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Abstract – The work discovers a stochastic bifurcation in delayed systems in the presence of both
delay and additive noise. To understand this phenomenon we present a stochastic center manifold
method to compute a non-delayed stochastic order parameter equation for a scalar delayed system
driven by additive uncorrelated noise. The derived order parameter equation includes additive and
multiplicative white and coloured noise. An illustrative neural system with delayed self-excitation
reveals stationary states that are postponed by combined additive noise and delay. A final brief
analytical treatment of the derived order parameter equation reveals analytically the shift of the
stationary states which depends on the delay and the noise strength.

Nonlinear time-delayed systems arise in numerous ar-
eas [1]. The effect of noise on such systems is of great
interest, for example in the context of delayed laser dy-
namics [2]. Biological systems are rife with delays, and
noise is often significant enough to e.g. alter bifurcations
in genetic networks [3], even producing stationary states
- as maxima of the stationary probability density - that
have no deterministic counterpart [4]. The same is true for
neural systems involved in the control of e.g. the pupil [5],
eye movements [6], balance [7] and neural rhythms [8].
Analytical insights into the properties of stochastic delay-
differential systems (SDDEs) have been hindered by the
fact that Fokker-Planck analysis is not valid for such non-
Markovian dynamics. Advances have relied on approxi-
mations using e.g. small delay expansions [9], multiscale
methods [10], delayed random walks [11], as well as coarse-
grained dynamics [12] naturally applied to intrinsically
bistable delayed systems.

Yet a general theory for SDDEs is still lacking, especially
near instabilities. A technique to calculate the effects of
noise well into nonlinear regimes would be an important
step, and is the focus of our Letter. We highlight delayed
dynamics involving a pitchfork bifurcation, but our work is
in fact applicable to all systems having a one-dimensional
normal form in the absence of delay. We consider the

system

dx(t)

dt
= −x(t) + βx(t− τ)− γx3(t− τ) + κξ(t) (1)

with β, γ ∈ R and the delay τ . Here ξ(t) is Gaussian white
noise (GWN) with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2δ(t− t′). The
noise strength is denoted by κ, and 〈·〉 denotes the en-
semble average. A motivation for our work arises in the
context of a single neuron with global excitatory delayed
feedback from a population, which exhibits a spatially syn-
chronized mean membrane potential U(t) obeying

dU(t)

dt
= −αU(t) +K0S[U(t− τ0)] + E0 + ξ(t) .(2)

The parameter α is the mean decay rate of synaptic re-
sponses and K0 represents the excitatory feedback level.
The sigmoid function S(V ) = S0/(1 + exp(−c(V −Vthr)))
reflects the population firing rate function with constant
parameters S0, Vthr and c and τ0 denotes the fixed feed-
back delay. The global external stimulus includes the
mean background activity E0 from external neural pro-
cesses, and the small input ξ(t) represents random fluc-
tuations around that mean [8]. Equation (1) includes the
pre-factors β = S0K0c/4α > 0, γ = S0K0c

3/48α > 0 and
the rescaled time and delay t→ t/α and τ = ατ0, respec-
tively. The pre-factors β and γ are related by γ = ηβ3
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with η = 4(α/S0K0)2/3. This dependence of linear and
nonlinear pre-factors in Eq. (1) is a generic property of
neural systems. Considering small deviations of U(t) from
Vthr, i.e. x(t) ≡ U(t) − Vthr, |x(t)| � Vthr, and Taylor-
expanding S about Vthr up to cubic order, yields the de-
layed Langevin equation Eq. (1). The resting states of
Eq. (1) for zero noise are x0 = 0, x1,2 = ±

√
ε/η(ε+ 1)3

with the new control parameter ε = β−1 > 0. We find the
well-expected pitchfork bifurcation for small ε. Moreover
x0 is metastable for ε = 0.

Figure 1 shows the stationary probability density Ps(x)
of the stochastic process (1) for vanishing delay (Fig. 1(a))
and a large delay τ = 2 (Fig. 1(b)). For τ = 0, we ob-
serve the expected uni-modal density for ε < 0 and the
bi-modal density for ε > 0. In the case of a large delay
τ = 2 the bi-modal density emerges for much larger values
of ε compared to the case τ = 0. This indicates that the
critical instability point is moved to larger values of the
control parameter, i.e. the system exhibits stationary ac-
tivity about the state x = 0 for larger control parameters
than expected from a deterministic analysis. Moreover, it
is well-known that noise-free delayed scalar systems such
as (1) for κ = 0 [13] and stochastic non-delayed scalar
systems with additive GWN, i.e. (1) with τ = 0, have
identical stationary states, cf. dotted line in Fig. 1. Con-
sequently the stochastic bifurcation shown in Fig. 1(b) oc-
curs only in the presence of both delay and additive noise.
Hence introducing delay in a system subjected to additive
noise stabilizes the system. Such a noise-induced transi-
tion is known only for multiplicative GWN noise in delayed
systems [5,14]. Numerical work had also shown that addi-
tive GWN can shift a Hopf bifurcation in a scalar SDDE
[5], and here we provide analytics that explain a novel and
simpler manifestation of this phenomena.

Fig. 1: The stationary probability density (PDF) of the
stochastic process (1) computed numerically without (a) and
with delay (b). The white dotted line denotes the stationary
states of (1) in the absence of both delay and noise. Simulations
used a delayed Euler-Maruyama integration method with iter-
ation step dt = 0.01 and parameters η = 80 (used throughout)
and κ = 0.015. The PDFs were computed using an ensemble
average of 15 · 104 trajectories in the stationary state reached
at t = 1000.

To investigate this numerical finding analytically, the
constant control parameter ε is made a dynamic variable
with dε/dt = 0, allowing an easier application of the center

manifold approach. This yields the augmented system

dx(t)

dt
= −x(t) + x(t− τ) + F (x, ε, t) ,

dε

dt
= 0 (3)

with F (x, ε, t) = εx(t−τ)−η(1+ε)3x3(t−τ)+κξ(t) includ-
ing both the nonlinear interaction terms and the random
input. Moreover, the linear terms no longer depend on ε.
Mathematically, the system in Eq. (3) has two variables
but evolves in an infinite-dimensional space due to the de-
lay. Hence it is practical to introduce the 2-dimensional
vector function zt(θ) = (x(t + θ), ε)T = (zt(θ)1, zt(θ)2)T

with −τ ≤ θ ≤ 0, where zt lives in the Banach space of
continuous maps CB ≡ C([−τ, 0],R×R) [15,16]. Then (3)
reads

d

dt
zt(θ) = A(zt(θ)) +XoF [zt, t] , (4)

where A = ∂zt/∂θ for −τ ≤ θ < 0, A = L[zt] for θ = 0,
with the linear operator L[zt] = (−zt(0)1 + zt(−τ)1, 0)T

which is re-formulated as functional operator

L[zt] =

∫ 0

−τ

(
−δ(θ) + δ(θ + τ) 0

0 0

)
zt(θ)dθ .

The function F is re-written in the new variable zt
as F (x, ε, t) = (zt(0)1zt(0)2 − η(1 + zt(0)2)3z3t (−τ)1 +
I(t), 0)T , i.e. it is a non-linear functional of zt [15, 16]

F [zt, t] =
∫ 0

−τ
∫ 0

−τ ω2(θ, θ′)zt(θ)⊗ zt(θ′)dθdθ′

+
∫ 0

−τ
∫ 0

−τ
∫ 0

−τ ω3(θ, θ′, θ′′)zt(θ)⊗ zt(θ′)⊗ zt(θ′′)dθdθ′dθ′′

+(I(t), 0)t

with corresponding tensors ω2 ∈ R2×2, ω3 ∈ R2×2×2 and
the dyadic product ⊗ . Moreover to gain a compact de-
scription the connection function Xo(θ) was introduced ad
hoc in Eq. (4) as Xo(θ) = 0 for −τ ≤ θ < 0, Xo(0) = I2
with the 2 × 2 identity matrix I2 [15, 16]. Consequently,
considering the functionals L[zt] and F [zt, t] and the con-
nection function Xo(θ) the original scalar problem is re-
formulated in the infinite-dimensional function zt and the
system obeys Eq. (4).

The subsequent mathematical treatment is structured
as follows. We first solve the linear eigenvalue problem in
(4), i.e. F = 0, and project the nonlinear dynamics onto
the corresponding (linear) eigenvectors. The augmented
system is constructed in such a way that a subset of the
eigenspectrum exhibits a vanishing real part and the com-
plementary subset has non-vanishing real parts. Hence
it is possible to split the dynamics into two parts, namely
the center and the stable part. To reduce the dimension of
the still infinite-dimensional system, we introduce a non-
autonomous center manifold approach and treat the ran-
dom input similarly to the nonlinear part.
In more detail, the linear eigenspectrum of A is defined by
the characteristic equation λ = −1 + exp(−λτ) with the
eigenvalues λ ∈ C. We find λ0 = 0 plus infinitely many
complex conjugate roots λn, n > 0 with Re(λn) < 0.
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The corresponding eigenbasis of A is called Φ(θ). Con-
sequently, the phase space splits into a center space U
spanned by vectors with the eigenbasis Φu(θ) correspond-
ing to λ0 and the stable space S with the corresponding
eigenbasis Φs(θ).
The adjunct eigenvalue problem for t → −t yields the
adjunct eigenbasis Ψ(θ) that is bi-orthonormal to Φ. To
define the metric in the Banach space, a specific bilinear
form (·, ·) [15,16] defines the equivalent of a scalar product
in a vector space. We find (Ψu,Φu) = I2 with the eigen-
basis Φu(θ) ∈ U of the adjunct problem. Accordingly,
the center and stable eigenbases are bio-orthogonal with
(Ψu,Φs) = 0. Projections onto the center space are given
by the projector operator P (·) ≡ Φu(Ψu, ·) [15, 16] which
reads for (1)

P (φ(Θ)) = (1 + τ)−1
(
φ(0) +

∫ 0

−τ
φ(s)ds

)
. (5)

Then one can decompose zt ∈ U × S into the center con-
tribution (u(t), ε)T = P (zt) ∈ U with the order parameter
u ∈ R and a stable contribution st(θ) = (I − P )(zt) ∈ S,
i.e. zt(θ) = (u(t), ε)T + st(θ). Consequently the corre-
sponding projected dynamics in U and the complementary
space S are given by

du(t)

dt
= (1 + τ)−1F [u+ st, ε, t] ,

dε(t)

dt
= 0(6)

d

dt
st(θ) = A(st) +

(
Xo −

1

1 + τ

)
F [u+ st, ε, t] .(7)

This formulation (6), (7) of the original problem (1) is
still infinite dimensional, but allows for a reduction in di-
mension by center manifold theory, where the dynamics
of the stable projection modes are expressed as functions
of the center projection modes, i.e. st(θ, t) = st(u, ε, θ, t).
In autonomous delayed systems the existence of this rela-
tion has been proven mathematically [17]. Motivated by
the existence of stochastic center manifolds in non-delayed
systems [19], the present work proposes the following ap-
proximation scheme. The small random input is assumed
to add a small perturbation to the center manifold ob-
tained for the deterministic (i.e. κ = 0) delayed system,
which is independent of the center manifold. Specifically,
we assume that the stochastic variation of the center man-
ifold just depends on the delays but is independent of the
order parameter u and the control parameter, i.e.

st(θ) = hdet(u, ε, θ) + ht(θ, t) (8)

with the deterministic center manifold contribution hdet
and the stochastic perturbation ht. In addition, we assume
that the stable (nonlinear) projection modes st fully evolve
in the stable (linear) subspace, i.e. P (st) = 0. For later
computations, it is useful to implement this assumption
by P (hdet) = 0 and ht = (I − P )Ht with an auxilliary
function Ht = H(t + θ) ∈ CB . This auxilliary function
will be defined later.

We first compute the deterministic center manifold hdet
according to standard techniques [15,16], i.e. st = hdet. It
is important to note that, by virtue of the extension of (1)
to the augmented system in Eq. (3), the relation st = hdet
is exact [17] for all values of the control parameter ε in
the absence of noise, i.e. κ = 0. Inserting Eqs. (6), (7)
into (8) yields the partial differential equation for hdet in
u and θ

1

1 + τ

∂hdet
∂u

F [u+ hdet] =

A(hdet) +

(
Xo −

1

1 + τ

)
F [u+ hdet] .

To solve this equation, typically one considers the ac-
tivity being close to the resting state u = 0 and
chooses the bi-polynomial ansatz hdet = h2(u2, uε, ε2, θ)+
h3(u3, u2ε, uε2, ε3, θ) + · · · . Assuming that the order pa-
rameter has the same order of magnitude as the control
parameter, we introduce the scaling u ∼ O(ε) which de-
fines the order of the terms to hn ∼ O(εn). Consequently,
for small order parameters u it is sufficient to compute
just a few lower order terms. Applying the aforementioned
necessary condition P (hn) = 0 up to order O(ε4), the de-
terministic center manifold reads

hdet ≈ (aε+ b3ε
2 + b4ε

3)u+ (d3 + d4ε)u
3

with functions a = a(θ, τ), bi = bi(θ, τ), di = di(θ, τ). In
addition a, bi, di → 0 for τ → 0, i.e. the center manifold
vanishes for vanishing delay. This reflects the fact that
there is no time-scale separation in the dynamics of the
non-delayed system.

Now let us consider the non-autonmous center manifold
perturbation ht. Assuming that the stochastic perturba-
tions are small compared to u and ε, i.e. ht, κ ∼ O(ε2),
and inserting Eqs. (6), (7) into (8) utilizing dst/dt =
(∂hdet/∂u)(du/dt) + ∂ht/∂t, the dynamics of the stochas-
tic center manifold contribution ht separates from the au-
tonomous dynamics at lowest order O(ε2) and obeys

∂ht
∂t

= A(ht) + κ

(
Xo −

1

1 + τ

)
ξ(t) . (9)

Then recalling the ansatz ht = (I− P )H(t+ θ) yields the
linear delay equation

dH(t+ θ)/dt = L[H] + κξ(t) . (10)

with L[H] = −H(t) + H(t − τ). It is interesting to men-
tion that (10) is valid for all delayed systems exhibiting a
one-dimensional normal form (proof not shown). Hence,
the stochastic perturbation of the center manifold ht is
independent of the nonlinear interactions in the system.
The solution of Eq. (10) reads

H(t) = κ

∫ t

0

H0(t− s)dW (s) , t ≥ 0 ,

H0(t) =
1

2π(1 + τ)
+

∞∑
n=1

exp(λnt)

1 + τ exp(−λnτ)
+ c.c.(11)

p-3



A. Hutt et al.

for initial conditions H(θ) = 0, − τ ≤ θ ≤ 0. Here
W (t) is the Wiener process corresponding to the random
input ξ(t) and H0(t) is the characteristic function of (10)
and λn, Re(λn) < 0 are the characteristic roots of the
linear problem. Essentially, inserting H(t) into ht = (I −
P )H(t + τ) utilizing the definition of the projector P in
Eq. (5) gives explicitely the non-autonomous perturbation
of the center manifold

ht(θ, t) = κ

∫ t+θ

0

H0(t+ θ − s)dW (s)

− κ

1 + τ

∫ t

0

H0(t− s)dW (s)

− κ

1 + τ

∫ 0

−τ

∫ t+s

0

H0(t+ s− r)dW (r)ds. (12)

With st = hdet + ht Eq. (6) becomes the final order pa-
rameter equation

du(t)

dt
=

κ

1 + τ
ξ(t) +A0Z(t) +B0Z

3(t)

+(A1 +B1Z(t) + CZ2(t))u+ (A3 +B3Z
2(t))u3

+A5u
5 +A7u

7 +A9u
9, (13)

where Z(t) = ht(t,−τ) and An(ε, τ), Bn(ε, τ), C(ε, τ)
are constants. We observe that vanishing noise κ = 0 sets
Z(t) = 0 and the stable dynamics obeys the determinis-
tic center manifold with h = hdet. Additional numerical
simulations of the original and the reconstructed solution
in the absence of noise have shown a perfect agreement of
x(t) and u(t) (result not shown). This finding, that the
deterministic center manifold does not affect the dynam-
ics of the original system, is in accordance with a previous
study [16].
According to (11) and (12), the center manifold perturba-
tion Z evolves on infinite many time scales and represents
a coloured-noise process. Equation (13) reveals that the
nonlinear delayed system responds to the additive random
process ξ(t) by generating coloured noise Z(t) that modi-
fies the original additive input and renders the system pa-
rameters stochastic, i.e. introduces multiplicative noise.
This multiplicative noise is well-known to produce noise-
induced transitions and we understand immediately the
shift observed in Fig. 1. For clarification, the multiplica-
tive noise originates from the stochasticity of the stable
modes st which couples into the order parameter dynam-
ics. We point out that this novel mechanism is generic in
the sense that it occurs in all delayed systems subjected
to additive noise which are close to an non-oscillatory in-
stability. Moreover, the specific effect of additive noise
on the system depends strongly on the nonlinear order of
the system. For instance, in delayed systems involving a
quadratic nonlinearity on the center manifold the additive
noise induces an additional constant [20] and the center
manifold in the absence of noise affects the deterministic
dynamics as shown in a previous study [18].

To evaluate the proposed reduction scheme, recall the
split of zt(θ) into a center manifold and a stable man-
ifold contribution. Applying the center manifold reduc-
tion scheme, for θ = 0 this split reads zt(θ = 0) =
u(t)+hdet(u, ε, 0)+ht(t, 0) = x(t) where the last equation
results from the general definition of zt. This relation gives
the exact rule of reconstruction of the original process x(t)
by u(t) and the corresponding center manifold. Now a re-
duced description x(t) ≈ u(t), where u obeys Eq. (13), is
valid if h(t, 0) = hdet(u, ε, 0)+ht(t, 0)� u(t), i.e. the non-
delayed order parameter equation (13) approximates well
the original systems dynamics of Eq. (1). The variance of
the stable manifold 〈h2(t, 0)〉, i.e. the reconstruction error
made by the reduction of x to u, reads

〈h2(t, 0)〉 = 〈h2det(0)〉+ aκ2τ3/(1 + τ)4 + κ2R(τ, 1/λn)

with a pre-factor a and the remaining termR(τ, 1/λn)→ 0
for τ → 0. Here 〈·〉 denotes the ensemble average. Since
〈h2det(0)〉 → 0 for τ → 0, the reconstruction of x is perfect
for vanishing delay or noise. For small but non-vanishing
delay or noise, the original delayed dynamics is still well-
approximated by the order parameter equation (13).

Similar to previous studies on the deterministic Hopf

Fig. 2: Comparison of original and reconstructed stochastic
paths. The original trajecory x(t) (red) has been computed
by numerical integration of Eq. (1) and the reconstructed tra-
jectory u(t) (black) obeys Eq. (13). The inset shows the full-
length trajectories while the large panel presents a focus on a
small time interval. Parameters are ε = 0.2, τ = 0.5, κ = 0.02
and dt = 0.0125, other parameters are taken from Fig. 1.

bifurcation [16, 18], Fig. 2 compares the original and re-
constructed solution of Eq. (1) and (13) by plotting a sim-
ulated single path of x(t) and u(t). It reveals a very good
fit of x(t) and u(t) which affirms the validity of the pro-
posed reduction scheme.

To gain even deeper insight into the reduced dynamics
(13), Fig. 3 compares the numerically estimated station-
ary probability density functions (PDF) of the original
delayed process (1) and the non-delayed order parame-
ter process (13) for various noise strengths κ and delays
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Fig. 3: The order parameter u reconstructs well the original
amplitude x in the stationary state near the bifurcation (ε =
0.3). The PDFs Ps(u) and Ps(x) are computed from numerical
solutions of Eq. (13) (solid) and (1) (dotted), respectively, for
(a) τ = 0.5, (b) τ = 1.0. Noise strengths are κ = 0.005 (green),
κ = 0.01 (red) and κ = 0.015 (black). In (a) the PDF maxima
are linked (dashed line) to show the shift to lower amplitudes
as κ increases. The numerical scheme is identical to the scheme
used in Fig. 1.

τ . The corresponding PDFs show very good accordance
for τ = 0.5 (Fig. 3(a)), whereas the larger delay τ = 1.0
shown in Fig. 3(b) yields a larger but still reasonable re-
construction error. This result confirms quantitatively the
validity of the employed center manifold reduction scheme
for small delays.
Moreover, we observe that the magnitude of the maxima
of the PDFs decrease while increasing the noise strength
κ, cf. dashed line in Fig. 3(a). Figure 4 explores this shift
in more detail by plotting the location of maxima of the
PDFs for various control parameters and reveals a noise-
induced shift to larger values of ε (solid lines and symbols).
This finding affirms further the stabilization effect of the
additive random process shown in Fig. 1 in the presence
of delays.
To quantify the shift of the maxima analytically, we intro-

duce a new random replacement process Z0(t) ≈ Z(t) that
shares the first two statistical moments with Z(t) for t→
∞, i.e. 〈Z0(t)〉 = 0, 〈Z2

0 (t)〉 = σ2 with the variance σ2 =
〈h2t (t,−τ)〉. This variance is small for small delays and
noise strengths (proof not shown). The advantage of intro-
ducing this approximative process is the fact that Z(t) is
rather complex involving many time scales and Z0 allows
for simpler analytical treatment compared to the origi-
nal process. We assume that Z0(t) obeys the Ornstein-
Uhlenbeck process dZ0 = −(Z0/σ

2)dt + dW0(t) with the
Wiener process W0(t), 〈dW0(t)〉 = 0, 〈dW0(t)dW0(t′)〉 =
2δ(t − t′)dtdt′. By virtue of the small values of σ2, we
explore the time scale separation between u and Z0 and
apply an adiabatic elimination scheme [21] to Eq. (13).
This allows to derive the Fokker-Planck equation for the

Fig. 4: The location of the maxima of the stationary probabil-
ity Ps(u) is shifted to larger values in the presence of delay. The
locations are estimated numerically from the probility density
gained by numerical simulations of the original delay equation
(1) (circles and diamonds) and the derived non-delayed equa-
tion (13) (solid lines). For comparison, the dashed lines denote
the analytical maxima xn gained from Eq. (14).

probability density P (u, t) of the order parameter u(t) to

∂P (u, t)

∂t
= − ∂

∂u

(
(A1 +A1,shift)u+ (A3 +A3,shift)u

3

+A5u
5 +A7u

7 +A9u
9
)
P (u, t) +D

∂2

∂u2
P (u, t) (14)

with A1,shift = Cσ2, A3,shift = B3σ
2, C and B3 taken

from Eq. (13) and D = κ2/(1 + τ)2. We observe a
noise-dependent additive constant in the linear and cubic
terms, and hence a shift of the stationary state of the
system by A1,shift. In addition C = C(ε, τ) → 0 for
τ → 0, i.e. the noise-induced effect vanishes for τ = 0.
Since C < 0, it is A1,shift < 0 and the effective stability
threshold is shifted to larger values of u. It is easy to
find analytically the stationary solution Ps(u) of (14)
and Fig. 4(dashed lines) shows the locations xn of the
local maxima of Ps(u). As in the numerical results, the
delay induces a shift of the probability density to larger
magnitudes. Figure 4 also reveals that the delay-induced
shift of the original system (symbols) is larger than the
shifts found analytically (lines) for larger ε, i.e. the
analytical results underestimate the delay-induced shift.

In summary, the work discovers a delay-induced shift
of stability in delayed systems driven by additive uncor-
related noise. To explain this phenomenon, we introduce
an analytical approach to derive a stochastic non-delayed
order parameter equation for a scalar SDDE. This new
equation involves both white and coloured noises. For
the delayed pitchfork system, a comparison of probabil-
ity densities reveal close numerical agreement of the non-
delayed order parameter equation and the original system.
A brief analytical discussion of the probability density of
the non-delayed order parameter dynamics affirms the re-
sults. Importantly both delay and additive noise affects
the presence of a stationary solution at the origin close to
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an instability even though this instability is not caused by
the delay.
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