
HAL Id: hal-00712990
https://hal.inria.fr/hal-00712990

Submitted on 28 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Caju: a content distribution system for edge networks
Guthemberg Silvestre, Sébastien Monnet, Ruby Krishnaswamy, Pierre Sens

To cite this version:
Guthemberg Silvestre, Sébastien Monnet, Ruby Krishnaswamy, Pierre Sens. Caju: a content distri-
bution system for edge networks. [Research Report] RR-8006, INRIA. 2012. �hal-00712990�

https://hal.inria.fr/hal-00712990
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
80

06
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Caju: a content distribution system for edge networks

Guthemberg Silvestre — Sébastien Monnet — Ruby Krishnaswamy — Pierre Sens

N° 8006

Juin 2012

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Caju: a content distribution system for edge networks

Guthemberg Silvestre∗ †, Sébastien Monnet∗ , Ruby Krishnaswamy† ,
Pierre Sens∗

Thème COM — Systèmes communicants
Équipe-Projet REGAL

Rapport de recherche n° 8006 — Juin 2012 — 13 pages

Abstract: More and more, users store their data in the cloud. While the content is
then retrieved, the retrieval has to respect quality of service (QoS) constraints. In order
to reduce transfer latency, data is replicated. The idea is make data close to users and
to take advantage of providers home storage. However to minimize the cost of their
platform, cloud providers need to limit the amount of storage usage. This is still more
crucial for big contents.

This problem is hard, the distribution of the popularity among the stored pieces of
data is highly non-uniform: several pieces of data will never be accessed while others
may be retrieved thousands of times. Thus, the trade-off between storage usage and
QoS of data retrieval has to take into account the data popularity.

This report presents our architecture gathering several storage domains composed
of small-sized datacenters and edge devices; and it shows the importance of adapting
the replication degree to data popularity.

Our simulations, using realistic workloads, show that a simple cache mechanism
provides a eight-fold decrease in the number of SLA violations, requires up to 10 times
less of storage capacity for replicas, and reduces aggregate bandwidth and number of
flows by half.

Key-words: Replication, online services, SLA, popularity growth.

∗ LIP6/UPMC/CNRS/INRIA - 4 place Jussieu - 75005 Paris - France
† Orange Labs - 38-40, rue du Général Leclerc - 92130 Issy-les-Moulineaux - France

Caju: un système de distribution de contenu pour les
bordures de réseaux

Résumé : Les données des utilisateurs sont de plus en plus externalisées, stockées
dans des clouds. Lors de la récupération des données, une certaine qualité de service
doit être respectée. Afin de réduire la latence d’accès, les données sont répliquées.
L’idée est de rapprocher les données des utilisateurs, mais également, de tirer avantage
des systèmes de stockage du fournisseur chez l’utilisateur (les “boxes”). Cependant,
afin de minimiser le coût de leur plate-forme les opérateurs de cloud doivent limiter
la quantité de stockage utilisée. Ceci est d’autant plus important que les données sont
volumineuses.

Ce problème est dur, les données ne sont pas toutes également populaires, la popularité
est distribuée de manière très hétérogène: certaines données ne seront jamais accédées
alors que d’autres seront demandées des milliers de fois. Le bon compromis entre
l’utilisation de l’espace de stockage et la qualité de service doit donc prendre en compte
la popularité des données.

Ce rapport présente notre architecture qui rassemble plusieurs domaines de stockage
composés de data-center de petite taille et de périphériques de bordure; il montre
l’importance d’adapter le degré de réplication à la popularité des données.

Nos simulations, montrent qu’un simple mécanisme de cache arrive a diviser par 8
le nombre de violations de SLA (Service Level Agreement) tout en nécessitant 10 fois
moins de capacité de stockage.

Mots-clés : Replication, services en ligne, SLA, croissance de popularité.

Caju 3

1 Introduction
Content distribution over the internet has increased dramatically in the recent years.
A recent study published by Cisco System, Inc [2] revealed that the global internet
video traffic has surpassed peer-to-peer traffic since 2010, becoming the largest internet
traffic type. Cisco Systems also forecasts that internet video traffic will reach 62% of
the consumer internet traffic by 2015. The vast majority of this traffic consists of big
popular content transport, including high-quality videos.

Nowadays, a large amount of data is stored “in the network”. This allows users
to ease data sharing and retrieval, anywhere in the world. In the cloud, customers
and providers come with storage service guarantees, such as QoS metrics, drawn up
in Service Level Agreement (SLA) contracts. The provider is therefore responsible
to ensure data durability and availability. To enforce SLAs, providers rely on content
replication. Yet, they need to do this carefully, it can have a huge impact on storage
and bandwidth consumptions, even more for big contents. As data popularity is highly
non-uniform, it is important to avoid replicating unpopular data, that will never be
accessed, and also to ensure enough number of replicas for a popular content which
may be retrieved concurrently by hundreds of users.

This work introduces and evaluates Caju, a content distribution system for edge
networks. We analyse the performance of Caju as infrastructure for offering elastic
storage cloud to users. We assume that cloud users may be eager to watch high-quality
videos on-demand, on which strict SLA contracts have to be enforced. We study the
impact of adding strict data transfer rates, as the main QoS metric, for SLA contracts
in the cloud. We evaluate through simulations two replication schemes with synthetic
traces that fairly reproduces big data requests, including popularity growth.

This work makes two main contributions:

• We describe the design, model, and implementation of Caju, a content distribu-
tion system for edge networks, that provides simple replication mechanisms, and
allow us to manage edge resources properly.

• We evaluate the impact of big popular content on replication schemes in order to
provide elastic storage to cloud users with regard to strict SLA contracts.

The rest of this work is organized as follows. Section 2 covers some background
of the today’s content distribution systems and related work. Section 3 presents our
approach to tackle elastic storage provision on the edge of the network, and provides
an in-depth description of Caju, our system for CDNs at edge-networks. Section 4
analyses and explains our evaluation scenario and performance results. Finally, Section
5 shows future work and concludes the paper.

2 Background and State of the art
We first describe the current scenario of content distribution networks and the role of
edge networks in the content distribution. Then, we focus on replication systems used
by cloud and P2P storage systems.

RR n° 8006

4 G. Silvestre, S. Monnet, R. Krishnaswamy & P. Sens

Content distribution networks and edge networks: Content distributions networks
(CDN) are distributed systems that maintain content servers in many different loca-
tions in order to improve content dissemination efficiency, enhance QoS metrics for
end-users, and reduce network load. There are two types of servers in CDN compo-
sitions: origin and replica servers (so-called surrogate servers) [6]. We can therefore
differentiate CDNs on the basis of their surrogate servers placement, and classify them
into core and edge architectures. Core CDN architectures rely on the deployment of
private datacenters close to ISP points of presence (PoP), and it has been a successful
approach used by most of the big DCN infrastructure providers, including Akamai [5].
Since this approach uses private resources deployment, and are not designed for co-
operating with other CDNs, they require huge amounts of money for deployment and
maintenance. Yet as core architectures are connected to PoPs, they do not have con-
trol of traffic throughout ISP until the end-customer that undermines QoS guarantees
enforcement. Interoperable CDNs in edge network have emerged to tackle directly
these issues. Network service providers look forward to (i) take advantage of their
infrastructure, (ii) deploy their own datacenters, and (iii) deliver content as close as
possible to end-customer. The aim is to be able to offer differentiated QoS guarantees
to regular customers [8]. In this work, we focus on challenges risen by edge CDN
architectures. In particular, we have studied how to organize consumer-edge devices
to cooperate with small-sized datacenters, and how to enforce different classes of strict
SLA contracts at the edge of the network.
Replication schemes: Network providers can rely on replication schemes for enhanc-
ing disseminating content efficiency. Considering resource allocation strategies, we
are mostly interested in two categories of replication schemes: uniform, and adaptive
replication schemes. The Google File System (GFS) [4] and Ceph [9] adopt a prag-
matic approach where the number of replicas is uniform, that mean a fixed number of
replicas per stored object. This trivial and primitive approach has had a considerable
success in the industry, particularly for datacenters deployment, because it is easy to
adopt. However it relies on over-provision to provide resource allocation for popular
content, and despite of using commodity servers, it is inefficient and quite expensive.
Overall, these issues are addresses by adaptive replication schemes. For instance, the
use of non-collaborative LRU caching allows us to easily adapt the replication degree
of an content according to its demand. More sophisticated adaptive schemes, such as
EAD [7] and Skute [1] tackle content replication by using a cost-benefit approach over
decentralized and structured P2P systems. EAD creates and deletes replicas throughout
the query path with regards to object hit rate using an exponential moving average tech-
nique. Skute provides a replication management scheme that evaluates replicas price
and revenue across different geographic locations. Its evaluation technique relies on
equilibrium analysis of data placement. Despite being highly scalable and providing
an efficient framework for replication in distributed systems, these approaches result
in inaccurate transfer rate allocations, hence they are inappropriate for high-quality
content delivery.

INRIA

Caju 5

3 Approach

3.1 Caju’s design
We introduce a simple content distribution system, called Caju to study adaptive repli-
cation schemes at the edge of the network. Its design is depicted in Figure 1.

We assume that the service provider infrastructure is organized in federated storage
domains. A storage domain is a logical entity that aggregates a set of storage ele-
ments that are located close to each other, e.g. connected to a digital subscriber line
access multiplexer (DSLAM). The storage elements are partitioned in two different
classes: (i) operator-edge elements, furnished by storage operators, e.g. small-sized
datacenters, and (ii) consumer-edge entities provided by consumers, such as set-top
boxes. Consumer-edge devices contribute to storage and network resources according
to their availability and load. Operator-edge nodes run a distributed storage system for
local-area network over commodity servers. They provide cheap and high available
resources dedicated to the storage service.

On top of each Storage Domain runs a couple of services that deals with serving
clients’ requests, and performs appropriate object data placement and replication. The
main functional blocks are depicted in Figure 2. Remote storage clients contact the
coordinator when they need perform any request over an object (PUTs and GETS).
The coordinator maintains a catalogue of all clients and available resources, it is also
responsible for scheduling the requests. On behalf of the clients, it selects proper re-
sources for fulfilling their SLA contracts based on replications schemes.

Operator-edge device
(small-sized datacenter)

Consumer-edge device

Storage Domain

Figure 1: Storage Elements (SEs) and Storage Domains (SDs)

3.2 System model
Here, we formally describe the target storage systems’ main components, interactions,
and constraints. We also provide guidelines on our performance goals for the evaluation
Section 4.

RR n° 8006

6 G. Silvestre, S. Monnet, R. Krishnaswamy & P. Sens

Coordinator

Id Metadata

Monitoring
Data

Client

Application

Request
Resources
Location

Job Tasks

Cli SLA

Response

Storage
Element

Storage Domain

Storage Domain

Request

Tasks

Status

Tasks

Status

Tasks

Status

Tasks

Status

Replication
scheme

Placement and
Replica Scheme

Storage
Element

Storage
Element

Storage
Element

Figure 2: The main functional blocks.

3.2.1 Object store service and client satisfaction

Our target system provides a distributed object store service for clients. We denote the
set of all possible client’s objects as O. We consider that objects comprise a set of data
blocks of fixed size, KC , called chunks. So that, an object o ∈ O of size zo has zo

KC

chunks.
We consider thatM clients are able to do any number of requestsRM to the system.

There are three types of client request: get any object, put new objects it into the
system, and delete their own objects. The storage system provides a fourth system
request type in order to replicate an object. It also might perform deletions, a fifth
request type, for maintenance or control purposes.

We assume that clients are eager for quality of storage service, and their wills are
formally defined by SLA contracts. SLAs allow a client m to choose a suitable rate
of chunks per request λs and minimum acceptable percentage of successful requests
Ps. Assuming a period of request analysis T, we consider that a client m who did r′m
requests is satisfied with the store service if at least r′mxPs requests were accomplished
with λs rate. The object store service places and replicates objects throughout the
system with regard to the client satisfaction.

3.2.2 Storage at the edge of network providers

We consider a distributed storage system deployed at the edge of network providers,
that is organized in storage domains. We assume that there exists I storage domains. A
storage domain i, i ∈ {1, 2, . . . , I} has storage capacity of Si and throughput Ti. Each

INRIA

Caju 7

storage domain has a set Ji of J storage elements, j ∈ {1, 2, . . . , J}, partitioned in
two distinct classes: Co for operator-edge class, and Cc for consumer-edge class, where
|Cc| � |Co|. The storage capacity of storage element j is denoted by:

sij =

{
Do if j ∈ Co;
Dc if j ∈ Cc.

(1)

where Do and Dc are maximum storage capacity parameters. Hence,

Si =

J∑
j=1

sij i ∈ {1, 2, . . . , I} (2)

The storage element bandwidth capacity is denoted by:

bij =

{
Wo if j ∈ Co;
Wc if j ∈ Cc.

(3)

where Wo and Wc are maximum bandwidth capacity parameters. We assume that any
storage element has a full-duplex, symmetric connection links. Moreover, buij denotes
the instantaneous bandwidth consumption of storage element j of i. In a same storage
domain i, if j and j′ are two storage element from different classes, and there is not
active transfer between them, their respective buij do not interfere with each other. De-
spite that, we consider that network infrastructure imposes the following condition (4)
on the maximum throughput of a set of consumer-end storage elements of i:∑

j∈Cc

buij ≤Wl (4)

whereWl is a the maximum aggregated bandwidth consumption for a set of consumer-
edge devices that the network provider infrastructure permits. Considering inequality
(4), the maximum throughput of a storage domain i is denoted as follows:

Ti =
1

KC
(
∑
j

bij) ≤
1

Kc
(Wl + |Co|Wo) (5)

where KC is the chunk size parameter.

3.2.3 System interactions and performance goals

Each client m is connected, through its own consumer-edge storage element j, with
a single domain i, called home storage domain. Any m belongs to a SLA class. The
system might have one or many SLA classes, such that different levels of quality of
service might be provided. As described here above, SLA’s constraints allow clients to
choose a suitable rate of chunks per request λs and minimum acceptable percentage of
successful requests Ps, and that the client satisfaction depends on these parameters.

The system allows clients to do storage requests towards their own homes only.
However, all requests might be served by storage elements from any federated storage

RR n° 8006

8 G. Silvestre, S. Monnet, R. Krishnaswamy & P. Sens

domain, except for objects’ insertions, that must be served by client’s home storage
domain. For mapping and monitoring resources, and interactions in our storage system,
we assume that there exists logically centralized coordinator. The performance and
design issues of coordinator are beyond the scope of our current work.

We denote the set of all R possible requests by R. Requests are grouped in two
distinct manners: by requester or by type of request. In terms of requester, there are two
disjoint subsets: RM for client’s requests, and RS for own storage system’s requests.
When our system receives a request r that requires to move objects between any node
and storage element of i, it serves this request by creating data transfers from a source
to a destination. As described above, a requester might be either a client or the own
system. If r ∈ RS the transfer is always made between two storage elements. For all r
∈ R, let:

pj,r =

{
1, if j serves r;
0, otherwise. (6)

be a 0-1 variable indicating if the storage element j ∈ Ji provides resources to serve
request r. We assume there is a function Ai

j(t) that yields the current available rate of
chunks by j in t for serving a system incoming request. Therefore, if client m requests
rm over a storage domain i in time t, asking for a λsm rate, the storage system fulfil
m’s expectations if and only if:

Constraint 1:
∑
j∈Ji

pmj,r ·Ai
j(t) ≥ λs (7)

Therefore our system performance goals for our replication scheme are twofold.
Firstly, we aim to maximize the number of satisfied clients as a metric for evaluating
the quality of provided service. And secondly, we tend to minimizing the amount of
system’s bandwidth and storage usage, by adjusting properly the resource allocation
over storage elements in order to serveR.

4 Evaluation
Our evaluation has two main goals: (i) to evaluate the performance of Caju in provid-
ing storage for cloud users on top of edge devices, including operator-edge devices,
so-called small-sized datacenters; (ii) to compare and evaluate challenges of two repli-
cation schemes: uniform with fixed number of replicas and non-collaborative caching.

The evaluation scenario (Figure 3) includes 2002 (numbered) nodes arranged across
two Storage Domains (SD). There are one operator-edge device (nodes 1 and 1001) and
1000 consumer-edge devices per Storage Domain. Storage and network capacities dif-
fer accordingly to the class of device. Each operator-edge device has 10TB of storage
capacity and 4Gbps as network capacity. Consumer-edge devices contribute with a
smaller storage capacity per device, 100GB, and are equipped with a full-duplex ac-
cess link of 100Mbps per consumer device. We consider that consumer-edge devices
that belong to the same Storage Domain are geographically close to each other, and that

INRIA

Caju 9

a maximum bandwidth limit of 80% is enforced to aggregated traffic of consumer-edge
devices on edge network level.

The workload was carefully set-up to match to multimedia popular content distribu-
tion, as described in recent studies [3]. Tables 1 and 2 list default values for evaluation
scenario and workload parameters respectively. SLA contracts differ to each other by
transfer rate λs. Thus, we consider three SLA classes, in chunks per second: (a) 41, (b)
21, and (c) 14 chunks/s. To each customer is assigned a SLA that regards the following
distribution: 40% class (a), 40% to (b), and the remaining 20% to (c). We assume that a
SLA violation occurs when any transfer of a consumer does not observe her minimum
contracted transfer rate.

We use happiness or number of customers without SLA violations as a key perfor-
mance metric. This means Ps is equal to 100% in our model. Along with happiness.
We also focus on number of SLA violations, number of flows, storage and network
capacity usage.

The rest of this section is structured as follows. Subsection 4.1 describes the two
replication schemes evaluated in this work. Then, we show our performance analysis
for these two schemes in Subsection 4.2.

...

operator-edge
device

consumer-edge
devices

edge
network

100GB

10
0M

bp
s

4Gbps 10TB

Storage Domain 1

...

edge
network

100GB

10
0M

bp
s

4Gbps 10TB

1

2
3 4

2001

1002

2002

operator
network

1003
1004

1005

Storage Domain 2

Figure 3: Evaluation scenario

4.1 Evaluated replication schemes
We have evaluated the performance of two replication schemes with Caju:
Uniform replication scheme with fixed number of replicas This is the simplest ap-
proach to replicate objects into a system, that is broadly used in current datacenter
deployments. Given a fixed number of replicas n as a parameter, we simulate a chain
of object-replication of n stages just after the initial insertion (PUT). Requests are
scheduled in order to balance load throughout nodes. Each request might be served by
at most R nodes with equal load. The actual number of sources is r = min(n,R).
Non-collaborative LRU caching Simple adaptive replication schemes based on non-
collaborative caching, such as those that implements Least Recent Used algorithm,

RR n° 8006

10 G. Silvestre, S. Monnet, R. Krishnaswamy & P. Sens

Table 1: Default parameter values for the evaluation system
Evaluation scenario

Number of Storage Domains
(SD)

2

Number of Operator-edge de-
vices (OE) per SD

1

Number of Consumer-edge
device (CE) (with a home
client) per SD

1000

OE storage capacity 10TB
CE storage capacity 100GB
OE network capacity 4Gbps
CE network capacity 100Mbps
Aggregate bandwidth limit
for a set of CEs

80%

Chunk size 2MB
Number replicas 2
Maximum parallel flows per
request

5

Table 2: Default values for workload parameters
Workload

Requests per client uniform
Experiment duration 1h 12min
Object size shape=5
(follows Pareto) lower bound=70MB

upper bound=1GB
(mean 93MB)

Mean requests 50
per second
Requests division 5% for PUTs

95% for GETs
Popularity growth shape=2
(follows Weibull) scale ∝ duration
Content popularity shape=0.8
(Zipf-Mandelbrot) cutoff=# of objects
PUTs (Poisson) λ=PUTs/s

are straightforward and easy to implement and deploy. In our implementation, a new
replica is created whenever a client, connected to a operator-edge device, performs a
GET to any object. LRU replacement is enforced regarding a static percentage of the
local storage capacity γ for caching. Request scheduling is quite similar to that of

INRIA

Caju 11

uniform approach. However the number of available sources n changes according to
LRU algorithm.

4.2 Performing storage for cloud users at the edge of the network
We analyse the efficiency of delivering popular content with strict SLA definitions
using two replication schemes approaches: uniform replication with a fixed number of
replicas, and non-collaborative LRU caching.

First, we have evaluated the required number of replicas of uniform replication for
different request rates in order to prevent SLA violations. Figure 4 shows happiness
metric for mean request rates of 50, 100, 150, and 200 requests per second. We have
observed that uniform replication schemes require high replication degree in order to
cope with strict SLA definitions and popular content. At least 20 replicas are required
to prevent violations if the request rate is as high as 150 requests per second. For
the highest request rates, uniform replica is not suitable. When we simulated 200
requests per second, there were 799 violations. Despite having being widely used in
datacenters and storage clusters, uniform replication scheme relies on over-provision
in order to distribute popular content with strict SLA definitions, hence it is not fit for
edge network deployments.

To avoid over-provision, we have analysed the storage usage uniform replication
with a non-collaborative LRU caching. We simulate different LRU caching sizes
percentages: 1%, 5%, and 10% of the storage capacity. Figure 5 plots storage stor-
age usage and happiness metric for 200 requests per second. Even with the smallest
cache storage percentage of 1%, a non-collaborative LRU caching approach performs
much better than uniform replication. We observed 89 violations with 1% of non-
collaborative LRU caching that required a storage usage, 7.82TB, similar to uniform
scheme with 2 replicas, 8.92TB.

Happiness (over 2000 clients)

N
um

be
r

of
 R

ep
lic

as

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000

●

●

200req/s
150req/s
100req/s
50req/s

Figure 4: Happiness metric with uniform
replication scheme.

S
to

ra
ge

 U
sa

ge
 (

T
B

)

Happiness (200req/s throughout 2000 clients)

0 500 1000 1500 2000

0

10

20

30

40

50

60

r=2

r=4

r=6

r=8

r=10

r=12

r=14

r=16

r=18

r=20

caching(size=1%)

caching(size=5%)

caching(size=10%)

Figure 5: Storage usage for uniform and
caching replication schemes.

RR n° 8006

12 G. Silvestre, S. Monnet, R. Krishnaswamy & P. Sens

A
gg

. b
an

dw
id

th
(G

bp
s)

Time (min)

12 24 36 48 60 72

0
5

10
15
20
25
30
35
40
45
50
55

(a)fixed

Time (min)

12 24 36 48 60 72

0
5

10
15
20
25
30
35
40
45
50
55

(b)caching

N
um

be
r

of
 fl

ow
s(

x1
00

0)

Time (min)

12 24 36 48 60 72

0
40
80

120
160
200
240
280
320
360
400

(c)fixed

Time (min)

12 24 36 48 60 72

0
40
80

120
160
200
240
280
320
360
400

(d)caching

N
um

be
r

of
 v

io
la

tio
ns

Time (min)

0 12 24 36 48 60 72

0

50

100

150

200

250

300

350

400

Total=799

●

●

●

●

●

●

●

(e)fixed

Time (min)

0 12 24 36 48 60 72

0

50

100

150

200

250

300

350

400

Total=98

● ●● ●

●

(f)caching

Figure 6: Aggregate bandwidth (a,b), number of flows (c,d) andnumber of SLA viola-
tions (e,f) using fixed number of replicas and caching.

In order to gather more information about the advantages of using non-collaborative
caching for distributing popular content instead of uniform replication, we have evalu-
ated and plotted in Figure 6 the throughput, flows, and violations results sampled per
second. We selected results from LRU caching with local cache size of 1% of the node
storage capacity, and uniform replication with 20 replicas. By using a non-collaborative
LRU caching, we have seen that the number of flows and aggregate bandwidth was re-
duced by half. We have also verified that the number of violation slashed from 799 to
only 98.

5 Conclusions and perspectives
Online storage of big data becomes very popular. Storage providers need to find good
trade-offs between replication and storage usage. In this paper, we show that it is impor-
tant to take content popularity into account: using a fixed replication would lead either
to waste storage space or to increase the number of unsatisfied customers. We propose
and evaluate Caju, a content distribution system for edge networks. Caju provides the
ability to manage storage and network resources from both consumer and operators in
a collaborative manner. Our evaluations show that non-collaborative caching consis-
tently outperforms the fixed replication scheme. It provides a eight-fold decrease in the
number of SLA violations, requires up to 10 times less of storage capacity for replicas,
and reduces aggregate bandwidth and number of flows by half. We are working on the
design of new adaptive placement and replication algorithms. Our goal is to enhance
non-collaborative caching for popular content delivery.

INRIA

Caju 13

References
[1] Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. A self-organized,

fault-tolerant and scalable replication scheme for cloud storage. In ACM, edi-
tor, ACM Symposium on Cloud Computing 2010 (SOCC2010), Indianapolis, USA,
June 2010.

[2] Cisco visual networking index: Forecast and methodology, 2010-2015.
http://www.cisco.com, June 2011.

[3] Flavio Figueiredo, Fabrício Benevenuto, and Jussara M. Almeida. The tube over
time: characterizing popularity growth of youtube videos. In Proceedings of the
fourth ACM international conference on Web search and data mining, pages 745–
754, New York, NY, USA, 2011. ACM.

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In SOSP ’03: Proceedings of the 9th ACM symposium on Operating systems
principles, pages 29–43, New York, NY, USA, October 2003. ACM Press.

[5] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: a
platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.,
44(3):2–19, August 2010.

[6] Mukaddim Pathan and Rajkumar Buyya. A taxonomy of cdns. In Rajkumar Buyya,
Mukaddim Pathan, and Athena Vakali, editors, Content Delivery Networks, pages
33–77. Springer Berlin Heidelberg, 2008.

[7] Haiying Shen. An efficient and adaptive decentralized file replication algorithm in
p2p file sharing systems. Parallel and Distributed Systems, IEEE Transactions on,
21:827–840, June 2010.

[8] Enabling digital media content delivery: Emerging opportunities for network ser-
vice providers. http://www.velocix.com/formwp.php, March 2010.

[9] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Conference on Operating Systems Design and Implementation
(OSDI ’06), November 2006.

RR n° 8006

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Background and State of the art
	Approach
	Caju's design
	System model
	Object store service and client satisfaction
	Storage at the edge of network providers
	System interactions and performance goals

	Evaluation
	Evaluated replication schemes
	Performing storage for cloud users at the edge of the network

	Conclusions and perspectives

