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aAthena Project-Team, Inria, 2004 Route des Lucioles, BP93, 06902 Sophia-Antipolis Cedex, France.

Abstract

In diffusion MRI, the reconstruction of the full Ensemble Averagepagator (EAP) provides new insights in the
diffusion process and the underlying microstructure. The ioaction of the signal in the whole Q-space is still
extremely challenging however. It requires very long asitigin protocols, and robust reconstruction to cope with th
very low SNR at largé-values. Several reconstruction methods were proposedtigcamong which the Spherical
Polar Fourier (SPF) expansion, a promising basis for sige@bnstruction. Yet the reconstruction in SPF is still
subject to noise and discontinuity of the reconstructianthis work, we present a method for the reconstruction of
the difusion attenuation in the whole Q-space, with a special facusontinuity and optimal regularization. We
derive a modified Spherical Polar Fourier (nSPF) basispodhmal and compatible with SPF, for the reconstruction
of a signal with continuity constraint. We also derive themssion of a Laplace regularization operator in the basis,
together with a method based on generalized cross valid&iiothe optimal choice of the parameter. Our method
results in a noticeable dimension reduction as comparddS®f. Tested on synthetic and real data, the reconstruction
with this method is more robust to noise and better preséditveisdirections and crossings.

Keywords: Diffusion MRI, Laplace Regularization, Q-space imaging,

1. Introduction 15 and the EAP

In diffusion MRI, the acquisition and reconstruction P(r) = f E(q)e 2™ d*q, (1)
of the signal attenuation on the 3D Q-space allows re- R
construction of the full probability of water molecules where the wave vectayis directly related to the applied
displacement, known as the ensemble average prepamagnetic field gradient pulse magnitude, direction, and
gator (EAP). The radial and angular information con- duration.
tained in the EAP opens a wide range of applications, The ditusion tensor (Basser et al., 1994) is the first
such as the definition of new biomarkers (Cluskey and model historically proposed to describe the EAP. De-
Ramsden, 2001; Piven et al., 1997), or the characteri- spite its wide acceptance into the research and clini-
zation of axon diameters in the brain white matter (As- cal communities, this model restricts theéfdsion EAP
saf et al., 20080zarslan et al., 2011). The reconstrue- Wwithin the family of Gaussian probability density func-
tion techniques are based on the acquisitionfifidion- =» tions, and is limited for the description of complex tis-
sensitized MR signals, with the acquisition sequenge sue structure. Since then, several models and meth-
described in (Stejskal and Tanner, 1965), in whichsa ods were described to extend the results d¢fudion
pair of diffusion encoding magnetic field gradient are tensor, such as high angular resolutioffuiion imag-
applied before and after the 18pulse. There exists a: ing (Tuch, 2004; Descoteaux et al., 2007; Aganj et al.,
Fourier relation between thefflision attenuatiofE(q) = 2010), or higher order tensor®tarslan and Mareci,
s 2003). Beyond these approaches, it is possible to recon-
s struct the model-free ffusion propagator, through Dif-
Emeil address: Enmanuel .Caruyer@inria.fr (Emmanuel 5 fusion Spectrum Imaging (DSI) (Wedeen et al., 2005),

Ca”:j’glr_), Diffusion Propagator Imaging (DPI) (Descoteaux et al.,
http://www-sop.inria.fr/members/Emmanuel.Caruyer « 2011), Difusion Order Transform(zarslan et al.,
(Emmanuel Caruyer) s 2011) or reconstruction in Spherical Polar Fourier (SPF)
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basis (Assemlal et al., 2009). DSl relies on the samplinng with less measurements than those required when repre-
of the difusion signal on a regular Cartesian grid, ard senting the signal in the classical SPF basis. Second, we
reconstructs the EAP through fast Fourier transform. propose a modified SPF (mSPF) basis, an orthonormal
The main limitation of DSI is its huge demand in ac. basis for this &ine subspace, compatible with the SPF
quisition time, and gradient pulse strength to fulfill the basis, but with reduced dimension and intrinsic continu-
Nyquist conditions (Callaghan, 1991; Tuch, 2004). DRI ity near the origin. Thus, the signal reconstructed in the
(Descoteaux et al., 2011) is a more natural methods4o mSPF will satisfy the important continuity constraint.
describe the diusion signal by a basis of functions sa= Third, a Laplace regularization functional in the mSPF
lution to the 3D Laplace equation by parts. Though this basis is proposed and minimized for a robust reconstruc-
method enables analytical reconstruction of th@uei « tion of the difusion signal. The method is analytical and
sion propagator, it cannot represent thudiion signal » ensures a fast implementation and reconstruction with
in the whole Q-space. Indeed, DPI represents the sig- continuity constraints. The Generalized Cross Valida-
nal using the 3D Laplace equation by part (Descoteatix tion method is applied to find the unique optimal regu-

etal., 2011) 0o larization weight between the regularity of the solution
e and the data fit. Finally, synthetic and real data are used
E(q-u) = Z [@ +d mq|} Yim(U), 2) to illustrate and validate the proposed method. In partic-
LA ’ ws  ular, better reconstruction results with exact continuity

s CONStraints are obtained and illustrated in crossing fibers
whereY, n, is the real, spherical harmonic function. The regions.
basis functions in DPI diverge both fgr— 0 andq —
0,

The SPF basis functions instead have a radial 60r60—
file with a Gaussian-like decay, which is similar to the ~ The Spherical Polar Fourier basis was recently intro-
commonly observed fusion signal. Besides, itis poss duced in (Assemlal et al., 2009) to reconstruct the dif-
sible to recover the EAP (Cheng et al., 2010b) and fhe fusion signal in the complete 3D space. The functions
Orientation Distribution Function (ODF) (Cheng et al,, B, of this basis are defined as the product of a radial
2010a) from the cd@cients of the signal reconstructed and an angular function
in the SPF basis. The SPF basis is thus a unique, model-
free approach for the reconstruction of the full siggal Bni.m(Q - U) = Ra(@)Yi,m(u). (3)
the estimation of EAP and its derived characteristics. It . . . o
has been introduced in (Assemlal et al., 2009) togeﬁ*lzerY"m IS _the real, symmetric spherical harmonlg Intro-

uz  duced in (Descoteaux et al., 2006), and the radial func-

with a regularization method to overcome ill-condition . .
of the estimation problem. s tion Ry is reported below for the record

2. Theory

However, the definition of the 3D functions of the 12 P P
SPF basis makes use of the parameterizagienR® = Ra(Q) = #nls (?)GXP(_Z«) (4)
g-u, whereq € R* andu € S2. Near the origin, the cor-
respondingl is not unique, and we show in Section 2.1 o = i n! 5)
that continuity problems near the origin may arise if this " 232T(n+3/2)

parameterization is not used with care. Adding to that,
the regularization method introduced in (Assemlal et ak., whereL}? is the generalized Laguerre polynomial, and
2009) is based on a pair of empirical angular and radial T" is the Gamma functiof'(2) = fow t#te"ldt. We use
low-pass filters. This regularization method fully relies Q. to denote the linear space of functions spanned by
on the choice of the basis of functions. Besides, its im- the truncated basiB, mn < N,I < L,|m < I}. The
plementation requires to tune two separate regulariza- choice of the scale factar can be related to the mean
tion weights, which is impractical. o diffusivity of the measured data. Several strategies were
In this work, we propose original andheient so- 2 proposed in Assemlal et al. (2009), here and throughout
lutions to solve all these important problems. First, the experiments, we retain
we show that continuous functions reconstructed in the 1
classical SPF basis lie in affime subspace which has (=5, (6)
a significantly reduced dimension. This means that the 87D
signal difusion could be represented in this subspaee wherer is the difusion time, and is the mean diu-
with less coéicients, leading to an estimation process sivity.
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The SPF basis is orthonormal for the dot product 7

(o= [ @@,

(7) 172

173

This linear constraint can be imposed while estimating
the codficients by constrained least squares estimation.
Alternatively, we will derive a new basis of functions

to span the subspace of continuous functions. This ap-

The construction of this basis was motivated by the need proach greatly simplifies the Laplace regularization for-

for a complete orthonormal basis of antipodally sym-
metric and real functions. Besides, the radial profgsiz

have a quasi-Gaussian decay, so that even a low radial

mulation and implementation, as we show in the next
section.
In addition to this continuity constraint, we empha-

truncation order leads to an accurate reconstruction.andsize that the dfusion attenuation signal is defined as

extrapolation beyond the sampling domain of the dif-
fusion weighted attenuatioB(q). reviewFrom the re-

construction of the signal in this basis, we can estimate

the EAP following Cheng et al. (2010b) and the ODF
following Cheng et al. (2010a). 180
However, a closer look at the functioi,; ,, near **
the origin reveals rapid oscillations and a discontinuity.
Moreover, by definition the value of the attenuatiois *
equal to 1 whem = 0, but there is nothing in the SPE*
basis to impose this. In this work, we show that the stib-
set of functions verifying these properties of continutty
and imposed value at the origin is afifiee subspace®
of Qn. We propose mSPF, an orthonormal basis fér

this subspace, and we give for convenience the relatibn

E(q) = S(q)/S(0), and therefore should verify

f(0)=1 9)
The set of continuous functions &y verifying Eq. 9
is the solution of aninhomogeneous linear equation, and
therefore is anfine subspace @by . This &fine space
is fully characterized by an underlying linear subspace,
and an origin. Itis underlain by , the kernel of the
associated homogeneous equati¢d) = 0. As for the
origin of the dfine subspace, we can choose any solu-
tion of Eq. 9. For the sake of simplicity, we choose a
simple Gaussian as the origin.

To sum up, any functiof € Q. verifying the conti-

between this modified SPF (mSPF) basis and the SPFNUity property, together with the property0) = 1 can

basisB,m introduced in Assemlal et al. (2009). 101
We also derive the Laplacian regularization func-

tional expression in the mSPF basis, for a robust recon-

struction of the ditusion signal. Indeed, the dimension
of the basis grows rapidly with the angular and radial
orders, and diusion weighted images have a very low
SNR. For the reconstruction of a smooth function, the

be expressed as

f(a) = exp( ”gg ) (10)

Z Xn1.mCn.m(Q),

n,l,m

where{C,;m} is a basis onNL, the subspace of con-
tinuous functionsf in Qy L verlfylng f(0) = 0. In the

Laplacian operator is a commonly proposed approach remaining of this section, we give a construction for the

for regularization (Descoteaux et al., 2007). We derive
the calculation of the Laplacian operator in the mSR¥F

orthogonal basifCy | m}.
We first construct a basis of radial functiojfs,}, ex-

basis. The method is analytical, which ensures a fast pressed a&n(d) = yn0?/¢Pn(0?/{) expg?/2Z). This

implementation and reconstruction. 108
In this section, we use infierently a notation withass
three indices for the bases elements, sucBag, or 2o
a notation with a simple index convenient for matrix
notation. The link between both indexing systems is

given by the functiong(i), I(i) andm(i).

2.1. Continuity in Qn 201
Theorem 1. Afunction f = | m an).mBn,m of the SPF
basisis continuousif and only if

VI >0,vim <1, Z an1mR(0) = 0. (8)

202
203

204

The proof of this theorem is detailed in Appendix A
The linear constraint in Eq. 8 imposes that the poly-
nomial part offym = X, @8, .mRn has no constant term.

3

verifiesFn(0) = 0; the polynomial$?, and the normal-
ization constani,, are to determine, provided that the
following orthogonality property is fulfilled

(Fn, Fp)re = jc; Fa(@)Fp(a)0’dg = 6np. (11)
The substitutionu = ¢?/¢ in Eq. 11 gives

o0 3/2
| o PP e = b (12

The generalized Laguerre polynomial? suits this or-
thogonality property. Finally the modified radial basis
functions are

|_5/2 q2 ~oF /2 13
Fa(@) = xn— ; ; e, (13)
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and the normalization constant 2«2 a= Mx+a% where

3 .
2 o S0 (i) < n(j)
Xn =173 e (24) 2Kn(ig
gH2r(n+7/2) Mij = diipdmimiy - § X0 oy g

Kn(i
The difusion attenuatiorE(q) — exp(||ql|?/22) is re- 0 n(i) >n(j)+1
constructed through the functions
g w anda® = [Vdr/ko 0 0 ..]7, as expliqli2/22) =
q 2 VA koBoo,0(0).
Cnim(@) = Fa(lla)Yim| — |- (15) .5 M is the change-of-basis matrix from mSPF to SPF,
llal : .
s two orthonormal bases. Therefore, this matrix is orthog-
The family of functions{Cnjm, N = 0...N — 1, | = 2 onal: the orthogonal projection of any function@y,,
0..L m=—I. .1} is the modified SPF (MSPF) basig epresented by its céiecientsa in the SPF basis, onto
an orthonormal basis @13, . us  the subspac@y, has cofficientsx = MTa.

The codficientsx,m are estimated by minimizatiorzw0 2.3. Laplace regularization in the mSPF basis
of the squared error criteridy — Hx|[%, wherey is the . Iﬁ this section, we propose to introduce a regulariza-
vector of observationg, = E(qy) — exp(llal?/22) = i

: .22 tion term in the fitting procedure. We choose as a regu-
measured at wave vectogg. The observation matanS

has entrieti; = Coyitymi (GK)- s larization functional

This new space has a substantially reduced dimen- U(x) = f IAEx(q)1? d3q, a7
sion: dimQ@y.) = (N + 1) - L(L + 1)/2, whereas R3
dim(@Q,) = N - L(L + 1)/2. This dimension reducs. whereEx(q) = exp(-|laul2/22)+5; xiCi(q) is the recon-
tion comes from the two systems of linear constraipts structed signal. This continuous operator is rotational
of Eq. 8 (L(L + 1)/2 - 1 equations), and Eq. 9 (1 equa; invariant, and independent on the choice of a specific
tion). As an example, when the angular truncation order basis. Besides, the Laplace operator was already ap-
L = 4isused, the reconstruction@f, | requires 15less.; plied successfully for several applications ranging from
codficients, to represent the same signal. This simpli- natural image denoising (You and Kaveh, 2000; Chan
fies the implementation, reduces the demand in storageand Shen, 2005) to flusion MRI analysis (Descoteaux

capacity, and improves computationéi&ency. 2 etal., 2007; Koay et al., 2009; Descoteaux et al., 2010).
262 We minimize|ly — Hx||? + AU (x), where the observa-
22 Link with the SPF basis = tions arey, = E(qk) — exp(llgxl?/2¢) andH is the ob-

s Servation matrix. In this section, we write the Laplace

In this section we give the link between SPF and penalization as a quadratic form
mSPF bases. Thl; relationship is useful as SPF (A§- U(X) = (X = Xo)TA(X = Xo) + Uo. (18)
semlal et al., 2009) is a now a state-of-the-art method in _ . o
diffusion MRI. We can therefore reconstruct the ensem- Hence the penalized least squares has a unique mini-
ble average propagator (EAP) following Cheng et al. mMum A . L
(2010b), the orientation distribution function (ODF) fol- X=Xo+ (HH+1A)(y — HXo). (19)
lowing Cheng et al. (2010a), or the apparent fiber popy- |n what follows, we give explicit directions how to com-
lation dispersion following Assemlal et al. (2011). The pute the matrixA and the vectox.
SPF basis is built on Laguerre polynomiaf§® while ., When E,(q) — exp(-llqul?/2¢) is expressed in the
we usel_;:’/2 in this work. Using the recurrence relations mSPF basis with cdicientsx;,
between Laguerre polynomials detailed in (Abramowitz

2

and Stegun, 1970, p. 783), we have: U(x) = f [ZXiACi(Q) +Ae‘”qk2/24J &q (20)

R3 5
n
_ 3ng, (n+1)xn
Fn(@) = 2 zR(Q) - TRnH(Q)- (16) = Z Z X X; jlés ACi(q) - ACj(q) d3q

i

If the function f(q) = E(q) - exp(-lidl*/2) is ex- +2Z X f ACi(q) - AeTI/2 ¢3q

pressed in this basid(q) = > Xw.mCni.m(q), then the i R3

codficientsa, m of E in the SPF basis are obtained by +... (21)

4
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The constant term is discarded since it plays no rolexin
the minimization. Thus we have the quadratic form.af
Eqg. 18, where

297

298

n= [ac@-ac@da @2 =
R3 300
andxy = A~1v, with zz:
Vi = f ACi(q) - Ae™1P12 g (23) =
RS

305

The Laplace operatok can be written in spherical,

coordinates, with the Laplace-Beltrami operatgy 307

308
2/

(0PF1(@))Yim(u)

310

(24) 311

10
AChim(qu) = xn (@%

+F2]—(ZQ)AbYI,m(U))

Since the spherical harmonics are eigenfunctions of the

Laplace-Beltrami operator with eigenvalugl + 1), we
have

312
313

314

ACain(@u) = o F (@)+2 FFQQ) 10+ 1)Fo(q)

P )Ylm(u) e
(25) 316
As the spherical harmonics form an orthonormal bagis
for the canonical dot product af?, the entries of the,,
matrix A are

319

320
(26)

321

Ajj = 5|(i),|(j)5m(i),m(j)fO hi(@)h;(g) da,

322

where

323

JOYORS.
q Fn(,)). (27)

hi = xn) (qFr'{(i) +2F L) -

Similarly, the vectowr has entries

324

® 9 3q q
Vi 5|(|),05m(|),0f0 hi(g) (42 7 )exp( 2§)dq' ZZ
(28)
The computation of the integrals in Eq. B.1 and 28%is
analytical and needs no numerical integration. It is de-
scribed in details in Appendix B. .

330
331
3. Material and methods

332

333

3.1. Optimal regularization parameters -
We adopted the Generalized Cross Validation (GCY)

algorithm (Craven and Wahba, 1985) to find the regs-

larization weight? which guarantees the best balange

data fit. This algorithm, as well as the L-curve method
(Hansen, 2000), have already been applied successfully
for other applications in Q-ball &usion MRI (Koay

et al., 2009; Descoteaux et al., 2010, 2007). The GCV
method has the major advantage to be generalizable to
the situation where there is more than ohparameter

to optimize. It is the case in (Assemlal et al., 2009),
where there are two regularization matridésand L,
which act respectively as radial and angular low-pass
filters, with corresponding weights andA, .

The GCV method is based on a one-fold cross valida-
tion: amongK samples, we usk — 1 samples to fit the
model parameters, and predict tketh left-apart sam-
ple. The process is repeatédimes, and the mean pre-
diction error is the value we want to minimize. Fortu-
nately, the mean prediction error, called the GCV func-
tion, has a simple expression

lly = 9al®
GCV(y) = —————, 29
@Y = sy (29)
which makes this method venyfieient. The matrix

Si = H(H™H + 21A)"*HT is the smoother matrix, and
¥y, = Syy. With the GCV method, it is possible to
adapt the regularization parameters to the data. How-
ever, there is no analytical solution for the minimization
of the GCV function and for computationaffieiency,

we compute the optimal parameters once. This choice
is validated in the next section, and results show it is
indeed a good compromise.

3.2. Yynthetic and real data

We simulate dfusion weighted measurements with a
multi-compartment Gaussian model

P
E(0) = ) wpexp(-2r7q'Dpa),
p=1

(30)

whereP € 1,2, 3 is the number of compartments, is
the relative compartment size abg the corresponding
diffusion tensor. The éusion weighted signal is cor-
rupted by Rician noise, with controlled variance param-
etero. Using this difusion model locally, we created
a synthetic dtusion field simulating a sin-shaped and a
straight fiber, crossing each other at 90

The wave vectorsg for synthesis are arranged on 3
shells, with the strategy recently proposed in (Caruyer
et al., 2011a,b). In short, this method is a generaliza-
tion of the electrostatic repulsion, introduced in (Jones
et al., 1999) for single Q-shell experiment design, to the
multiple Q-shell case.

The experiments on real data were carried out on the

between the smoothness of the reconstruction, andsthepublicly available phantom (Poupon et al., 2008; Fillard

5



339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

et al., 2011) which served as the data for a tractography
contest, held at the DMFC MICCAI workshop, London
(2009). The ditusion signal was sampled on 3 Q-shells,
with b-values ranging from 650 to 2000 snm 2, and
64 directions per shell.

For the experiments, we compare th&wulion signal,

the ensemble average propagator (EAP) reconstructed

from the SPF co@cients by the method in (Chengetal.,
2010b), and the orientation distribution function (ODF)
reconstructed in constant solid angle, implementing the
technique in (Cheng et al., 2010a).

3.3. Exact and empirical continuity constraints

We presented in Section 2.1 a linear constraint to im-
pose the continuity of the reconstructed signal. An al-
ternate solution proposed in (Cheng et al., 2010b) is to
artificially addP virtual data pointgj, k=K + 1...P
close to zero, verifyinde(qx) = 1. AsP goes to infin-
ity, it is possible to show that the solution of this system
tends to the exact solution (see Golub and Van Loan,
1983, pp. 410-412). We study the convergence of this
empirical continuity approach. As a measure of djs-
continuity of the reconstructed sign&l about0, we
defined(E) the diference between extremal values of
the set{limq_o- E(qu),u € S?}. We also compare the,,
relative diterence between the solutiogc: of the least
squares problem with analytical constraint, and the gp-
lution cec(P) of the system with empirical constraing,
with P virtual measurements.

393
394
4. Resultsand discussion 395
396
397

4.1. Continuity constraint

398
We compare the solutioonc andcec(P), for a sin- zg
gle Gaussian distribution. To focus on the continuity
constraint, we do not impose any other kind of regular-
ization. The signal is corrupted by Rician noise, with
corresponding SNR: 25. An example of signal and its
reconstruction is reported on Fig. 1. 404
We evaluate the éierence of the signal reconstructed
with exact continuity constraint and with empirical cors
straint. We plot on Fig. 2 the relative squaret@lience o
between the cdicients estimated with a strict continus
ity constraint,&ac, and the cofficients estimated withus
an empirical continuity constrainfgc. The conver-ao
gence is pretty fast, and = 60 virtual measurements.
give good results. This confirms the intuition in (Cheng
et al., 2010b); however the minimum number of virtual
measurementB for an acceptable accuracy heavily de-

| A

L=4 -~

L=6 _

= L=8 -

& -

Nf L:10_

? -

L -

& -
80 100

Figure 2: Relative dierence between reconstruction with a strict
continuity constraint, and reconstruction with a loosetirwity con-
straint. Results on a synthetic Gaussiafiugion signal, fromnK =
150 measurements on 3 Q-shells, pRsirtual measurements at
g = 0, for various angular orderss of the SPF basis. Depending on
the radial order, the number of additional measurementsate®r an
accurate reconstruction may become huge, and really iriqatac

on Fig. 2. This makes this empirical solution imprac-
tical. Besides, discontinuity is not strictly imposed: as
experimented and reported on Fig. 3, the value(&)
remains unacceptably high while we impose the value
on P = 150 virtual measurements.

4.2. Laplaceregularization

Laplace regularization was implemented in the mSPF
basis, and we compare it with separate Laplace-
Beltrami and radial low-pass filter, proposed in (Assem-
laletal., 2009). The GCV function is significantly lower
for the optimal Laplace regularization (Table 1). This
result suggests that Laplace regularization is more suit-
able than separate Laplace-Beltrami and radial low-pass
filtering. Furthermore, the optimal, parameter does
not vary much from one ¢tiusion model to another. We
can therefore select a uniqug parameter for the regu-
larization of a whole volume.

The regularization also impacts on the extrapolation
capacity of the method. Hardware limitations often re-
strict the sampling to a bounded region in the Q-space.
Increasing the radial order of the mSPF basis will allow
better signal reconstruction within the sampled area of
the Q-space. It might however introduce undesirable os-
cillations outside this area, as reported on Fig. 4, where
the radial truncation order was setlib= 5. Adding
a regularization constraint greatly improves the extrap-
olation of the dffusion signal. Laplace regularization
performs slightly better in this task, though a more com-
plete study, involving real data and outside the scope of

pends on the angular order of the SPF basis, as repestedhis paper, should be carried out to further validate this.
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Figure 1: Ditusion signal corresponding to a single fiber oriented albleg4axis, reconstructed from 120 samples in the Q-space. Tinalsis
shown on thedy, gy)-plane, and the grey levels correspond to signal range @@nfwhite) to 1.0 (black)q values are understood in mt This
illustrates the discontinuity at the origin inherent to 8fF basis, and how the reconstruction in mSPF solves thigemo

1 fiber 2 fibers, 90 2 fibers, 60
(1%,2%) | (40-107,81-10° (32-107,1.2-10% (5.1-10855-109)
GCV| 57-101 34.101 48.101
/l?\ 16-101 1.7-101 24.101
GCVR 53.101 31-101 4.2.101

Table 1: Optimall parameters and corresponding GCV minimum, for varioush&fitt difusion models. The sampling consists in 20ffugiion
weighted measurements on 3 Q-shells, with a in@alue of 3000s mm 2. Radial and angular orders were set to 5 and 6, respectitstyow:
separate Laplace-Beltrami and radial low-pass filter shingt 2nd row: Laplace regularization.

Angular & radial Laplace
No regularization regularization regularization

Diffusion signal

181 |
90 — 0.8
0L 0.6 —

o’ __©° —

181 U 0773 — 070 _l0'2
-181 -90 O 90 1%1:0|_ 0. 0.
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Figure 4: Reconstruction and extrapolation of @iwdiion signal, for a Gaussianfilision model, from 120 measurements on 3 Q-shells. We plot the
reconstructed (solid lines) and ground truth (dashed)iregtial profiles of the signal on selected lines in the Q-spdatie maximung value of the
sampling scheme was set to 60rimthe hatched area represents the no-sample area. We caiimpaeeonstruction without regularization, with
separate Laplace-Beltrami and radial filter, and with Le@leegularization. Laplace regularization performs bettesmoothing radial profiles,
and we avoid oscillations outside the sampling area.
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Figure 5: Reconstruction of aftlision propagator field, from 120 measurements on 3 shells tavalue was 3000smm2). We compare the
diffusion EAP profile (top rowP(rou), for ro = 15um, and the dtusion ODFy/(u) (bottom row). Fiber crossing are better resolved with bapl
regularization, and isotropic regions are smoother.
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Figure 3: Discontinuity, measured about the origin, of atlsgtic
Gaussian dfusion signal, reconstructed froki measurements on 3
Q-shells, plusP virtual measurements & = 0. The discontinuity 45°
remains very high, even for a large number of additionatuairmea-

surementsi = 150). 160

461

We also compare the reconstruction with both regl-
larization constraints on our synthetidfdision field in
Fig. 5. Laplace regularization performs better in cross-
ing fiber regions, and the results show better directiogal
coherence. Besides, in isotropic regions, the recon-
structed ODFs have a smoother profile than with sep-
arate Laplace-Beltrami and radial filtering.

Similar results are obtained on the real data experi-
ment, depicted on Fig. 6. We have overlaid the ground
truth fiber orientations, as provided by Fillard et al.
(2011). The reconstruction results with optimal Laplace
regularization show slighly sharper EAP and ODF pro-
files. We acknowledge that the reconstruction of this
dataset was very challenging, due to the low anisotropy
of the signal. o

468
469
5. Conclusions

470

471

We have proposed a novel orthonormal basis for the
reconstruction of the liusion signal in the complete 3D

Q-space, based on Gaussian-Laguerre functions. This
new method enables the reconstruction of a continuous

signal, with known value at the origin. This mathemat-
ical constraint results in a dimension reduction with f&-

We also derive a regularization functional based on
the Laplace operator, together with its analytical expres-
sion in the mSPF basis. This is shown to be mathe-
matically and practically better than separate Laplace-
Beltrami and radial low-pass filtering. The experiments
on simulations and real data show good results, for
the reconstruction and extrapolation of the radial pro-
file. The angular profile reconstruction is more robust to
noise, and better detection of fiber crossing is reported.

Appendix A. Necessary and sufficient condition for
the continuity

In this appendix, we give a proof of Theorem 1, rela-
tive to the continuity of a functiori € Qy, expressed
as a sum of SPF functions.

Appendix A.1. Necessary condition

A necessary condition for the continuity of the func-
tion f is that the restriction of to any line inR® must
be continuous about 0. Fare S? andq € R, we note
fu(a) = f(qu) the restriction off to the line of direction
u.

qILrTOL fu(@) = fu(0) = £(0) (A.1)

= D antnRa(0)Yim(u) = £(0)

nl.m

N
= Z[Z an,l,mRn(O))Yl,m(u) = f(0). (A.3)
I,m \n=0

(A.2)

Eq. A.3 must hold for any € S2. The left hand part is
written as a sum of spherical harmonic functions, while
the right hand part does not dependwn

The only constant function in the Spherical Harmon-
ics basis isYpo. Hence all the spherical harmonic coef-
ficients in Eq. A.3 must be zero, except fog m = 0.

N
vl >0,vms. t.qm <, Z anmR(0)=0 (A.4)
n=0

Appendix A.2. Sufficient condition

spect to the SPF basis, and a better reconstructionsof Now we show that if the necessary condition in

the difusion signal at the same sampling rate. This
also greatly simplifies the reconstruction method, ard

Eqg. A.4 is met, then the functiohis continuous about
0. We can writef as a finite sum of function§ ,, =

reduces the associated computational cost as the centi-Y,, an;mBnim. If we prove the continuity of, ,, for any

nuity constraint is naturally imposed. The mSPF basis
is presented with its linear relation to the SPF basis for
convenience, so that the methods of SPF imaging.di-
rectly transpose to mSPF.

480

9

0 < | < Landany-lI < m < I, then by linearity we
prove the continuity off.

The continuity offyg is direct, as the Gauss-Laguerre
functions are continuous andg is constant. Next, we



Angular and Radial ||Laplace regularization
Low-pass filters

\

Figure 6: Difusion ODF and EAP profiles reconstructed from th&udion MRI data of the fiber cup. Zooms on crossing regions ABRBuzde
displayed. Within each block: EAP profil(rou), for ro = 17um (top row) and diusion ODF reconstructed in constant solid angle) (bottom
row). The left column corresponds to a reconstruction wéthesate angular and radial low-pass filters, while the ighimn is the reconstruction
with Laplace regularization. The EAP profiles and ODF retmiesed with Laplace regularization are somehow sharperdasing regions.
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501

consider O< | < L and-I < m< |. By continuity ofR,, se
we can write¥e’ > 0, da > 0 such that

N
d<a=|> aunRi@|<€.  (A5)
n=0 503
This is true fore’ = €/||Y mll. Besides, 504
Y 505
Yu SZ, M <1 (AG) 506
(Y1, mlleo
hence
VueS2|g<a= (A7)
N
Y1 m(u)l] €
an|,mRn ’ < .
ZO R e TVl
(A.8)

507
This proves the continuity off ,, about0, and by linear-
ity the continuity off. 508
509
510
511

Appendix B. Laplaceregularization matrix

512
In this appendix, we derive the general expressioritof
514

the Laplace regularization matrix in the mSPF basis, _
The entries of the matriA are

Aij = 61().1j) Smii).m() fo hi(q)hj(q) dg, (B.1)

516
518
519
520
where o1
1) (10) + 1 °

hi = xn) (qFr,‘u,(i) +2F0, - MFn(i))- (B.2) ==
q 524

525

The functionh; can be written as

526
527

2 2
hi(q) :Xn(i)? exp(—%)en(i),.(i) (q?) (B.3) ZEE
whereG, = Yy gE"Xk is a polynomial. It is hard:;

to express the ccﬁ‘@cientsgﬂ" in a compact form. In-s;
stead of manually deriving these c¢heients, we com-sa
pute them using polynomial algebra facilities, providéd
in the SciPy library (Jones et al., 2001) in PythYn .
The coéﬁcientsgﬂ’I are algebraically computed on des
mand as it involves simple operation on polynomiads:

540

derivation and addition. The first cfiients are tabu—541
lated here for convenience.

542

543

k| Gy Gy Gy o
0[6-I1(1+2)[7(B-1(1+1)/2)| 1575(3-1(1 +1)/2) | s
I 7 | -445+1(+1)|-145125+ 45I(1 + 1)| s
2 1 145 78375-1(1 + 1)/2 ZZ
3 1 “12 o
4 0.5 550

11

Hence the integranil (g)h;(g) can be written as

Xn@Xn() exp(_ CI_Z)TL]_ ( Q_Z) (B.4)

¢ 4 4
WhereTi,,-(X) is the ponnomiaD(Gn(i)J(i)(X)Gn(j)m)(x).
The codficientsa,’ of T ; are simply obtained from the
codlicients OfGn(i)J(i) andGn(j)J(j). Therefore, the en-
tries of the regularization matrix are

. . d 0o 2\ K
C_ Xn@Xn() i,jf 2 (q )
Aij = § = d
J 7 k=oak . expEac/g) 7 q

_ Xn@®Xn()

2V

hi(@)hj(q) =

d
Z a)'T(k + 1/2). (B.5)
k=0
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