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(a) Diffuse shading (b) Coarse scale only (c) All scales (d) + Radiance scaling

Figure 1: Feature-based shading: Given a detailed surface (a), we analyze its relief to locate relief features in the neighborhood

of each surface point (b). We focus on three types of features: convexities, concavities, and inflexions, shown on the right half

with blue, red and white colors respectivelly. Extracted information is used to assign them different shading functions: here

we use three different lit-spheres, shown on the left half. An additional accessibility shading effect helps convey relief cavities.

Features are extracted and combined at multiple scales to depict relevant relief details (c). Finally, radiance scaling is added to

enhance the relief based on the curvature at each feature (d).

Abstract

In this paper, we present an analysis technique that leverages the complexity found in detailed 3D models for

illustrative shading purposes. Given a smooth base surface with relief, it locates relief features (concavities, con-

vexities and inflections) around each surface point and at multiple scales, using cubic-polynomial fitting. This

object-space, per-vertex information is then used to guide a variety of shading techniques including normal en-

hancement, feature visualization, accessibility shading and radiance scaling. Thanks to this approach, features at

multiple scales are easily combined, filtered and shaded, allowing users to explore surface relief in real-time.

1. Introduction

During the last decade, the bulk of computer graphics ap-

plications has made use of 3D objects exhibiting an ever-

increasing amount of shape details. Such geometric com-

plexity may either come from densely scanned real-world

objects, or it may be created by artists in modern digital

modeling and sculpting software. In both cases, there is a

growing need for shading tools that help visualize, enhance,

or exaggerate complex surface relief patterns automatically.

This need firstly arises in scientific illustration domains.

In Cultural Heritage, example applications include the study

of detailed inscriptions found in engraved stones or of

shallow traces over human bones. In Cartography, moun-

tain relief is acquired with an ever-increasing resolution,

† {ammann,barla,guenneba,granier,reuter}@labri.fr

which then requires specific coloring and shading techniques

for a proper depiction. The same requirement has recently

emerged with manually-created geometry. Artists nowadays

spend a lot of time using modeling and sculpting software to

work out fine shape details such as skin pores, wrinkles or

grain. Surface shading techniques that properly depict this

geometric complexity without requiring additional manual

effort are then necessary.

In this paper, we consider relief in a standard way as a

height field relative to a smooth (and not necessarily planar)

base surface. This is a reasonable assumption both in scien-

tific applications where surface details are often very shallow

(as in Archeology) or naturally defined as height data (as in

Cartography), and in artistic applications where most surface

details are stored in displacement maps.

A relief feature is then meant to be a region on the base

surface where the relief is prominent. In particular, we are in-
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terested in three types of features — convexities, inflections

and concavities — and the ways these are nested at multiple

scales. Take for instance a relief ridge pitted with small cav-

ities, as shown on the shoulder of the statue in Figure 1(a):

a point anywhere inside one of the small pits belongs to a

concave feature at a small scale, and to a convex feature at

a larger scale. Conveying surface relief through illustrative

shading then amounts to assigning a proper shading value to

each surface point, in a way that depends on the multi-scale

features it belongs to. This raises two major issues: 1) how to

locate relief features in the neighborhood of a surface point?

2) how to combine features found at various scales (i.e., at

increasing neighborhood sizes)?

We address these issues by introducing an efficient

bottom-up, multi-scale relief analysis technique based on cu-

bic polynomial fitting. It locates relief features (concavities,

convexities and inflections) in a neighborhood around each

surface point, and provides a straightforward solution to the

multi-scale combination problem. We illustrate the benefits

of our approach by adapting shading techniques to take ad-

vantage of non-local relief information available at each sur-

face point. An example is shown in Figure 1(b-d), where

shading color is assigned based on the distance to the closest

feature center, first at a single (large) scale, then at multiple

scales. The result is a far more legible depiction of relief fea-

tures occuring at various scales (including the small pits on

the shoulder). Our system only requires a short pre-process

for the completion of the bottom-up analysis step. It then al-

lows users to explore surface relief in real-time, by varying

the contribution of each scale, or by modifying shading and

filtering parameters.

2. Previous work

One of the earliest shading methods explicitly designed

to convey shape features is accessibility shading [Mil94].

Together with its most popular variant ambient occlusion

(e.g., [PG04]), these methods produce images that depict

cavities by darkening hardly-accessible surface points. How-

ever, they have two main drawbacks. First, they demand

long pre-processing times when done accurately in object

space. But most importantly, they provide limited control in

terms of surface feature depiction: shading and analysis are

not separated and mainly convey deep concavities with very

smooth shading variations.

More accurate surface measurements are obtained with

differential geometry operators [dC76]. In particular, the

second- and third-order tensors provide information about

curvature and curvature variations at a surface point. Such

measurements only apply to small surface neighborhoods

though (infinitesimal neighborhoods for smooth surfaces).

They have thus traditionally been used for identifying sur-

face points that exactly lie on extremal curves such as

ridges and valleys [OBS04] or demarcating curves [KST08].

Some methods have used similar operators for larger surface

neighborhoods (e.g., [CP05, CPG09]) by first fitting a local

plane to the surface, and then fitting a quadratic function on

relative height values. When the surface “folds-over” itself,

complex issues arise that can be overcome using total least-

square fits [GGG08]. Such analysis methods are limited to

purely local surface feature measurements, while we are in-

terested in locating salient relief features, which we recall

are to be found in the neighborhood of each surface point.

In particular, these methods provide no simple way to know

the distance to the nearest feature center of a given type, to

combine features found at multiple scales, or to filter out less

prominent features (e.g., shallow relief).

Another approach for analysing relief at multiple scales

consists in decomposing surface normals into different lay-

ers, which also avoids fold-over issues. Such a decomposi-

tion has first been applied to normal enhancement [CST05,

ZCF∗10], where a single relief layer is manipulated to ex-

aggerate or attenuate surface details through shading. Simi-

lar enhancement techniques have been applied to polynomial

texture maps [MWGA06]. In both cases, only two scales are

considered. These methods have been extended to multiple

scales in the exaggerated shading technique [RBD06]. Dif-

ferent levels of smoothed normals are used to align a sin-

gle light source at grazing angles. Shading values are then

computed at each scale through half-Lambertian shading,

and combined with a weighted sum to exaggerate multi-

scale surface relief. The drawback with this approach is that

scale combination depends on the choice of light direction

and shading parameters, which not only produces artifacts

when the light is moved around, but also makes it difficult to

control which type of feature is depicted.

Normal variations in image space have also been used to

convey surface details by letting them drive variations of in-

coming radiance (e.g., [VPB∗10b]). This is an improvement

compared to exaggerated shading, since it works for arbi-

trary materials and illumination and is devoid of temporal

artifacts. However, the method is confined to a single scale

per point, and provides limited control over the type of de-

picted feature as before.

When an accurate depiction of surface relief is targeted, it

is preferable to decompose surface geometry into base and

relief layers. Various methods have been proposed to per-

form this decomposition (e.g., [ZTS09]). The goal of this

paper is not to present a novel decomposition though, but

rather to provide analysis solutions specifically targeted to

the relief layer. Only a few existing techniques have tack-

led this problem. The prominent field technique [KST09b]

combines output of second- and third-order tensors to iden-

tify a direction field along which prominent relief features

are likely to be located. This direction field has proven to be

useful for feature-aware smoothing, curvature-based shad-

ing, and more recently line-based rendering [KST09a]. A

similar solution has been proposed to identify feature lines

in image-space, using fitting techniques [VVC∗11]. The ad-

vantage of using a direction field is that it locates more ac-

curately surface features around a point of interest. Unfortu-
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nately, as depicted in Figure 2 using a single direction also

introduces artifacts around field singularities, and since the

field is likely to change at different scales, it is not clear how

to perform scale combination.

(a) Mean curvature (b) Directional curvature

Figure 2: Artifacts due to singularities. As opposed to

isotropic measurements (a), the use of a directional field to

analyse relief produces artifacts at it singularities (b).

3. Overview

Our approach focuses on surface relief and assumes in-

put geometry to be decomposed into base and relief lay-

ers. We first locate relief features in the neighborhood of a

surface point, at a number of scales and directions. This is

done thanks to cubic polynomial fitting as explained in Sec-

tion 4.1. We then combine features together and filter them

in a way that preserves only the most pertinent data. This

is permited by a weighting scheme based on the informa-

tion conveyed by individual fits, as explained in Section 4.2.

Shading techniques are finally adapted to depict properties

of the relief features found around each surface point, as de-

scribed in Section 5.

Details of our GPU implementation are given in Sec-

tion 6: it requires a short pre-process for analysis, after which

it runs in real-time with interactive scale combination, fil-

tering and shading abilities. Our solution does not rely on

any parametrization of the base surface, and we demonstrate

our system on both height-fields and detailed 2D manifolds.

Moreover, for dynamic scenes, there is no need to update the

analysis during animation since in most cases, only the base

surface is deformed.

4. Relief analysis

Our analysis takes as input a surface S de-

fined as a smooth base surface B displaced

along its normal field nnnB by a height func-

tion h. Mathematically, any point bbb ∈ B

yields a point ppp on the surface S with:

ppp = bbb+h(bbb)nnnB(bbb) .

The scalar function h corresponds to the relief of the sur-

face. For instance, sculpting tools are able to directly provide

a base surface with a displacement map. With acquired ob-

jects though, the base and relief layers must be extracted in

pre-process. The presentation of this step is out of the scope

of our paper, and we refer to, e.g., Zatzarinni et al. [ZTS09]

for such a base/relief decomposition technique. For the sake

of simplicity, and without loss of generality, we assume that

B is provided as a dense (regular or irregular) triangular

mesh, while h is given as a scalar value per vertex.

4.1. 1D Analysis

The key idea of our approach is to analyse relief along 1D

neighborhoods of the base surface, in multiple directions

around each point bbb. The main reasons for this choice are

that 1) the localisation of relief feature centers (e.g., curva-

ture extrema) around bbb is made considerably simpler in one

dimension, and 2) no 2D parametrization is required. This

strategy is also significantly faster for large scales.

In practice, we perform the analysis at mesh vertices,

in multiple directions θi uniformly distributed in the [0,π[
range. We define ttt i = (cosθi,sinθi) as the corresponding di-

rection vector that lies in the tangent plane of the base sur-

face. A 1D neighborhood is obtained as the intersection of

the base surface with the plane spanned by nnnB and ttt i, and

going through bbb (see Figure 3(a)). The reference direction

θ0 = 0 can be chosen arbitrarily for each point bbb without

any impact on quality because, in our approach, we combine

multipe directions to compute a single feature property.

For each direction, this intersection yields a base polyg-

onal parametric curve bbbi which is parametrized in term of

arc-length on the base surface. Every bbbi(t) corresponds to a

point on the base surface at a distance t along the polygonal

curve, with associated height value h(bbbi(t)) = h◦bbbi(t).

Polynomial fitting The 1D relief function h ◦bbbi may con-

tain a variety of features at multiple scales. In order to iden-

tify them, we approximate h ◦bbbi by a set of cubic polyno-

mials fitted for multiple support sizes s j . Higher values of s j

correspond to coarser scales. Cubic-polynomials are partic-

ularly well suited to our purpose since they exactly exhibit

a pair of convex and concave regions separated by an inflec-

tion. It permits to locate and characterize such neighboring

features analytically.

A polynomial is given by hi j(t) = u0 +u1 t +u2 t2 +u3 t3.

As illustrated in Figure 3(b), hi j is computed by a standard

least square minimization applied to a finite set of samples

tk uniformly spread in the range [-s j/2,s j/2]:

hi j = argmin
P

∑
k

(P(tk)−h(bbbi(tk)))
2

. (1)

Details on how to efficiently solve these minimization prob-

lems are given in Section 6, where we show how to take

advantage of sampling regularity and incremental calculus.

Feature extraction One of the main reasons for making use

of an analytic representation is that it permits to identify en-

tire relief features. The fitted cubic polynomial provides us

with analytic expressions of the first three order derivatives

c© 2012 The Author(s)
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(a) Neighborhood sampling (b) Polynomial fitting at point p in 1 direction (c) Error measures at point p in all directions

Figure 3: 1D analysis. (a) The curves bbbi on the detailed surface S are extracted in multiple directions by intersecting planes

defined relative to the base surface B. (b) The height along a curve h◦bbbi on a support of size s j is fitted with a cubic polynomial

hi j from which we compute the curvature function κi j and feature center locations t⋆i j (⋆ ∈ {⌢,⌣,∼}) analytically. (c) For each

direction, we compute the distance d⋆
i j to a particular feature center and the normal deviation ηi j of the detailed surface.

h′i j, h′′i j, and h′′′i j , as well as the curvature κi j:

κi j(t) =
h′′i j(t)

(1+h′i j(t)
2)

3
2

. (2)

We use these differential quantities to identify the positions

of the convexity (t⌢i j ), concavity (t⌣i j ), and inflexion (t∼i j )

points. We define the first two as the locations of the curva-

ture extrema which are obtained as the zero-crossings of the

curvature variation. More precisely, t⌢i j and t⌣i j are the roots of

the rational polynomial κ′
i j(t) for which explicit formulas are

given in the Appendix. We observe that these roots do not co-

incide with the local extrema of the cubic defined as the zero-

crossings of the first-order derivative h′i j, even though they

are often very close (see Figure 3(b)). This choice is partic-

ularly important when the cubic is monotone but not linear:

curvature extrema can still be found whereas the value ex-

trema do not exist. Curvature extrema thus constitute a more

robust choice in general. The position of the inflexion point

t∼i j is given by the zero-crossing of the second-order deriva-

tive (P′′
i j (t

∼

i j ) = 0).

Normalized distances and error measure Features ex-

tracted from the polynomial approximation may not always

be pertinent. First, specific feature locations may be identi-

fied outside the support used to fit the relief data. We thus

compute a truncated and normalized distance for each type

of relief feature (⋆ ∈ {⌢,⌣,∼}):

d
⋆
i j =

⌊
2|t⋆i j|

s j

⌉
, (3)

where ⌊x⌉ is a function that clamps x to the [0,1] range.

Second, the detailed surface normals may substantially

deviate from the plane used to intersect the base surface

geometry. Indeed, with a large normal deviation, a small

change in direction implies a large change in the fitted

heights. We take into account this source of error by mea-

suring for each fit the average normal deviation ηi j:

ηi j =
1

s j
∑
k

|nnn(tk) · (ttt i ×nnnB)| , (4)

where nnn is the normal of the detailed surface S, and ttt i ×nnnB

is the normal of the plane supporting the cubic. Both types

of error measures are visualized in Figure 3(c) as a function

of direction θi at a single scale j.

4.2. Combination and Filtering

Our multi-scale and multi-direction analysis provides a

dense relief description around a surface point, which en-

sures that most nearby relevant relief features are properly

identified by at least one fitted polynomial. We now present

combination and filtering mechanisms that make such infor-

mation exploitable by subsequent shading techniques.

Feature combination The key idea of our approach is to

combine scalar feature values fi j instead of polynomials

themselves, to yield a single scalar F . For instance fi j could

be taken to be the convexity curvature κi j(t
⌢
i, j), yielding an

average curvature K. Combination is done in two steps. We

first average feature values at each scale over all directions:

Fj = ∑
i

ŵi j fi j, ŵi j =
wi j

∑i′ wi′ j
, (5)

using wi j = (1 − ηi j)(1 − d⋆
i j) for the weights. The factor

1−ηi j favors directions of low normal deviation for which

extracted feature values are most pertinent. This may be seen

as a generalization of principal curvature directions, since

for a quadratic surface, they exactly correspond to the direc-

tions of zero normal deviation. For choices of fi j involving

either t⌢i j , t⌣i j or t∼i j , the weights 1− d⋆
i j also decrease as the

(a) Algebraic fit (b) Using κi, j(0) (c) Using κi, j(t◦i, j)

Figure 4: Curvature comparisons. The mean curvature ob-

tained from the least square fit of an algebraic sphere (a)

yields similar results than averaging our curvature κi, j(0)
at the current point (b). On the other hand, averaging the

curvature of the closest convexity or concavity (κi, j(t
◦
i, j)) ex-

hibits a much more segmented curvature measurement (c).

c© 2012 The Author(s)
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(a) Coarse scale only (b) Fine scale only (c) All scales (ours) (d) All scales (uniform)

Figure 5: Scale combinations: Diffuse shading is darkened proportional to the distance to curvature inflections, in (a) with

only a coarse scale, in (b) using only a fine scale, and in (c) and (d) combining all 3 scales together using our adaptive weights

and uniform weights respectively. The use of a single scale fails to convey all the relief features in a legible way.

feature location approaches the limit of the support. In prac-

tice, any decreasing functions of ηi j and d⋆
i j could be used.

The Fj from Equation 5 are then averaged over scales:

F = ∑
j

α jŴ jFj, Ŵ j =
W j

∑ j′ W j′
. (6)

with W j = ∑i wi j. This weighting provides for a natural bal-

ance between features at each scale: the influence of a given

scale depends on the average pertinence of the angular anal-

ysis at this scale. The parameter α j is introduced for user-

controlled filtering. By default it is set to 1, and its adjust-

ment will be discussed below.

Figure 4 illustrates our approach at individual scales

(Equation 5). If we take fi j := κi j(0), it boils down to a

local estimation of mean curvature. Like total least square

fits [GGG08], it permits to avoid fold-over issues at large

scales (we use 8 directions for each scale). However, the

main benefit of our approach is in estimating properties of

features in the neighborhood of each surface point. To illus-

trate this, we choose fi j := κi j(t
◦
i, j), which corresponds to

the curvature of the closest relevant feature, i.e., the clos-

est convexity (t◦i, j = t⌢i j ) or concavity (t◦i, j = t⌣i j ). It results

in a much more segmented measurement of curvature, each

point displaying the curvature of the convexity it belongs to.

Figure 5 illustrates our approach at multiple scales (Equa-

tion 6). Here we use another feature value: fi j := 1− d∼

i j ,

the distance to the closest inflection point. Contrary to ex-

aggerated shading [RBD06], our scale combination is inde-

pendent of the choice of lighting or shading model. More

importantly, our blending weights (the Ŵ j in Equation 6) are

locally adjusted over the object surface based on fitting per-

tinence, while their are based solely on scale, thus leading to

a more legible end-result.

User-controlled filtering Users may desire to select spe-

cific features during the combination process; this is made

possible through the α j parameter introduced in Equation 6.

In practice, α j decreases the contribution of the scale s j rel-

ative to the other scales and to a fall-back value FB. This is

done thanks to a simple linear interpolation:

Fα = lerp(FB,F,α) = FB +(F −FB)α, (7)

where α is the average of all the α j. In other words, this

procedure ensures that in regions where none, or little, of

the user-selected features are found, we fall back to a “back-

ground” value FB.

The choice of α j depends on the kind of features the user

wants to preserve. We suggest the following feature filter:

α j = ψ

(
std

i
(ηi j) ∑

i

ŵi jκi j(t
⌢
i j )

)
, (8)

where ψ is a user controlled sigmoid function allowing for

a smooth transition between the selected and rejected parts.

In this paper we used a cubic smooth step function. The first

factor retains anisotropic relief features defined as the stan-

dard deviation of the normal deviation ηi j over the set of

directions. The second factor selects regions for which the

closest relevant feature has a high mean curvature. Because

we make use of non-local curvature measurements, entire

(a)

(b)

(c)

(d)

Figure 6: Feature filtering. In (a), surface relief height

is displayed with a red (lowest) to blue (highest) gradi-

ent (i.e., we use fi j := hi j(0) in Equation 5). It is filtered

based on (b) the average curvature at the evaluation point

(α j = ψκ(∑i ŵi jκi j(0)), and (c) our feature filter. The zoom

insets (d) shows how our non-local criteria better preserves

feature integrity.

c© 2012 The Author(s)
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(a) Normal and visibility angles

(b) Membership functions

(c) Curvature functions

Figure 7: Analysis outputs. The estimated normal nnni j is

used both for enhancement, and for computing visibility an-

gles φ±i j for accessibility shading. The membership functions

m⋆
i j (in red, green and blue for concavities, inflections and

convexities) serve to identify features for direct visualization.

The curvature function ci j (in blue) is used instead of κi j (in

orange) as it offers better user control. The thin blue lines

represent variations of the exponent γ.

features are selected even if filtering is applied per surface

point. As illustrated in Figure 6, it preserves much better

relief structure compared to filtering based on local mean

curvature, which tends to cut-off relief features. In our expe-

rience, this filter works remarkably well to select engraved

symbols.

5. Shading techniques

In the previous section, extracted relief features have been

displayed with simple colors for clarity of exposition. We

now explain how more complex illustrative shading tech-

niques are adapted to take advantage of our analysis. Thus,

all subsequent figures present variants of our approach. In all

results, we use 8 directions and between 3 and 5 scales.

5.1. Normal enhancement

The availability of relief normals is necessary for all shading

techniques regardless of the target application. However, us-

ing the original relief normal raises coherence issues when-

ever filtering is activated (i.e., α < 1) . Our solution consists

in estimating an averaged normal NNN alongside the computa-

tion of F . We compute one local normal nnni j for each fitted

polynomial hi j (see Figure 7(a)) and transform them back to

(a) Original normals (b) Coarse scale only (β = 5)

(c) All scales (β = 5) (d) All scales (β = 1)

Figure 8: Normal enhancement: The original normals of

an object (a) are enhanced at a coarse scale (b), then at all

scales (c-d) using different enhancement parameter values.

world space. The coordinates of nnni j in the plane spanned by

hi j are directly given by:

nnni j =
(-u1,1)

‖(-u1,1)‖
, (9)

where u1 is the linear coefficient of hi j.

The averaged normal NNN is then obtained by applying

Equation 6 to each coordinate of nnni j in world-space and

then renormalizing. The final filtered normal is computed

via spherical interpolation: NNNα = slerp(nnnB,NNN,βα), where

β ∈ R
+ is a user-controlled parameter reproducing the nor-

mal enhancement technique [CST05]. With β = 1, we ob-

tain the estimated normal. For β ∈ [0,1], relief is attenuated,

while for β > 1, relief is exaggerated.

This is illustrated in Figure 8 on an acquired pipe model.

The sole benefits of our relief analysis in this case is that

it provides a precise control over which surface features are

enhanced through scale combination and filtering. Note that

the normals of the original detailed surface are easily recon-

structed by using the finest scale only and α = 1.

5.2. Accessibility shading

The entire fitted polynomial may also be used for local visi-

bility evaluation. We propose a variant of accessibility shad-

ing inspired by ambient occlusion. It computes a local visi-

bility value vi j ∈ [0,1] for each 1D polynomial as the integra-

c© 2012 The Author(s)
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(a) Diffuse shading (b) Coarse scale only

(c) All scales (d) + feature filter

Figure 9: Accessibility shading: Starting from (a) standard

diffuse shading, we add accessibility shading (using λ = 8)

(b) at a coarse scale first, then (c) at all scales, and finally

(d) we apply our feature filter.

tion of the cosine term over the range of visible directions:

vi j =
∫ φ+

i j

φ−

i j

cos(φ)|sin(φ)|dφ

= 1−
1

2

(
cos

2(φ−i j )+ cos
2(φ+i j)

)
. (10)

The integration bounds φ±i j correspond to the minimum

and maximum visibility angles around the normal nnni j (Fig-

ure 7(a)). Their derivation is given in the Appendix.

The local visibility terms vi j are combined using Equa-

tion 6 to yield an average visibility V which can be arbitrar-

ily scaled by a factor λ ∈]0,1] to exaggerate the effect. The

final filtered occlusion is computed via linear interpolation:

Vα = lerp(1,V,α).

Figure 9 illustrates this technique on a spherical box.

Our approach has two advantages over classical accessi-

bility techniques when applied to surface relief: it is fast;

and it provides an accurate control over which cavities are

conveyed thanks to both multi-scale combination and user-

controlled filtering. This effect emphasizes the non purely-

local aspect of our analysis, since it exploits the entire poly-

nomial information included in the support size.

5.3. Feature visualization

In scientific illustration, shading is used to help visualize

relief features unambiguously. To this end, we assign one

(a) Original shading (b) Reflectance functions

(c) Fine scale only (d) All scales

Figure 10: Feature visualization: When using a single lit-

sphere (a) to render a statue, we miss many of its features.

Instead, we assign one lit-sphere per feature, showing results

either at a coarse scale (b), or a fine scale (c), or all scales

combined (d), which provides a more balanced depiction of

surface details.

shading function per feature type (ρ⌢, ρ⌣ and ρ∼), and blend

them based on proximity. To do so, we define three member-

ship functions m⌢
i j, m⌣

i j and m∼

i j that tell us how close we are

relative to each feature center inside each 1D fitted polyno-

mial. Let’s suppose that t⌣i j < t⌢i j ; then we have:

m
⌢
i j(t) =

⌊
t∼i j -t

∆i j

⌉
;m

⌣
i j(t) =

⌊
t-t∼i j

∆i j

⌉
;m

∼

i j(t) =

⌊
1-
|t∼i j -t|

∆i j

⌉

where ∆i j = |t⌣i j − t⌢i j |/2, and recall that ⌊x⌉ is a function that

clamps x to the [0,1] range. In the case t⌣i j > t⌢i j , memberships

are obtained by exchanging values for m⌣
i j and m⌢

i j.

As shown in Figure 7(b), the membership functions form

a partition of unity: ∀t,m⌢
i j(t)+m⌣

i j(t)+m∼

i j(t) = 1. In prac-

tice, we evaluate these memberships only at t = 0 and plug

the resulting values into Equation 6. Since feature combina-

tion is a linear process, the resulting averaged memberships

M⌢, M⌣ and M∼ also form a partition of unity. This is a

handy property, since it permits to unambiguously assign a

reflectance to each membership triplet:

ρ = M
⌢ρ⌢ +M

⌣ρ⌣ +M
∼ρ∼. (11)

The final filtered reflectance is obtained by linear interpola-

tion: ρα = lerp(ρB,ρ,α), with ρB the base reflectance.

Figure 10 demonstrates feature visualization on a statue

model using lit-sphere shading [SMGG01]. We illustrate an-

other important advantage of our approach here: it provides

c© 2012 The Author(s)
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(a) Original shading (b) All scales (γ = 6)

(c) All scales (γ = 0.2) (d) + feature filter

Figure 11: Radiance Scaling: We enhance the original

shading (a) of a detailed face model by applying radiance

scaling to all scales (b-c) using different values for sharp-

ness, and then adding our anisotropic feature filter (d) to se-

lect the most prominent features. The grey images show the

remapped curvature function ci j.

distance information to nearby concavities, convexities and

inflections within a single analysis. Again, this is made pos-

sible thanks to our ability to detect these features in the

neighborhood of each surface point.

5.4. Radiance scaling

Recent shading techniques have demonstrated enhancement

capabilities with arbitrary material and illumination. For in-

stance, radiance scaling [VPB∗10a] correlates shading in-

tensity variations produced by each incoming light direction

with surface normal variations. Thanks to our approach, cur-

vature extrema are easily located around a surface point. It

allows us to not only convey the curvature of nearby features,

but also provides a more precise control. Indeed, as can be

seen in Figure 7(c), the highest values of κi j (in orange) are

mostly located in a narrow neighborhood around each fea-

ture location. Thus, instead of directly using κi j, we remap

it to a curvature function ci j given by

ci j(t) = κi j(t)

(
1−

⌊
t-t◦i j

∆i j

⌉2
)γ

, (12)

where ∆i j is the same as in Equation 11, γ ∈ R
+ is a user-

specified parameter that controls the sharpness of concave

and convex regions, and, as before, t◦i j corresponds to the

location of the closest relevant feature (t⌣i j or t⌢i j ). As illus-

trated in Figure 7(c), ci j(t) = κi j(t) for t ∈ {t⌣i j , t
⌢
i j , t

∼

i j }, but

exhibits a smoother behavior, in a way controlled by γ.

The curvatures ci j are combined using Equation 6 to ob-

tain the average curvature C. The final filtered curvature is

computed via simple interpolation (Cα = lerp(0,C,α) as in

Equation 7), and it is used in the radiance scaling technique

to modulate incoming light intensities at each surface point.

Figure 11 illustrates this technique applied to a detailed

face model sculpted in Autodesk Mudbox c©. The main ad-

vantage of our approach here is to provide a direct control

over the magnitude (via filtering) and the thickness (through

γ) of conveyed features. Each of them cannot be achieved

using a purely local curvature estimator.

Figures 1 and 12 show more sophisticated shading ex-

amples, where our illustrative shading techniques are com-

bined in different ways. The accompanying video and image

archive present all our results with more parameter varia-

tions and in high resolution.

6. Implementation

In our prototype implementation, the analysis (Section 4.1)

is performed on mesh vertices in a preprocess and updated

every time a new scale is added. The cubic coefficients for

each hi j along with normal deviations ηi j are stored in ver-

tex buffers. By trading memory for speed, this strategy en-

ables real-time feature combination (Section 4.2) in a vertex

shader followed by per-pixel illustrative shading (Section 5).

The fitting of the polynomials is a critical step of our algo-

rithm. With a naive implementation, complexity would de-

pend on the number of scales. We propose a more efficient

strategy that makes complexity depend on the largest scale

only (see Table 6 for performance statistics). Given a vertex

vvv and a direction θi, the key idea is to perform fitting for all

scales incrementally, from the smallest to the largest scale.

Relief samples tk are then taken at equal intervals ∆t , which

we set to half the average edge-length in our system. In this

way, the samples tk are the same at all scales and the fitting

of a cubic (Equation 1) boils down to a normal equation:

AAA juuui j(vvv) = rrri j(vvv) ,

AAA j = ∑k L(tk)
T L(tk) , rrri j(vvv) = ∑k h(bbbi(tk))L(tk)

T ,

where uuui j(vvv) is the vector of unknown polynomial coeffi-

cients, and L(tk) = (1, tk, t2
k , t3

k ) is the cubic basis vector.

From these equations, it is clear that the covariance matri-

ces AAA j only depend on their corresponding scale s j. They are

thus computed and pre-inverted once and for all. Likewise,

the right hand sides rrri j(vvv) and deviation measures ηi j (Equa-

tion 4) are easily computed incrementally from rrri( j-1)(vvv) and

ηi( j-1). Fitting is performed on the GPU using a minimalis-

tic half-edge data structure to walk on the surface. Table 6

reports some performance statistics of our OpenCL imple-

mentation running on a Nvidia GTX 480 graphics card.
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(a) Original shading (b) Feature weights (c) RS + AS (d) RS + AS + feature filter

Figure 12: The original diffuse shading (a) of the scanned portion of a cave wall hardly reveals the engraved shape. After

the analysis, and assignment of different lit-spheres to the extracted features (b) we can provide a more legible rendering using

radiance scaling (RS) and accessibility shading (AS) (c). Filtering removes most of the unwanted features (d).

model scales base/relief

(#vertices) {35} {75} {35,55,75} decomposition

Box (180k) 2.4 5.2 5.8 12.5

Head (667k) 11.8 25.2 26.9 66.3

Table 1: Analysis timings for different scales (given in terms

of number of samples) and 8 directions. The last column re-

ports the time in second to decompose the input mesh into a

base/relief layers with our implementation of [ZTS09].

7. Discussion

Depicting surface relief through illustrative shading requires

to gain knowledge and control over relief features at various

scales. Our approach permits to identify, filter and combine

three types of relief features at the small expense of a short,

automatic pre-process; after which all subsequent manipu-

lations and rendering occur in real-time. Our current imple-

mentation works at the vertex level, but it would be easily ex-

tended to take 3D models with displacement maps as input,

performing the analysis and storing its outcome per texel.

Another limitation is that we interpolate averaged feature

values F per pixel, which lets appear tesselation in close-

up views. One solution could be to interpolate hi j per pixel;

however, the interpolation of such directional cubic poly-

nomials is not straightforward. Our method could also be

adapted to other kinds of surface representations, provided

we can intersect the surface with a plane, and march on the

resulting curve. This includes for instance raw point clouds

reconstructed with implicit fitting methods.

Apart from these technical issues, the main limitation of

our approach is that it assumes that relief information can

be represented by a single height-field. Although this is true

for many kinds of surface reliefs, this is not always the case.

One solution would be to interleave our multi-scale analysis

with 3D multi-scale decompositions (e.g., [PKG06]), though

it might require longer preprocessing times. Our approach

also neglects the curvature of the base surface. While it is

assumed to be flat most of the time, one could imagine to cut

the neighborhoods at regions of sharp transitions [SGW06].

8. Conclusion

We have presented a novel analysis technique of surface re-

lief that identifies three types of features in the neighborhood

of each surface point, and provides multi-scale combination

mechanisms that favor most pertinent features. The direct

benefit of our approach is to gain a direct global control over

the type of relief features depicted through illustrative shad-

ing techniques: the influence of each scale is easily tuned,

features are efficiently filtered out based on their importance

and/or based on our anisotropic metric, and a variety of fea-

ture properties can be selected for illustration. This is made

possible by our cubic polynomial fitting approach that iden-

tifies features at multiple scales and orientations, without the

necessity of a complex parametrization.

Our system thus provides a convenient solution for the

depiction of surface relief, either for its exploration as in sci-

entific illustration, or for its exaggeration as in visual effects.

It relies on a base/relief decomposition though, and we be-

lieve that different solutions to this problem may be chosen

depending on the target application, considering how relief

has been generated. Has it been engraved or eroded? Does

it include cracks? Is it composed of different materials? Al-

though we believe concavities, convexities and inflections

are very common features, they might not always be adapted.

An exciting avenue of future work would be to consider al-

ternative feature types for expert applications. As long as the

fitting functions used to identify them are one-dimensional,

our method will be applicable with little changes. Finally, we

believe such relief analysis technique could be used in many

other applications, for instance, for geometric-aware texture

synthesis [MKC∗06].
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Appendix

Relief analysis - feature locations

As explained in Section 4.1, the convexity and concavity lo-
cations t⌢, t⌣ are the roots of the rational polynomial κ′(t),
where κ (Equation 2) corresponds to the curvature of a cu-

bic polynomial h(t) = u0 +u1t +u2t2 +u3t3. If u3 6= 0, then
there exist only two real roots, t⌢ and t⌣, given by:

±

√
3

√
9u2

3u2
1-6u3u2

2u1 +u4
2 +5u2

3-6u3u1 +2u2
2

3
√

5u3

-
u2

3u3

(13)

The inflexion position t∼ is then obtained as the unique root

of the second-order derivative polynomial (h′′(t∼) = 0):

t
∼ =

-u2

3u3
=

t⌢ + t⌣

2
. (14)

On the other hand, if u3 = 0 but u2 6= 0, then there is only a

unique concavity or convexity point at t = -u1/2u2, and no

inflexion point can be detected. If u2 is also zero, then no

feature points can be extracted. In these cases, the respective

undefined d⋆
i j values are set to 1.

Accessibility shading - integration bounds

The computation of the accessibility term of Equation 10

relies on the determination of the cosine of the two integra-

tion bounding angles φ±. In the case of a cubic polynomial

h(t), they are given by the clamped dot product between

the normal direction nnn (as defined in Equation 9), and the

two normalized vectors (xxx± −ooo), where xxx± = (t±,h(t±))
are the two extremity points of the curve visible from the

observer location ooo = (0, -u0) (see Figure 7). Since the

curve is clamped to the range [-s j/2,s j/2], they either co-

incide with the boundaries of the curves, or with the point

yyy = (ty,h(ty)) for which the vector (yyy−ooo) is tangent to the

curve at yyy. It is obtained by solving for the cubic equation

(-h′(ty),1) · (yyy−ooo) = 0, which admits a single non null root:

ty = -u2/(2u3). The two positions t−, t+ of the visible ex-

tremities xxx± = (t±,h(t±)) are finally given by:

(t−, t+) =





(
-
s j

2
, min

( s j

2
, ty
))

if ty > 0,(
max

(
-
s j

2
, ty
)
,

s j

2

)
otherwise.

(15)
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