,020ms, 24,060ms, 960ms, 980ms. The arithmetic mean is

3,310ms, which cannot properly reflect the probable response

time of SB(ti). In addition, this method cannot be used when

there is no (sufficient) historical information. For example, in

the context of on-demand SBA execution, a task may bind to

a service that has never been invoked before.

We provide both dynamic and static methods for local esti-

mation. To estimate the response time of SB(ti), SBA provider

is required to record the response time of all constituent

services that have been invoked before. Dynamic methods

look into the past records for the information about SB(ti).
If enough historical information is found, the approaches

presented in [11] can be used to firstly detect and remove

the outliers before computing the arithmetic mean. A more

efficient alternative solution is to directly use the median

value of the last n measures. In the previous example, the

median value is 1 000ms: five measures are less or equal

to it and five are greater, including the outlier. In case of

no (sufficient) historical information about SB(ti), the static

method is automatically activated, which uses the target value

defined in the local SLA as the estimation (qE(ti) = qt(ti)).
In this case, it is straightforward to trust the service provider.

B. Estimation of Global Execution Time

Having the runtime knowledge on the local execution time

of each task ti, defined as qL(ti), the global execution

time of a running SBA instance can be estimated by using

aggregation functions [12] (qL(ti) equals to the measured

execution time for completed tasks and equals to qE(ti) for

uncompleted ones). However, runtime aggregation is costly

and time-consuming, especially for complex and unstructured

workflows. We introduce the Program Evaluation and Review

Technique (PERT) [13] as an efficient tool for rapid runtime

estimation of global execution time. PERT was originally

developed for planning, monitoring and managing the progress

of complex projects. In our approach, PERT is used to manage

the workflow execution and to facilitate decision making. It

maintains some additional information for each task ti:

time(ms)

X

Y
task

1000 2000 3000 4000 5000 6000 7000

⋆t8

⋆t7

t6

t5

⋆t4

⋆t3

⋆t2

⋆t1 0 600 800

600 1400 1600

1400 2900 3100

2900 4400 4600

1400 3200 3600

3200 4200 4600

4400 5600 5800

5600 6600 6800

Fig. 4. PERT Chart

• The Expected Start Time (EST): TE(ti). This is the

expected time by which the execution of task ti can start.

TE(ti) = max{TE(tj)+qL(tj)|tj is the direct precedent

of ti}, For the first task (start) ts, TE(ts) = 0.

• The Latest Finish Time (LFT): TL(ti). This is the latest

time by which the task ti can finish without causing

the delay of the ongoing execution instance. TL(ti) =
min{TL(tk) − qL(tk)|tk is the direct successor of ti}.

For the last task (end) tn, TE(tn) = gct, which is the

target value defined in the global SLA.

• The slack time: S(ti). This is the maximum delay for

executing the task ti. S(ti) = TL(ti) − TE(ti) − qL(ti).
• The critical path CP . A path is a sequential execution of

tasks from the beginning to the end of a workflow. CP is

a path with all tasks having the least slack time.

The PERT chart is initially constructed based on both global

and local SLAs (qL(ti)=qt(ti)), all the information is then

presented on an X-Y chart. As an example, for the execution

instance of the illustrative example with all local and global

SLAs given in Table I, the corresponding PERT chart is

computed and depicted in Figure 4. The X-axis represents

the accumulated execution time, while the Y-axis is the list

of tasks that are composed in the workflow. Each task ti is

represented by a single horizontal bar which starts from TE(ti)
and ends with TL(ti). The length of the bar corresponds to the

maximum acceptable duration for executing a task, under the

assumption that all the other tasks complete on schedule. A

bar is composed of two parts, the solid part represents qL(ti)
and the hollow part reflects S(ti). Finally, the tasks on the

critical path is marked by a star (⋆).

In order to reflect the most up-to-date runtime execution

state, the PERT chart can be updated when new local knowl-

edge qL(ti) is available (e.g. newly measured execution time

of a just-completed task). Please note that the PERT chart only

needs to be partially reconstructed by recomputing some of the

above-mentioned information (e.g. the completed tasks do not

need to be recomputed), which can be seen as the adjustments

of some bars along the X-axis. The update can be triggered

either periodically, or based on checkpoints or events (e.g. after

each “invoke” event). Anyhow, the reconstruction of chart can

be performed in parallel with the service invocations, thus it

will not bring extra time consumption.

By using the PERT chart, the estimation of global execu-

tion time is simplified. When a task ti is finished, the real

accumulated execution time at this moment can be measured,

denoted as AT (ti). If AT (ti) > TL(ti), the global execution



time is estimated to be violated by AT (ti) − TL(ti), and a

global SLA violation is accordingly suspected. A suspicion of

violation is represented by a pair, denoted as S=<TD, ti>,

which means that after executing task ti, a delay of TD is

estimated (TD=AT (ti)-TL(ti)). In this way, instead of running

complex aggregation function, the estimation of global SLA

requires only one comparison operation.

V. DECISION PHASE

In this section, both static and adaptive decision strategies

are introduced to evaluate the trustworthy level of a suspicion

in order to identify the need for the preventive adaptation.

A. Weight of a Suspicion

In the context of on-demand SBA execution, two suspicions

with the same attributes (TD and ti) reported by two distinct

SBA instances may have different significances. With different

configurations, “after task ti” refers to the different degrees on

the completion of workflow execution. Using our illustrative

example, S1 and S2 are both reported after task t7 with the

same estimated delay of 350ms; but for S1, 90% of the global

expected execution time (gct) is consumed after executing t7,

whereas only 60% for S2. Obviously, S1 is stronger than S2

since a delay is more likely to happen in the end.

In order to model the significance of a suspicion S for

on-demand executions of SBA, we introduce the concept of

weight, denoted as τs. τs is defined by a decimal between 0

and 1: greater value indicates a stronger suspicion. An earlier

suspicion is often less accurate, because it is based more on

the estimated values than on the measured values; accordingly

it has a lower weight. Along with the execution, since more

and more local estimations are updated with measured values,

a later suspicion becomes more accurate and has a respectively

higher weight. In our approach, the weight of a suspicion S is

expressed by the percentage of execution that is supposed to

be completed at the moment, defined as τs(S) = TL(ti)/gct,

remember that TL(ti) denotes the LFT of task ti and gct is

the expected global execution time defined in the global SLA.

We provide three static strategies and an adaptive strategy

to evaluate a suspicion S using the estimated delay TD and

its weight τs(S). Static strategies compute the maximum

allowed delay maxd with respect to τs(S) using predefined

evaluation functions. If TD is greater than maxd, the suspicion

is considered as strong enough and an adaptation decision is

determined; otherwise, it is neglected. By contrast, adaptive

strategy uses machine learning techniques to build a classifier

that learns the knowledge from the past suspicions in order to

predict whether or not the current suspicion will really happen.

B. Static Decision Strategies

1) Qualitative strategy: The idea is to neglect all the

early suspicions since they are considered as inaccurate. By

specifying a weight threshold ρw, only the suspicions with

τs > ρw will be accepted to report a warning of violation.

Thus, its evaluation function is a step function, as depicted by

f1 in Figure 5: maxd equals to +∞ if τs is smaller than ρw

Fig. 5. Evaluation Functions of Static Decision Strategies

and equals to 0 otherwise. Figure 5 also gives three sample

suspicions with different weights and estimated delays: using

qualitative strategy, S1 will be neglected whereas both S2 and

S3 will be accepted.

2) Quantitative strategy: The main limitation of qualitative

strategy is that the adaptation cannot be triggered until a

certain percentage of workflow has been executed, despite

the fact that a huge delay may arise at the beginning of the

execution (e.g. S1). In order to react to such problem as early

as possible, quantitative strategy evaluates a suspicion with

the consideration of both τs(S) and TD. In this case, the SBA

provider specifies an evaluation function based on his/her own

experience, such as f2 defined in Figure 5. Using f2, S1 and

S2 will lead to adaptation decisions while S3 will not.

3) Hybrid strategy: The quantitative strategy may not de-

tect slight delays when the execution is approaching to the

end, such as S3. In this case, a slight delay might finally lead

to a great penalty due to SLA violation. The hybrid strategy

is more critical: by specifying ρw, if τs(S) is greater than

ρw, the qualitative strategy is applied (S will be absolutely

accepted); otherwise, the quantitative strategy is applied. Thus,

its evaluation function follows f2 when τs < ρw and follows

f1 (maxd = 0) otherwise. By using hybrid strategy, all three

suspicions in Figure 5 will be accepted.

C. Adaptive Decision Strategy

Static decision strategies are useful when insufficient his-

torical information is available. However, from the long-run

perspective, it has the following limitations: first of all, it is a

challenging task for the SBA provider to manually identify a

suitable evaluation function based on his/her past experiences:

sometimes such experience is hard to be expressed using a

regular function. Additionally, once defined, the evaluation

function cannot be self-adjusted (can be manually modified

by SBA provider) in order to improve the quality of decision.

The adaptive strategy models adaptation decision as a

classification problem. The correctness of a suspicion (CS) can

be evaluated when the relative execution terminates (suppose

no adaptation action is really executed): if the global SLA is

really violated, the suspicion is proved as correct (CS=true);

otherwise, it is marked as a false one (CS=false). As a result,

at the end of each execution, a set of suspicion records

can be created based on all reported suspicions and their

correctness. A suspicion record is described by two numeric

attributes (estimated delay and its corresponding weight) and

a categorical attribute defined as class (can be true or false),



Fig. 6. Adaptive Decision Strategy

denoted as SR=<TD, τs(S), CS>. All historical suspicion

records are organized into a training dataset, as illustrated in

Figure 6. The dataset is often depicted as a table, with each row

representing a suspicion record. Based on machine learning

technique [14], a classifier is built to progressively learn the

knowledge from past experiences. The knowledge is a specific

algorithm that determines the class of a new suspicion based

on its attributes. Once a suspicion is reported and it is classified

as correct (CS=true), the adaptation decision is accordingly

made; otherwise, this suspicion is neglected.

Since the space is limited, we will not provide the details

about data cleaning as well as how to learn and represent

the knowledge. Interested readers can refer to [14], [15]. The

classifier is required to be retrained to improve the prediction

quality. The retraining can be carried out in one of the

following ways: 1) after every N predictions, 2) periodically

(after a fixed duration), 3) on-demand by the SBA provider.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

Our approach is evaluated and validated by a set of ex-

periments built on a realistic simulation model, since real

implementation is costly, which requires to implement the

entire MAPE control loop as well as dealing with some other

challenging problems of on-demand SBA execution, such as

service selection, or interface mismatches.

1) Realistic simulation model: For each constituent service,

we are only interested in how it responds rather than what

it responds. Therefore, instead of invoking real-world Web

services, each task is bound to a virtual service, which only

simulates the non-functional aspects of a service invocation

(e.g. response time). In our experiments, 100 virtual services

are created based on the realistic QoS datasets provided

by [16], which record the non-functional performances (such

as response time, throughput, etc.) of a large number of

real-world service invocations. A virtual service collects all

the invocation records from the same requester to the same

Web service. By using these records, each virtual service

defines two methods: 1) simulate() randomly selects one of

the past records to simulate the non-functional aspects of

an invocation; 2) getExpectedRT() determines the expected

response time by specifying a percentage threshold φ, which

indicates the percentage of past invocations which can respond

within the expected value. In our experiments, in order to

create a scenario with high violation rate, φ is set to 0.6 (40%

possibility of local SLA violations for each virtual service).

2) Simulate an execution of SBA: An execution of SBA

is simulated through three stages: in the first stage, an SBA

instance is created by binding each task ti to a randomly

TABLE II
CONTINGENCY TABLE

Real: violated Real: not violated Sum

Prediction: violated True Positive (TP) False Positive (FP) Positive

(warning) (correct warning) (false warning) (P)

Prediction: not violated False Negative (FN) True Negative (TN) Negative

(silence) (false silence) (correct silence) (N)

Sum Violations (V) Compliance (C) Total (T)

selected virtual service, denoted as vs(ti), and the relative

local SLA is generated by completing a template with the

expected response time of vs(ti). Then, the global SLA is

generated by computing the expected end-to-end execution

time using aggregation functions [12]. Finally, based on both

local and global SLAs, a PERT chart is constructed.

The second stage simulates the execution of this SBA

instance. First of all, each selected virtual service vs(ti)
simulates the response time as the real execution time of task

ti. Then, by running aggregation functions along all execution

paths, the real accumulated execution time by which the

execution of task ti is completed can be computed, denoted as

AT (ti). Next, a collection of “receive” events are created with

the corresponding timestamp, denoted as Recv= <ti, AT (ti)>.

Finally in the third stage, these “receive” events are sorted

by the timestamp and then sequentially processed: firstly, if

AT (ti) > TL(ti), a set of predictors are activated to make

adaptation decision based on different strategies. A predictor

is a Java object that implements a specific decision strategy.

After the prediction, the PERT chart is updated and the static

method is used for estimations of local execution time.

B. Evaluation Metrics

Contingency table metrics [17] are used to investigate how

accurately a decision approach works. An adaptation decision

approach can terminate with two possible states: warning or

silence (refer to Figure 3). Using the contingency table, as

shown in Table II, a warning is defined as a positive decision

(P), which asserts that the global SLA will be violated in

the near future; by contrast, a silence is formally named as

a negative decision (N) which decides that no adaptation was

needed for the entire duration of the execution. In order to

evaluate the quality of decision, no adaptation plan is really

identified and executed. For a positive decision, if a violation

is really occurred in the end, it is proved to be a true positive

(TP); otherwise, it is a false positive (FP). Similarly, a negative

decision can be either a true negative (TN) if no violation

really happens at the end of execution, or else a false negative

(FN). Based on the contingency table, different evaluation

metrics are defined as follows:

• Accuracy (a). It is the ratio of all correct decisions to the

number of all decisions: a = TP+TN
TP+TN+FP+FN

= TP+TN
T

.

• Precision (p). It is the ratio of all correct warnings to the

number of all warnings, p = TP
TP+FP

.

• Effectiveness (e). It is the ratio of all correct silences to

the number of all silences: e = TN
TN+FN

.

• Decision Time (dt). Only positive decisions have dt. It

is measured by the maximum number of tasks that have

already been completed on different execution paths.



TABLE III
EXPERIMENTAL RESULTS: EVALUATION OF DECISION TIMING

Metrics P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

TP 191 243 171 211 165 191 397 441 406 359

FP 156 146 59 45 61 41 39 0.0 162 79

FN 250 198 270 230 276 250 44 0.0 35 82

TN 403 413 500 514 498 518 559 520 397 480

a 0.59 0.66 0.67 0.73 0.66 0.71 0.92 1.0 0.8 0.84

e 0.43 0.55 0.39 0.48 0.37 0.43 0.90 1.0 0.92 0.81

p 0.72 0.74 0.90 0.92 0.89 0.93 0.93 1.0 0.71 0.86

dt 1 2 3 4 3 4 5 6 2.95 4.0

C. Experiment 1: Evaluation of the Best Decision Time

In this experiment, the best decision time is evaluated by

disabling the decision phase, thereby the adaptation decision is

determined once an SLA violation is suspected. The evaluation

is based on the illustrative example defined in Figure 1: after

each task ti (1 ≤ i ≤ 8), a checkpoint Ci is defined as a

possible decision time point. 8 predictors are created based

on a single checkpoint: predictor Pi (1 ≤ i ≤ 8) can decide

only when the execution of workflow reaches to checkpoint

Ci. Please note that the decisions of P8 must be definitely

accurate because it decides after the completion of workflow

execution. In addition, two predictors are defined based on

multiple checkpoints: P9 is activated at both C2 and C7 while

P10 can decide at either C4 or C6. We run 1000 simulations,

Table III summarizes the performance of all predictors.

1) Decisions based on a single checkpoint: The results

reveal that, by using a single checkpoint, it is hard to draw

both early and accurate adaptation decision. First of all, as

we discussed in this paper, early decisions are less accurate:

due to the large number of FP and FN decisions, P1 and P2

result in lower accuracy, precision as well as effectiveness. By

contrast, as the most part of workflow has been executed, P7

performs largely better but its decisions come too late to carry

out effective preventive adaptations. Furthermore, the other

four predictors are based on the checkpoints located on two

parallel execution branches, and the critical path can be only

determined at runtime due to on-demand service selection. If a

task (checkpoint) is not on the critical path, it has thus a larger

slack time and a longer delay can be tolerated. Therefore, from

its local perspective, the execution is considered as running

well and no warning will be reported. That explains why P3,

P4, P5 and P6 have less FP decisions but a tremendous number

of FN decisions, which lead to a poor performance on average.

2) Decisions based on multiple checkpoints: An additional

checkpoint brings another chance to report (either true or

false) warnings of SLA violations. Take P9 for example, if

a violation is failed to be predicted at C2, it still has chance

to be alerted at C7; thus, compared to P2, the TP number is

greatly improved; meanwhile, only several FP decisions are

additionally produced. On the other side, compared to P7, al-

though P9 does get some quality degradation, but the decision

time is improved by 2 execution steps. This is the same for

P10, compared to P4 and P6, both accuracy and effectiveness

are significantly improved. However, as an extreme case, we

assume that a predictor Px can draw adaptation decisions at

all possible checkpoints. It is similar to runtime verification

TABLE IV
EXPERIMENTAL RESULTS: EVALUATE DIFFERENT DECISION STRATEGIES

Metrics P7 P9 P10 Pql Pqt Phb Pad

a 0.91 0.82 0.84 0.94 0.95 0.92 0.94

e 0.90 0.93 0.81 1.0 1.0 1.0 0.95

p 0.91 0.74 0.87 0.89 0.91 0.86 0.93

dt 5 3.04 4 4.2 3.9 3.8 3.8

techniques introduced in Section III: whenever a deviation is

estimated, the adaptation decision is made. In this case, any a

predictor from P1 to P8 decides, Px will also decide. Thus, Px

cannot have less FP numbers than P1. Such a high FP number

will result in a poor precision. From the above discussion, we

can see that it is challenging to determine the best time for

drawing both early and accurate adaptations decisions.

D. Experiment 2: Evaluation of Our Approaches

In the second experiment, both static and adaptive decision

strategies presented in this paper are evaluated. The qualitative

predictor Pql implements qualitative strategy by specifying the

weight threshold ρw to 0.65. The quantitative predictor Pqt

defines the evaluation function as maxd = (1− τs)
3

2 ∗ gct ∗ p,

where τs is the weight of a suspicion, gct is the expected

execution time of SBA defined in the global SLA, and p is

set to 5%. This function can tolerate greater deviation at the

beginning of the execution (as f2 in Figure 5). Additionally,

the hybrid predictor Phb invokes Pqt when the weight of

suspicion is less than 0.65, and uses Pql otherwise. Finally, the

adaptive predictor Pad implements a set of classifiers based

on WEKA machine learning toolkit [15]. All the decisions

reported in the first experiment are used to generate a set of

suspicion records, which are organized in the dataset file.

During the training phase (Step 1 in Figure 6), all classifiers

are used to learn the knowledge from the dataset, and their

performances are evaluated by cross-validation. When a new

suspicion is reported, the classifier with the best predictive

accuracy is then used for the prediction (Step 2 in Fig-

ure 6). Each classifier requires at least 300 historical suspicion

records (min training size=300); if the dataset contains more

than 1000 records, it selects the 1000 most recent items

(max training size=1000). The retraining is carried out for

every 200 predictions.

Another 1000 executions are simulated to evaluate our

approach. As a comparison, the three predictors with the best

decision quality in the first experiment, namely P7, P9 and

P10, are also used. The performance of different predictors is

shown in Table IV. First of all, we can see that the quality of all

static and adaptive decision strategies can be considered on the

same level. Please note that: 1) Pql decides later than the other

three strategies, since it can decide only when a certain part of

workflow has been executed. 2) As introduced, Phb is more

critical than Pql and Pqt. Thus it accepts more suspicions,

which can result in a lower precision whereas a higher effec-

tiveness. 3) Static strategies can successfully prevent almost

all of SLA violations (luckily, in this experiment, no SLA

violation has been missed). Meanwhile, adaptive strategy has

a low rate of false silence (5%).



TABLE V
ACCURACY

WF Pql Pqt Phd Pad

1 0.93 0.93 0.91 0.96

2 0.90 0.94 0.89 0.95

3 0.91 0.93 0.89 0.97

TABLE VI
PRECISION

WF Pql Pqt Phd Pad

1 0.88 0.90 0.85 0.95

2 0.83 0.90 0.81 0.95

3 0.83 0.88 0.80 0.96

Secondly, compared to checkpoint-based predictors (single-

step predictions), the results show that our approach can make

more accurate adaptation decisions as early as possible. First

of all, the decision quality of our approach can be considered

on the same level as P7. But our approach improves the

decision time by more than one execution step. Secondly,

P9 decides a little earlier than our approaches (less than one

execution step), but our approach has a remarkable improve-

ment in accuracy (over 10%), effectiveness (5% higher on

average) and precision (15% better). Finally, compare to P10,

our approaches have almost the same decision time but better

accuracy (≈10%) as well as higher effectiveness (≈15%).

E. Experiment 3: Evaluations over Different Workflows

In order to evaluate the performance of our approach

over different workflows, we create three fictitious workflows

without real meanings: 1) a linear workflow with 9 tasks (a

single execution path); 2) a medium workflow with 17 tasks

and 6 execution paths; 3) a complex workflow with 30 tasks

and 9 execution paths. For each workflow, we firstly simulate

300 executions to initiate the dataset of suspicion records, and

then 1000 simulations are carried out by using Pql, Pqt, Phb

and Pad. Table V and Table VI summarize respectively the

accuracy and the precision of different predictors. From the

experimental results, we have the following observations: 1)

our approach is not limited to a specific workflow and it can

perform well for different kinds of workflows; 2) adaptive

strategy makes decisions based on the knowledge learned from

the past executions, thus its performance can always be main-

tained at a high level when used for different workflows; 3)

the performances of static strategies depend on the predefined

evaluation function: as the second experiment demonstrates, a

suitable evaluation function can perform as well as adaptive

strategy; otherwise, it may get a little performance degradation

but it is still fairly good (compared to other approaches).

VII. CONCLUSION AND FUTURE WORK

This paper discusses an important problem for preventing

SLA violation: how to make correct runtime decision to

accurately trigger preventive adaptation for on-demand SBA

execution. In this paper, we have presented an online predic-

tion approach which draws adaptation decisions through two-

phase evaluations. Based on a series of realistic simulations,

our approach exhibits the following desirable properties: 1)

it is able to draw accurate adaptation decisions for different

workflows: almost all violations can be successfully predicted

and alerted; meanwhile, only few unnecessary adaptations will

be triggered; 2) with the same accuracy level, our approach

can decide as early as possible; 3) by using static strategies,

our approach can still make accurate and timely adaptation de-

cision when no (sufficient) historical information is available.

Our future work will concentrate on providing more flexible

runtime management of SBA. First of all, the PERT technique

can be used for runtime optimization of SBA instances. For

example, by using PERT charts, it is easy to detect large

slack time for a task and thus it can rebind to a slower but

cheaper service in order to reduce the cost. Furthermore, we

are integrating branch prediction techniques into PERT charts,

which can help to further reduce unnecessary adaptations. The

re-construction of PERT chart will take into account the paths

that are most likely to be executed. Finally, having positive

results based on the realistic simulations, we are going to

implement and integrate our approach into an existing business

process management system and evaluate its performance.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Communitys Seventh Framework Pro-

gramme [FP7/2007-2013] under grant agreement 215483 (S-

CUBE).

REFERENCES

[1] L. Bodenstaff, A. Wombacher, M. Reichert, and M. Jaeger, “Monitoring
dependencies for slas: The mode4sla approach,” in IEEE International

Conference on Services Computing (SCC ’08), july 2008, pp. 21 –29.
[2] ——, “Analyzing impact factors on composite services,” in IEEE

International Conference on Services Computing (SCC ’09), sept. 2009,
pp. 218 –226.

[3] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and
F. Leymann, “Monitoring and analyzing influential factors of business
process performance,” in 13th International Enterprise Distributed Ob-

ject Computing Conference (EDOC ’09), 2009, pp. 141–150.
[4] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and

F. Leymann, “Runtime prediction of service level agreement violations
for composite services,” in International Conference on Service-Oriented

Computing (ICSOC/ServiceWave’09), 2009, pp. 176–186.
[5] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitoring,

prediction and prevention of sla violations in composite services,” in
IEEE International Conference on Web Services (ICWS’10), july 2010.

[6] E. Schmieders and A. Metzger, “Preventing performance violations of
service compositions using assumption-based run-time verification,” in
4th European Conference ServiceWave, 2011, pp. 194–205.

[7] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE

Trans. Softw. Eng., vol. 30, pp. 311–327, May 2004.
[8] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-

puter, vol. 36, no. 1, pp. 41 – 50, jan 2003.
[9] J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, “A framework

for proactive self-adaptation of service-based applications based on
online testing,” in 1st European Conference ServiceWave, 2008.

[10] D. Dranidis, A. Metzger, and D. Kourtesis, “Enabling proactive adap-
tation through just-in-time testing of conversational services,” in 3rd

European Conference ServiceWave, 2010, pp. 63–75.
[11] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”

Artif. Intell. Rev., vol. 22, no. 2, pp. 85–126, Oct. 2004.
[12] M. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos aggregation for

web service composition using workflow patterns,” in 8th International

Enterprise Distributed Object Computing Conference (EDOC), 2004.
[13] D. L. Cook, Program Evaluation and Review Technique–Applications in

Education, 1966.
[14] M. Bramer, Principles of Data Mining. Springer, 2007.
[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” SIGKDD Explor.

Newsl., 2009.
[16] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed qos evaluation for real-

world web services,” in 8th International Conference on Web Services

(ICWS’10), july 2010, pp. 83 –90.
[17] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction

methods,” ACM Comput. Surv., vol. 42, pp. 10:1–10:42, March 2010.


