
HAL Id: hal-00709534
https://hal.inria.fr/hal-00709534

Submitted on 12 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LogOS: an Automatic Logging Framework for
Service-Oriented Architectures

Stéphane Frénot, Julien Ponge

To cite this version:
Stéphane Frénot, Julien Ponge. LogOS: an Automatic Logging Framework for Service-Oriented Archi-
tectures. 38th Euromicro Conference on Software Engineering and Advanced Applications, Sep 2012,
Izmir, Turkey. �hal-00709534�

https://hal.inria.fr/hal-00709534
https://hal.archives-ouvertes.fr


LogOS: an Automatic Logging Framework for
Service-Oriented Architectures

Stéphane Frénot
Université de Lyon

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France
stephane.frenot@insa-lyon.fr

Julien Ponge
Université de Lyon

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France

julien.ponge@insa-lyon.fr

Abstract—As multi-source, component based platforms are
becoming widespread both for constrained devices and cloud
computing, the need for automatic logging framework is increas-
ing. Indeed, components from untrusted and possibly competing
vendors are being deployed to the same runtime environments.
They are also being integrated, with some components from a
vendor being exposed as a service to another one. This paper
presents our investigations on an automated log-based architec-
ture called LogOS, focused on service interactions monitoring.
We developed it on top of Java / OSGi to enable identification
between bundle providers in cases of failures. We motivate the
need for an automatic logging framework in service-oriented
architectures, and discuss the requirements of such frameworks
design. We present our implementation on OSGi. Finally, we
position our approach and give some perspectives.

Keywords-soa; cbse; osgi;logging; service;

I. INTRODUCTION

While software developers and integrators have been using
logging systems for technical purposes, we argue that a new
breed of need of logging approaches is emerging from an
increase in transparency requirements from end-users and
isolated nature of components. For example, a user may
contest having authorized a credit-card payment from a mobile
device. In this case, a trusted log mechanism shall be able to
clearly spot the software component at fault so as to blame its
provider and eventually its chain of responsibilities. Moreover,
a user may be concerned in knowing what the applications
(s)he is using on a device, actually do: a solitaire game is
probably not expected to access a contacts list and connect to
the Internet.

This paper presents our investigations on an automated log-
based assertion architecture for Java component-based systems
called LogOS, applied to OSGi environments. We believe that
services such as found in OSGi platforms are the best level of
granularity for such logging. Indeed, their implementations are
“owned” by a self-contained unit, called a bundle, and each of
them originates from a single vendor. Services rely on other
services, possibly from third-party vendors, hence stressing
out their relevance as a target identification.

We first motivate the need for a logging framework in
service-oriented architectures and focus on the needs for
capturing and managing log records. Next, we present LogOS

architecture ported to Java / OSGi, and how the aforemen-
tioned requirements need to be implemented for this platform.
Finally, we present our experiments with our OSGi-based
implementation, before concluding with related work and
perspectives.

II. DESIGNING AN AUTOMATIC LOG RECORD
MANAGEMENT FRAMEWORK

Our proposed architecture focuses on service oriented log-
ging for component based architecture. It focuses on two
principles for component activity logging: horizontal calls
and black-box approaches. In horizontal calls, every available
service function is provided by another component, either
remotely or locally, and invocations are sent to the same layer.
There are no existing trusted relationships between callers and
callees, in the sense that callers and callees have the same level
of legitimacy within the system. Figure 1 illustrates, horizontal

DHCP client

Resolver

TCP

POSIX

Linux kernel

resolv()

connect()

malloc()

sbrk()

Client layers

Network layers

Operating system
layers

(a) Vertical calls layers.

Caller Callee
call()

Service Interface

(b) Service-oriented horizontal call.

Fig. 1. Vertical and horizontal calls.

and vertical calls. Our architecture also enforces the fact that
component must be hosted and logged without knowing their
internal behavior. Their interface may be publicly available,
but the internal is not. In this context, the exact behavior



is unknown as illustrated figure 2. Figure 2(a) shows the
real behavior, whereas a black-boxed architecture may only
observe Figure 2(b) behavior.

Thread#start()

Thread#join()ServiceA#something():call

ServiceA#something():return

ServiceB#doThis():call ServiceB#doThis():return

ServiceC#doThat():call ServiceC#doThat():return

call

call call

return

return return

"Regular Java method" Logged service method

Thread-1

Thread-2

(a) Observing through instrumentation.

ServiceA#something():call

ServiceA#something():return

ServiceB#doThis():call ServiceB#doThis():return

ServiceC#doThat():call ServiceC#doThat():return

Thread-1

Thread-2

(b) The LogOS view of the observation above.

Fig. 2. Instrumentation versus observation in LogOS.

We are focused on service oriented architectures, where
each service is associated with a specific owner. Service
interfaces are associated to log frontiers and their running
implementation must be considered as black boxes. As service
interfaces are at the frontier, they are outside of the black-
boxes and can have specific log recording behavior. With
these constraints, our architecture is able to capture, store and
provide the best representation of what previously happened
within the system.

A. Log Records Data

A log record contains the following information.
Identification: A log entry must be totally unique and

unpredictable.
Timing: When analyzing log information, it is important to

have a clear vision of events ordering.
Participants: Providing a clear identification of participants

is mandatory to characterize communications.
Content: Depending on the logging objective, the content

may be empty or a complete mirror of the event information.

B. Capturing Logs

A log capture system raises five issues: session man-
agement, reliability, horizontal logs, data isolation and data
volume.

Session Management: A session is a semi-permanent in-
formation interchange between two or more communicating
devices. A session is set up or established at a certain point
in time, and torn down at a later point in time. In a black-box
approach, many sessions can be active at the same service
frontier of observation. Hence, as part of the log record,
one needs to store the identification information for every
active session at the time of the service invocation. Indeed,
any subsequent invocation may belong to any of those active
sessions.

Reliable Interceptions: We need to record events as soon
as possible, since any crash may lead to a loss of data.
Thus, when client/server communication occurs clients are
blocked until initial and response calls have been completely
logged, and volatile memory buffers, and remote persistence
for storing events are not possible. Shall the logging system
be unable to proceed call interception, the intercepted service
invocation must fail and possibly stop the framework.

Data Isolation: When sending requests through the Internet,
service requesters and service providers run at the very least
on different processes. Every transmitted parameter is a deep
copy. In an automatic logging framework, frontiers need to be
hard frontiers, which means that anything that transits through
them is entirely immutable from the other side. The logging
framework shall provide a defensive copy before sending any
object parameter or return value. In some circumstances it is
not possible to make a defensive copy. In these cases, specific
contracts are set up between the provider and the requester as
a specific trust relationship is assumed between them.

Data volume: When managing service parameters, the data
volume is an important matter. Although we can store all
parameters, we must provide intermediary approaches such as
data compression, hashing of values and even value discarding.

C. Log Entry Storage

When log record events have been produced we need to
store them for later queries. The following elements must be
taken care of.

Complete: Events must be complete from the very begin-
ning of log records. Although it may not be started at the
beginning of the system, once it has been launched the log
records must be continuous, and every logged event must be
stored. Since it is impossible to anticipate the kind of problem
a user may raise, we need to maintain this constraint as long
as we can. A new log event must not be captured until the
current one as been permanently stored.

Unforgeable and Confidential: Every log record must not
be modified, substituted or inverted with another. Log storage
contains sensitive data and thus must be protected from exter-
nal viewers. Log records shall only be accessed by the implied
parties including the end-user and no one else. Moreover,
implied parties shall only access their concerned record and
nothing else.

All or Nothing: In case of failure the log system must be in-
validated whatever happens later. Thus the logging framework
works in an all or nothing way.

The last step in log management is dedicated to log record
querying.

D. Log Querying

Log records should be mostly accessed off-line. We identi-
fied the following requirements for an efficient log querying
system.



Session graphs rebuilding and navigation: The first goal of
the log querying feature is to be able to rebuild a complete
session from the log. A complete session must include the
starting event, and every possible calling graph formed with
all active sessions until the session ends.

Operators for graph comparison: An important feature
when dealing with log graphs is the possibility to apply
operators to them. The most obvious one is a comparison
operator, but it may be complex to compare, since two session
runs shall differ with parameters or timing issues. Many works
exist when dealing with log analysis and mining. Although
many of them work on partial log records and try to cope with
incompleteness [1], [2], our framework provides complete log
records changing the kind of available analysis.

In the next section we describe our reference implementa-
tion focused on OSGi logging.

III. LOGOS: A LOGGING FRAMEWORK FOR OSGI

While there exist numerous service-oriented architecture
implementations, OSGi is a noteworthy one, as it provides a
mean to assemble and integrate applications within the bounds
of a single Java virtual machine. The need for automatic
logging is stressed out with the notion of bundle in OSGi
that unambiguously identifies a component, its version and its
vendor.

The first subsection details the specificities OSGi archi-
tecture raises when dealing with true logging. The second
subsection presents a dedicated language to drive logging
behavior. The final subsection summarizes the LogOS OSGi
architecture.

A. Impact of OSGi Specifications on Logging

All elements described in Section II are handled by the
LogOS architecture yet, some elements need special attention.

Isolation enforcement: OSGi uses the Java platform, the
Java language and its semantics. Data is passed by-reference
when service method calls are initiated, meaning that both
the client and service hold a reference to the same data
objects in memory. As Java objects are generally mutable,
data may change after a service method has been invoked.
Although the code is owned by one party, another one may
still have a reference to a service-provided object and modify
it. To overcome this, as well as to provide true data isolation
between services upon method invocations, LogOS must make
defensive deep copies, of the parameters and return values.

However, there are cases where defensive copies are in-
compatible with the programming model between the parties.
This happens when performance is critical, when parties have
settled formal agreements, or simply because class objects
shall not be deep-copied and/or be proxy-ed. For such cases
LogOS provides a specific frontier where both caller and callee
parties are deemed liable in case of claims.

Session Management: Many sessions can be simultaneously
active at the same logging time, and each of them must
be attached to the record. OSGi does not natively provide
any session management scheme. LogOS provides a way to

identify session services that are the only services allowed to
initiate a log record chain.

B. LogOS Domain-Specific Language

We designed an annotation-based domain-specific lan-
guage [3] to drive log record behavior at the frontier and cater
for the constraints of OSGi.

The domain-specific language is defined via Java Annota-
tions1 that modify how method calls are logged. These optional
annotations may be set-up within the service interfaces since
they define the frontier and do not break the black-box
principle.

C. LogOS Architecture

RegistryEvent Hook

Service

Requester

Service 
Proxy

log log log log
log log log loglog log log log

log log log loglog log log log
log log log log

Log system

getService()

hello()

Logging 
Proxy 

Generator

Log Storage 
Service

annotation
DSL for

configuration

Fig. 3. Implementation of LogOS on OSGi.

Figure 3 shows the global LogOS interception architecture.
It is brought through a unique bundle started at bootstrap time.
The eventhook builds an interception proxy that generates log
events. It is based on ServiceHook OSGi specification that
enables service implementation substitution while registering.
Each time a new implementation is registered, the service
hook is triggered and a Java dynamic proxy is forged from
the registered interface analysis provided by the Logging
Proxy Generator. The Service Proxy may be parametrized with
the Service annotations. Finally, the storage service provides
encryption and deflate compression [4] streams to persist log
events.

IV. CONCLUSION

A. Related Work

Logging frameworks are generally inserted and configured
within software code. However, certain tools exist to au-
tomatically trace and log executions of programs without
modifying them. The strace tool is well-known for Unix
variants, and allows capturing system-level calls. The arguably

1http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html



more powerful dtrace tool has lead to several publications on
its design, implementation and usages [5], [6], [7]. Indeed,
it allows focusing on any function and resource usage, and
customizable actions can be triggered.

Several works focus on system, middleware and application
failures and dependability [8], [9], [10]. Closer to our field of
study, [11] characterizes failures on two widely used mobile
operating system platforms: Google Android and Symbian. In
[12], the authors focus on software dependencies and their
impact on failures. A log-based dependability approach for
Microsoft Windows operating systems is proposed in [13], and
another log-based approach for large-scale systems is detailed
in [14].

Log events have been used beyond dependability in several
works. They are used for adaptive scheduling in [15]. Business
processes are inferred for re-engineering based on actual usage
and/or lack of documentation in [1]. There are essentially
two types of approaches: either logs are processed in a post-
mortem fashion for the needs of some form of analysis, or they
are used as live events sent to a monitoring entity which may
in turn apply decision rules. We envision to leverage LogOS
for both purposes.

This work, in the continuation of [16], differs from those ap-
proaches in the sense that we do not focus on identifying bugs
and failures. Instead, we aim at providing a middleware where
interactions between vendor components can be assessed and
isolation can be automatically enforced.

B. Perspectives

This article introduced LogOS, an automated logging frame-
work for service-oriented architectures. We discussed the
requirements and motivations behind such system. We im-
plemented it in the context of Java / OSGi. There exists a
necessary performance impact of activating a strong logging
framework, as every intercepted method invocation triggers
a filesystem synchronous write operation. In the meantime,
services are generally used as coarse-grained interfaces to
more complex, CPU-intensive components, hence the logging
overhead can be mitigated most of the time.

LogOS architecture is agnostic of any application and work
as soon as service service calls are used. We successfully
used LogOS in our internal OSGi based projects as a way of
efficiently logging applications behaviors. LogOS runs without
any implementation modifications and is able to log service
interactions, so as session life-cycles, from every OSGi based
applications we have. Besides this, we successfully extended
the framework to do more things than events interceptions. For
instance we plugged LogOS to a formal method monitoring
tool called Larva [17] to control service execution behavior.

Future works will tackle the behavior-based analysis of
the captured interactions. This will be used for manual post-
mortem liabilities analysis, as dealing with raw log outputs
can be hard to do, especially when concurrent interleaving
happens. This will also be useful for the automated reasoning
about service behaviors, including the need for fine-grained
compatibility and replacement assessment like it has been done

on Web Services in [18], or the need to perform some model
checking on the fly.

One question we regularly have is that of knowing when
a service shall be defined rather than a regular class. Indeed,
the distinction between a library call and a service call is not
always obvious. When services are run on the same system,
they directly impact performances without providing too much
advantage. LogOS identifies services as a liability separation
between requester and publisher. Each time a service interface
appears, it means an interaction exists where liabilities could
be inferred. We found that LogOS to be an excellent tool for
designing service oriented applications since it makes service
contracts mandatory at service frontiers.

ACKNOWLEDGMENT

This project was supported by the ANR LISE grant (ANR-
07-SESU-007 ). We would also like to thank Stéphane Cheva-
lier and Denis Beras, two software engineers who helped us
on this project.

REFERENCES

[1] H. R. M. Nezhad, B. Benatallah, F. Casati, R. Saint-Paul, P. Andritsos,
and A. Guabtni, “Exploration of discovered process views in process
spaceship,” in ICSOC, ser. LNCS, vol. 5364, 2008.

[2] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data Knowl. Eng., vol. 47, no. 2, 2003.

[3] M. Fowler, Domain Specific Languages, 1st ed. Addison-Wesley, 2010.
[4] P. Deutsch, “Deflate compressed data format specification version 1.3,”

United States, 1996.
[5] B. Cantrill, “Hidden in plain sight,” ACM Queue, vol. 4, no. 1, 2006.
[6] B. Cantrill, D. Price, and L. Praza, “Solaris 10: Sys-

tem/dtrace/zones/smf,” in LISA. USENIX, 2005.
[7] B. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumen-

tation of production systems.” USENIX, 2004.
[8] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler, “An empirical

study of operating system errors,” in SOSP, 2001, pp. 73–88.
[9] S. Chandra and P. M. Chen, “Whither generic recovery from application

faults? a fault study using open-source software,” in DSN. IEEE
Computer Society, 2000, pp. 97–106.

[10] M. Sullivan and R. Chillarege, “Software defects and their impact on
system availability: A study of field failures in operating systems,” in
FTCS, 1991, pp. 2–9.

[11] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing failures
in mobile oses: A case study with android and symbian,” in ISSRE.
IEEE Computer Society, 2010, pp. 249–258.

[12] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Trans. Software Eng., vol. 35, no. 6, pp. 864–878, 2009.

[13] C. Simache, M. Kaâniche, and A. Saïdane, “Event log based dependabil-
ity analysis of windows nt and 2k systems,” in PRDC. IEEE Computer
Society, 2002, pp. 311–315.

[14] A. J. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in DSN. IEEE Computer Society, 2007, pp. 575–584.

[15] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Self-tuning
schedulers for legacy real-time applications,” in EuroSys, 2010.

[16] D. Le Métayer, M. Maarek, E. Mazza, M.-L. Potet, S. Frénot, V. Viet
Triem Tong, N. Craipeau, R. Hardouin, C. Alleaune, V.-L. Benabou,
D. Beras, C. Bidan, G. Goessler, J. Le Clainche, L. Mé, and S. Steer,
“Liability in Software Engineering Overview of the LISE Approach and
Illustration on a Case Study,” in ACM/IEEE 32nd International Conf.
on Software Engineering (ICSE 2010), Cape Town, South Africa.

[17] C. Colombo, G. J. Pace, and G. Schneider, “Larva — safer monitoring
of real-time java programs (tool paper),” ser. SEFM ’09. Washington,
DC, USA: IEEE Computer Society, 2009.

[18] J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Analysis and appli-
cations of timed service protocols,” ACM Trans. Softw. Eng. Methodol.,
vol. 19, no. 4, 2010.


