
HAL Id: hal-00715252
https://hal.inria.fr/hal-00715252

Submitted on 6 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damaris: How to Efficiently Leverage Multicore
Parallelism to Achieve Scalable, Jitter-free I/O

Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Leigh Orf

To cite this version:
Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Leigh Orf. Damaris: How to Effi-
ciently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O. CLUSTER 2012 - IEEE
International Conference on Cluster Computing, Sep 2012, Beijing, China. �hal-00715252�

https://hal.inria.fr/hal-00715252
https://hal.archives-ouvertes.fr

Damaris: How to Efficiently Leverage
Multicore Parallelism to Achieve Scalable,

Jitter-free I/O

Matthieu Dorier∗, Gabriel Antoniu†, Franck Cappello‡, Marc Snir§, Leigh Orf¶
∗ ENS Cachan Brittany, IRISA, Rennes, France – matthieu.dorier@irisa.fr
† INRIA Rennes Bretagne-Atlantique, France – gabriel.antoniu@inria.fr

‡ INRIA Saclay - France, University of Illinois at Urbana-Champaign - IL, USA – fci@lri.fr
§ University of Illinois at Urbana-Champaign, IL, USA – snir@illinois.edu

¶ Central Michigan University, MI, USA – leigh.orf@cmich.edu

Abstract—With exascale computing on the horizon, the per-
formance variability of I/O systems represents a key challenge
in sustaining high performance. In many HPC applications,
I/O is concurrently performed by all processes, which leads
to I/O bursts. This causes resource contention and substantial
variability of I/O performance, which significantly impacts the
overall application performance and, most importantly, its pre-
dictability over time. In this paper, we propose a new approach
to I/O, called Damaris, which leverages dedicated I/O cores
on each multicore SMP node, along with the use of shared-
memory, to efficiently perform asynchronous data processing
and I/O in order to hide this variability. We evaluate our
approach on three different platforms including the Kraken
Cray XT5 supercomputer (ranked 11th in Top500), with the
CM1 atmospheric model, one of the target HPC applications
for the Blue Waters postpetascale supercomputer project. By
overlapping I/O with computation and by gathering data into
large files while avoiding synchronization between cores, our
solution brings several benefits: 1) it fully hides jitter as well
as all I/O-related costs, which makes simulation performance
predictable; 2) it increases the sustained write throughput by
a factor of 15 compared to standard approaches; 3) it allows
almost perfect scalability of the simulation up to over 9,000 cores,
as opposed to state-of-the-art approaches which fail to scale;
4) it enables a 600% compression ratio without any additional
overhead, leading to a major reduction of storage requirements.

Index Terms— Exascale Computing; Multicore Architectures;
I/O; Variability; Dedicated Cores

I. INTRODUCTION

As HPC resources approaching millions of cores become
a reality, science and engineering codes invariably must be
modified in order to efficiently exploit these resources. A
growing challenge in maintaining high performance is the
presence of high variability in the effective throughput of codes
performing input/output (I/O) operations. A typical behavior
in large-scale simulations consists of alternating computation
phases and write phases. As a rule of thumb, it is commonly
accepted that a simulation spends at most 5% of its run time
in I/O phases. Often due to explicit barriers or communication
phases, all processes perform I/O at the same time, causing
network and file system contention. It is commonly observed
that some processes exploit a large fraction of the available
bandwidth and quickly terminate their I/O, then remain idle
(typically from several seconds to several minutes) waiting
for slower processes to complete their I/O. This jitter can
even be observed at relatively small scale, where measured
I/O performance can vary by several orders of magnitude

between the fastest and slowest processes [30]. With multicore
architectures, this variability becomes even more of a problem,
as multiple cores in a same node compete for the network
access. This phenomenon is exacerbated by the fact that HPC
resources are typically used by many concurrent I/O intensive
jobs. This creates file system contention between jobs, further
increases the variability from one I/O phase to another and
leads to unpredictable overall run times.

While most studies address I/O performance in terms of
aggregate throughput and try to improve this metric by op-
timizing different levels of the I/O stack ranging from the
file system to the simulation-side I/O library, few efforts have
been made in addressing I/O jitter. Yet it has been shown [30]
that this variability is highly correlated with I/O performance,
and that statistical studies can greatly help addressing some
performance bottlenecks. The origins of this variability can
substantially differ due to multiple factors, including the
platform, the underlying file system, the network, and the I/O
pattern of the application. For instance, using a single metadata
server in the Lustre file system [11] causes a bottleneck
when following the file-per-process approach (described in
Section II-B), a problem that PVFS [5] or GPFS [27] are
less likely to exhibit. In contrast, byte-range locking in GPFS
or equivalent mechanisms in Lustre cause lock contentions
when writing to shared files. To address this issue, elaborate
algorithms at the MPI-IO level are used in order to maintain
a high throughput [25]. Yet these optimization usually rely on
all-to-all communications that impact their scalability.

The main contribution of this paper is precisely to propose
an approach that completely hides the I/O jitter exhibited by
most widely used approaches to I/O management in HPC
simulations: the file-per-process and collective-I/O approaches
(described in Section II). Based on the observation that a first
level of contention occurs when all cores of a multicore SMP
node try to access the network for intensive I/O at the same
time, our new approach to I/O, called Damaris (Dedicated
Adaptable Middleware for Application Resources Inline Steer-
ing), leverages a dedicated I/O core in each multicore SMP
node along with shared memory to perform asynchronous data
processing and I/O. These key design choices build on the
observation that it is often not efficient to use all cores for
computation, and that reserving one core for kernel tasks such
as I/O management may not only help reducing jitter but also
increase overall performance. Besides, most data written by

HPC applications are only eventually read by analysis tasks
but not used by the simulation itself. Thus write operations
can be delayed without consistency issues. Damaris takes into
account user-provided information related to the application
behavior and the intended use of the output in order to perform
“smart” I/O and data processing within SMP nodes. Some of
these ideas have been partially been explored in other efforts
parallel to ours: a detailed positioning of Damaris with respect
to related work is given in Section V-B.

We evaluate the Damaris approach with the CM1 ap-
plication (one of the target applications for the Blue Wa-
ters [22] project) on three platforms, each featuring a different
file system: Grid’5000 with PVFS, Kraken with Lustre and
BluePrint, a Power5 cluster with GPFS. We compare Damaris
to the classical file-per-process and collective-I/O approaches
that have shown to greatly limit the scalability of the CM1
application and motivated our investigations. By using shared
memory and by gathering data into large files while avoiding
synchronization between cores, our solution achieves its main
goal of fully hiding the I/O jitter. It thus allows the application
to have a predictable run time and a perfect scalability. It
also increases the I/O throughput by a factor of 6 compared
to standard approaches on Grid’5000, and by a factor of 15
on Kraken, hides all I/O-related costs and enables a 600%
compression ratio without any additional overhead. To the best
of our knowledge, no concurrent approach has achieved such
improvements.

This paper is organized as follows: Section II presents the
background and motivations of our study. Damaris is presented
in Section III together with an overview of its design and its
API. In Section IV we evaluate this approach with the CM1
atmospheric simulation running on 672 cores of the parapluie
cluster on Grid’5000, 1024 cores of a Power5 cluster and on
up to 9216 cores on Kraken. Section V presents a study of the
theoretical and practical benefits of the approach. This section
also explains the originality of our Damaris approach with
respect to related work. Finally, Section VI summarizes the
contribution and discusses future directions.

II. BACKGROUND AND MOTIVATIONS

A. Understanding I/O jitter

Over the past several years, chip manufacturers have in-
creasingly focused on multicore architectures, as the increase
of clock frequencies for individual processors has leveled off,
primarily due to substantial increases in power consumption.
High performance variability across individual components of
these more complex systems becomes more of an issue, and
it can be very difficult to track the origin of performance
weaknesses and bottlenecks. While most efforts today ad-
dress performance issues and scalability for specific types of
workloads and software or hardware components, few efforts
are targeting the causes of performance variability. However,
reducing this variability is critical, as it is an effective way
to make more efficient use of these new computing platforms
through improved predictability of the behavior and of the
execution runtime of applications. In [28], four causes of jitter
are pointed out:

1) Resource contention within multicore SMP nodes,
caused by several cores accessing shared caches, main
memory and network devices.

2) Communication, causing synchronization between pro-
cesses that run within the same node or on separate
nodes. In particular, access contention for the network
causes collective algorithms to suffer from variability in
point-to-point communications.

3) Kernel process scheduling, together with the jitter intro-
duced by the operating system.

4) Cross-application contention, which constitutes a ran-
dom variability coming from simultaneous access to
shared components in the computing platform.

While issues 3 and 4 cannot be addressed by the end-
users of a platform, issues 1 and 2 can be better handled
by tuning large-scale applications in such a way that they
make a more efficient use of resources. As an example,
parallel file systems represent a well-known bottleneck and
a source of high variability [30]. While the performance of
computation phases of HPC applications is usually stable
and only suffers from a small jitter due to the operating
system, the time taken by a process to write some data can
vary by several orders of magnitude from one process to
another and from one iteration to another. In [17], variability
is expressed in terms of interferences, with the distinction
between internal interferences caused by access contention
between the processes of an application (issue 2), and external
interferences due to sharing the access to the file system
with other applications, possibly running on different clusters
(issue 4). As a consequence, adaptive I/O algorithms have been
proposed [17] to limit access contentions and allow a higher
and less variable I/O throughput.

B. Approaches to I/O management in HPC simulations

Two main approaches are typically used for performing I/O
in large-scale HPC simulations:

a) The file-per-process approach: This approach con-
sists of having each process write in a separate, relatively small
file. Whereas this avoids synchronization between processes,
parallel file systems are not well suited for this type of load
when scaling to hundreds of thousands of files: special opti-
mizations are then necessary [4]. File systems using a single
metadata server, such as Lustre, suffer from a bottleneck:
simultaneous creations of so many files are serialized, which
leads to immense I/O variability. Moreover, reading such a
huge number of files for post-processing and visualization
becomes intractable.

b) Using collective I/O: In MPI applications utilizing
collective I/O, all processes synchronize together to open
a shared file, and each process writes particular regions of
this file. This approach requires a tight coupling between
MPI and the underlying file system [25]. Algorithms termed
as “two-phase I/O” [9], [29] enable efficient collective I/O
implementations by aggregating requests and by adapting the
write pattern to the file layout across multiple data servers [7].
Collective I/O avoids metadata redundancy as opposed to
the file-per-process approach. However, it imposes additional
process synchronization, leading to potential loss of efficiency
in I/O operations. In addition, none of today’s data formats of-
fers compression features using this approach. Intuitively and
experimentally [12], any approach that uses synchronization
between processes as in collective-I/O, is more likely to reduce
I/O variability from one process to another in a single write

phase, but at the price of additional synchronizations that can
limit the global I/O throughput and introduce variability from
a write phase to another.

It is usually possible to switch between these approaches
when a scientific format is used on top of MPI; going from
HDF5 to pHDF5 [6] is a matter of adding a couple of
lines of code, or simply changing the content of an XML
file with ADIOS [18]. But users still have to find the best
specific approach for their workload and choose the optimal
parameters to achieve high performance and low variability.
In addition, the aforementioned approaches create periodic
peak loads in the file system and suffer from contention at
several levels. This first happens at the level of each multicore
SMP node, as concurrent I/O requires all cores to access
remote resources (networks, I/O servers) at the same time.
Optimizations in collective-I/O implementations are provided
to avoid this first level of contention; e.g. in ROMIO [8],
data aggregation is performed to gather outputs from multiple
processes to a subset of processes that interact with the file
system by performing larger, contiguous writes. Yet with
the ever growing number of cores, these “two phases” I/O
optimizations based on communications are unlikely to scale
well, inviting to consider ways for small groups of processes
to concurrently and efficiently perform I/O, without the need
for synchronization.

III. THE DAMARIS APPROACH

To sustain a high throughput and a lower variability, it is
preferable to avoid as much as possible access contentions at
the level of the network interface and of the file system, for
example by reducing the number of writers (which reduces
the network overhead and allows data servers to optimize
disk accesses and caching mechanisms) and the number of
generated files (which reduces the overhead on metadata
servers). As the first level of contention occurs when several
cores in a single SMP node try to access the same network
interface, it becomes natural to work at the level of a node.

We propose to gather the I/O operations into one single core
that will perform writes of larger data in each SMP node. In
addition, this core is dedicated to I/O (i.e. will not run the
simulation code) in order to overlap writes with computation
and avoid contention for accesses to the file system. The
communication between cores running the simulation and
dedicated cores is done through shared-memory, to make a
write as fast as a memcpy. We call this approach Damaris. Its
design, implementation and API are described below.

A. Principle

Damaris consists of a set of MPI processes running on
a set of dedicated cores (typically one) in every SMP node
used by the simulation. Each dedicated process keeps data
in a shared memory segment and performs post-processing,
filtering, indexing and finally I/O in response to user-defined
events sent either by the simulation or by external tools.

The buffering system running on these dedicated cores
includes metadata information about incoming variables. In
other words, clients do not write raw data but enriched datasets
in a way similar to scientific data formats such as HDF5
or NetCDF. Thus dedicated cores have full knowledge of
incoming datasets and can perform “smart actions” on these
data, such as writing important datasets in priority, performing

Fig. 1. Design of the Damaris approach.

compression, statistical studies, indexing, or any user-provided
transformation. These transformations are provided by the
user through a plugin system, which makes the system fully
adaptable to the particular requirements of an application.
By analyzing the data, the notion of an “important dataset”
can be based on the scientific content of the data and thus
dynamically computed, a task that low-level I/O schedulers
could not perform.

B. Architecture

Figure 1 presents the architecture of Damaris, by represent-
ing a multicore SMP node in which one core is dedicated to
Damaris. The other cores (only three represented here) are
used by the simulation. As the number of cores per node
increases, dedicating one core has a diminishing impact. Thus,
our approach primarily targets SMP nodes featuring a large
number of cores per node (12 to 24 in our experiments).

Shared-memory: Communication between the computation
cores and the dedicated cores is done through shared memory.
A large memory buffer is created by the dedicated core at
start time, with a size chosen by the user. Thus the user has
a full control over the resources allocated to Damaris. When
a compute core submits new data, it reserves a segment of
this buffer, then copies its data using the returned pointer,
so the local buffer can be reused. Damaris uses the default
mutex-based allocation algorithm of the Boost library to allow
concurrent atomic reservation of segments by multiple clients.
We also implemented another lock-free reservation algorithm:
when all clients are expected to write the same amount of data,
the shared-memory buffer is split in as many parts as clients
and each client uses its own region.

Configuration file: To avoid using the shared memory to
transfer too much metadata information, Damaris uses an
external configuration file to provide static information about
the data (such as names, description, unit, dimensions...). This
design principle is directly inspired by ADIOS [18] and also
present in many other tools such as EPSN [13]. The goals
of this external configuration are 1) to keep a high-level
description of the datasets within the server, allowing higher-
level data manipulations, 2) to avoid static layout descriptions
to be sent by clients through the shared memory (only data
is sent together with the minimal descriptor that lets the
server retrieve the full description in its metadata system).
Additionally, it helps defining the behavior of dedicated cores

through the configuration of actions to be performed on data
prior to storage.

Event queue: The event-queue is another shared component
of the Damaris architecture. It is used by clients either to
inform the server that a write completed (write-notification),
or to send user-defined events. The messages are pulled by
an event processing engine (EPE) on the server side. The
configuration file also includes information about the actions to
perform upon reception of an event. Such actions can prepare
data for future analysis, or simply write it using any I/O library.

Metadata management: All variables written by the clients
are characterized by a tuple 〈name,iteration,source,layout〉.
Iteration gives the current step of the simulation, while source
uniquely characterizes the sender (e.g. its MPI rank). The
layout is a description of the structure of the data: type, number
of dimensions and extents. For most simulations, this layout
does not vary at runtime and can be provided also by the
configuration file. Upon reception of a write-notification, the
EPE will add an entry in a metadata structure associating the
tuple with the received data. The data stay in shared memory
until actions are performed on them.

C. Key design choices

Behavior management and user-defined actions: The EPE
can be enriched by plugins provided by the user. A plugin is
a function embedded in the simulation, in a dynamic library
or in a Python script, that the EPE will load and call in
response to events sent by the application. The matching
between events and expected reactions is provided by the
external configuration file. Thus, it is easy for the user to
define a precise behavior for Damaris by simply changing the
configuration file. Damaris was designed with the intent to
provide a very simple way for users to extend it and adapt it
to the particular needs of their simulations.

Minimum-copy overhead: The efficiency of interactions
between clients and dedicated cores is another strength of
Damaris. At most a single copy from a local variable to
the shared memory buffer is required to send data to the
dedicated core. Damaris also includes the possibility to “write”
data without actually making a copy: the simulation directly
allocates its variables in the shared memory buffer. When
the simulation finishes working on an array, it simply in-
forms the dedicated core that the data can be considered
as ready. In a context of a shrinking memory/FLOP ratio,
offering this optimization can be crucial for some applications.
This is a strong point of Damaris that distinguishes it from
other dedicated-process-based approaches [19], [16], further
described in Section V-B.

Persistency layer: Finally our implementation of Damaris
interfaces with HDF5 by using a custom persistency layer
embedded in a plugin, as shown as an example in Figure 1.

D. Client-side API

Damaris is intended to be a generic, platform-independent,
application-independent, easy-to-use tool. The current imple-
mentation is developed in C++ and uses the Boost library
for interprocess communications, and Xerces-C for XML
configuration. It provides client-side interfaces for C, C++ and
Fortran applications which can be summarized by four main
functions (here in C):

• df_initialize and df_finalize initialize and
free the resources used by Damaris.

• df_write("varname",step,data) copies the
data in shared memory along with minimal information
and notifies the server. All additional information such
as the size of the data and its layout (including its
datatype) are provided by the configuration file.

• df_signal("eventname",step) sends a custom
event to the server in order to force a behavior predefined
in the configuration file.

Additional functions are available to allow direct access to
an allocated portion of the shared buffer (dc_alloc and
dc_commit), avoiding an extra copy from local memory to
shared memory. Other functions let the user write arrays that
don’t have a static shape (which is the case in particle-based
simulations, for example).

Below is an example of a Fortran program that makes use of
Damaris to write a 3D array then send an event to the I/O core.
The associated configuration file, which follows, describes the
data that is expected to be received by the I/O core, and the
action to perform upon reception of the event.

program example
i n t e g e r : : rank , s t e p
rea l , dimension (6 4 , 1 6 , 2) : : my data
c a l l d f i n i t i a l i z e (” my conf ig . xml ” , r ank)
. . .
c a l l d f w r i t e (” m y v a r i a b l e ” , s t e p , my data)
c a l l d f s i g n a l (” my event ” , s t e p)
. . .
c a l l d f f i n a l i z e ()

end program example

Associated XML configuration file:

<l a y o u t name=” my layout ” type =” r e a l ”
dimensions =” 64 ,16 ,2 ” language =” f o r t r a n ” />

<v a r i a b l e name=” m y v a r i a b l e ”
l a y o u t =” my layout ” />

<even t name=” my event ” a c t i o n =” do someth ing ”
u s in g =” my plugin . so ” scope =” l o c a l ” />

Damaris has been released as an open-source software [1]
and is now used by several research groups, willing in improve
the I/O performance of their applications and to provide them
post-processing capabilities. As seen above, Damaris requires
a few modifications in existing applications. We made this
choice (as opposed to hiding everything under the MPI layer
or in the operating system) as it offers more flexibility and
can leverage the scientific semantics of data. Feedbacks from
several independent users confirmed the simplicity of our API.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach based on dedicated I/O cores
against standard approaches (file-per-process and collective-
I/O) with the CM1 atmospheric simulation, using three differ-
ent platforms: Kraken, Grid’5000 and a Power5 cluster.

A. The CM1 application

CM1 [3] is used for atmospheric research and is suitable
for modeling small-scale atmosphere phenomena such as
thunderstorms and tornadoes. It follows a typical behavior
of scientific simulations which alternate computation phases
and I/O phases. The simulated domain is a fixed 3D array
representing part of the atmosphere. Each point in this domain

is characterized by a set of variables such as local temperature
or wind speed. CM1 is written in Fortran 95. Parallelization is
done using MPI, by splitting the 3D array along a 2D grid of
equally-sized subdomains that are handled by each process.
The I/O phase uses HDF5 to write one file per process, or
pHDF5 to write in a collective manner. One of the advantages
of using a file-per-process approach is that compression can
be enabled, which is not the case with pHDF5. However at
large process counts, the file-per-process approach generates
a huge number of files, making all subsequent analysis tasks
intractable.

B. Platforms and configuration

• Kraken is a supercomputer at NICS, currently ranked
11th in the Top500. It features 9408 Cray XT5 compute
nodes connected through a Cray SeaStar2+ interconnect.
Each node has 12 cores and 16 GB of local memory.
We study the scalability of different approaches, includ-
ing Damaris. Thus, the problem size varies from an
experiment to another. When all cores are used by the
simulation, each process handles a 44× 44× 200 points
subdomain. Using Damaris, each non-dedicated core (11
out of 12) handles a 48 × 44 × 200 points subdomain,
thus making the total problem size equivalent.

• Grid’5000 is a French grid testbed. We used its parapluie
cluster (featuring 40 nodes of 2 AMD 1.7 GHz CPUs,
12 cores/CPU, 48 GB RAM) to run the CM1 simulation
on 28 nodes (672 cores) and 38 nodes (912 cores). The
parapide cluster (2 Intel 2.93 GHz CPUs, 4 cores/CPU,
24 GB RAM, 434 GB local disk) was used to deploy a
PVFS file system on 15 nodes, used both as I/O server
and metadata server. All nodes communicate through a
20G InfiniBand 4x QDR link connected to a common
Voltaire switch. We use MPICH [21] with ROMIO [29]
compiled against the PVFS library. The total domain
size in CM1 is 1104× 1120× 200 points, so each core
handles a 46×40×200 points subdomain with a standard
approach, and a 48 × 40 × 200 points subdomain when
one core out of 24 is used by Damaris.

• BluePrint provides 120 Power5 nodes. Each node con-
sists in 16 cores and features 64 GB of memory. The
GPFS file system is deployed on 2 separate nodes. CM1
was run on 64 nodes (1024 cores), with a 960×960×300
points domain. Each core handled a 30×30×300 points
subdomain with the standard approach. When dedicating
one core out of 16 on each node, computation cores
handled a 24 × 40 × 300 points subdomain. On this
platform we vary the size of the output by enabling or
disabling variables. We enabled the compression feature
of HDF5 for all the experiments done on this platform.

We ran CM1 with an output configuration and frequency
corresponding to what can be expected by atmospheric scien-
tists from such a simulation.

C. Experimental results

In this section, we present the results achieved in terms
of I/O jitter, I/O performance and resulting scalability of the
application. We also provide two improvements to Damaris.

1) Effect on I/O jitter: Figure 2 shows the average and
maximum duration of an I/O phase on Kraken from the point
of view of the simulation. It corresponds to the time between

Fig. 2. duration of a write phase on Kraken (average and maximum). For
readability reasons we don’t plot the minimum write time. Damaris shows
to completely remove the I/O jitter while file-per-process and collective-I/O
have a big impact on the runtime predictability.

Fig. 3. duration of a write phase (average, maximum and minimum) using
file-per-process and Damaris on BluePrint (1024 cores). The amount of data
is given in total per write phase.

the two barriers delimiting the I/O phase. As we can see,
this time is extremely high and variable with Collective-I/O,
achieving up to 800 sec on 9216 processes. The average of
481 sec represents about 70% of the overall simulation’s run
time, which is simply unacceptable. By setting the stripe size
to 32 MB instead of 1 MB in Lustre, the write time went up to
1600 sec with Collective-I/O, exemplifying the fact that bad
choices of file system’s configuration can lead to extremely
poor I/O performance. Unexpectedly, the file-per-process ap-
proach seemed to lead to a lower variability, especially at
large process count. Yet it still represents an unpredictability
(difference between the fastest and the slowest phase) of about
±17sec. For a one month run, writing every 2 minutes would
lead to an uncertainty of several hours to several days of run
time. When using Damaris, we dedicate one core out of 12
on each SMP node, thus potentially reducing the computation
power for the benefit of I/O efficiency (the impact on overall
application performance is discussed in the next section). As
a means to reduce I/O jitter, this approach is clearly effective:
the time to write from the point of view of the simulation is
cut down to the time required to perform a series of copies in
shared memory. It leads to a write time of 0.2 sec and does not
depend anymore on the number of processes. The variability
is in order of 0.1 sec (too small to be represented here).

On BluePrint, we vary the amount of data using the file-per-
process approach. The results are presented in Figure 3. As
we increase the amount of data, we increase the variability of
the I/O time with the file-per-process approach. With Damaris
however, the write time remains in the order of 0.2 sec for
the largest amount of data and the variability in the order of
0.1 sec again.

Similar experiments have been carried out on Grid5000.

(a) Scalability factor on Kraken

(b) Run time on Kraken

Fig. 4. (a) Scalability factor and (b) overall run time of the CM1 simulation
for 50 iterations and 1 write phase, on Kraken.

We ran CM1 using 672 cores, writing a total of 15.8 GB
uncompressed data (about 24 MB per process) every 20
iterations. With the file-per-process approach, CM1 reported
spending 4.22% of its time in I/O phases. Yet the fastest
processes usually terminate their I/O in less than 1 sec, while
the slowest take more than 25 sec.

These experiments show that by replacing write phases by
simple copies in shared memory and by leaving the task of
performing actual I/O to dedicated cores, Damaris is able to
completely hide the I/O jitter from the point of view of the
simulation, making the application runtime more predictable.

2) Application’s scalability and I/O overlap: CM1 exhibits
very good weak scalability and very stable performance when
no I/O is performed. Thus as we increase the number of
cores, the scalability becomes mainly driven by the I/O phase.
To measure the scalability of an approach, we define the
scalability factor S of an approach as S = N ∗ C576

TN

where N
is the number of cores considered. We take as a baseline the
time C576 of 50 iterations of CM1 on 576 processes without
dedicated core and without any I/O. TN is the time CM1
takes to perform 50 iterations plus one I/O phase, on N cores.
A perfect scalability factor on N cores should be N . The
scalability factor on Kraken for the three approaches is given
in Figure 4 (a). Figure 4 (b) provides the associated application
run time for 50 iterations plus one write phase. As we can
see, Damaris shows a nearly perfect scalability where other
approaches fail to scale.

Since the scalability of our approach comes from the fact
that I/O overlap with computation, we have to show that the
dedicated cores have enough time to perform the actual I/O
while computation goes on. Figure 5 shows the time used
by the dedicated cores to perform the I/O on Kraken and
BluePrint, as well as the time they spare for other usage. As the

(a) Write / Spare time on Kraken (b) Write / Spare time on BluePrint

Fig. 5. Time spent by the dedicated cores writing data for each iteration, and
time spared. The spare time is the time dedicated cores are not performing
any task.

Fig. 6. Average aggregate throughput achieved on Kraken with the different
approaches. Damaris shows a 6 times improvement over the file-per-process
approach and 15 times over collective-I/O on 9216 cores.

amount of data on each node is equal, the only explanation
for the dedicated cores to take more time at larger process
count on Kraken is the access contention for the network and
the file system. On BluePrint the number of processes here
is constant for each experiments, thus the differences in the
times to write come from the different amounts of data.

Similar results (not presented because of space constraints)
have been achieved on Grid’5000. On all platforms, Damaris
shows that it can fully overlap writes with computation and
still remain idle 75% to 99% of time. Thus without impacting
the application, we could further increase the frequency of
outputs or perform inline data analysis, as mentioned in
Section III. These use cases will be subject to a future paper.

3) Effective I/O performance: Figure 6 presents the ag-
gregate throughput obtained with the different approaches on
Kraken. Note that in the case of Damaris, this throughput
is only seen by the dedicated cores. Damaris achieves an
aggregate throughput about 6 times higher than the file-
per-process approach, and 15 times higher than Collective
I/O. This is due to the fact that Damaris avoids process
synchronization and access contentions at the level of a node.
Also by gathering data into bigger files, it reduces the pressure
on metadata servers and issues bigger operations that can be
more efficiently handled by storage servers.

The results obtained on 672 cores of Grid’5000 are pre-
sented in Table I. The throughput achieved with Damaris is
more than 6 times higher than standard approaches. Since
compression was enabled on BluePrint, we don’t provide the
resulting throughputs, as it would depend on the overhead of
the compression algorithm and the resulting size of the data.

Average aggregate throughput
File-per-process 695 MB/s

Collective-I/O 636 MB/s
Damaris 4.32 GB/s

TABLE I
AVERAGE AGGREGATE THROUGHPUT ON GRID’5000, WITH CM1

RUNNING ON 672 CORES.

In conclusion, reducing the number of writers while gather-
ing data into bigger files also has an impact on the throughput
that the simulation can achieve. On every platform, Damaris
substantially increases throughput, thus making a more effi-
cient use of the file system.

D. Potential use of spare time

In order to leverage spare time in the dedicated cores, we
implemented several improvements.

Compression: Using lossless gzip compression on the 3D
arrays, we observed a compression ratio of 187%. When
writing data for offline visualization, the floating point pre-
cision can also be reduced to 16 bits, leading to nearly 600%
compression ratio when coupling with gzip. We achieved an
apparent throughput of 4.1 GB/s from the point of view of
the dedicated cores. Contrary to enabling compression in the
file-per-process approach, the overhead and jitter induced by
this compression is completely hidden within the dedicated
cores, and do not impact the running simulation. In addition,
by aggregating the data into bigger files, we reduce its total
entropy, thus increasing the achievable compression ratio.

Data transfer scheduling: Additionally, we implemented
in Damaris the capability to schedule data movements. The
algorithm is very simple and does not involve any commu-
nication between processes: each dedicated core computes
an estimation of the computation time of an iteration from
a first run of the simulation (about 230 sec on Kraken).
This time is then divided into as many slots as dedicated
cores. Each dedicated core then waits for its slot before
writing. This avoids access contention at the level of the file
system. Evaluating this strategy on 2304 cores on Kraken, the
aggregate throughput achieves 13.1 GB/s on average, instead
of 9.7 GB/s when this algorithm is not used.

These strategies have also been evaluated on 912 cores
of Grid’5000. All these results are presented in Figure 7 in
terms of write time in the dedicated cores. As we can see, the
scheduling strategy reduces the write time in both platforms.
Compression however introduces an overhead on Kraken, thus
we are facing a tradeoff between reducing the required storage
space and the spare time. A potential optimization would be
to enable or disable compression at run time depending on the
need to reduce write time or storage space.

V. DISCUSSION AND RELATED WORK

In this section, we evaluate the benefits of our approach
by computing mathematical bounds of effectiveness. We then
position our approach with respect to other related research.

A. Are all cores really needed for computation?

Let us call Wstd the time spent writing and Cstd the
computation time between with a standard approach, Cded

the computation time when the same workload is divided
across one less core in each node. We here assume that the
I/O time is null or negligible when using the dedicated core

Fig. 7. Write time in the dedicated cores when enabling the compression
feature and the scheduling strategy.

(which is experimentally verified) from the point of view of
the simulation, and we call Wded the time that the dedicated
core spends writing. A theoretical performance benefit of our
approach then occurs when

Wstd + Cstd > max(Cded,Wded)

Assuming an optimal parallelization of the program across N
cores per node, and the worst case for Damaris where Wded =
N ∗Wstd (even though this has been shown not to be true in
Section IV-C3), we show that this inequality is true when the
program spends at least p% in I/O phase, with p = 100

N−1
. As

an example, with 24 cores p = 4.35%, which is already under
the 5% usually admitted for the I/O phase of such applications.
Thus assuming that the application effectively spends 5% of
the time writing data, on a machine featuring more than 24
cores per node, it is more efficient to dedicate one core per
node to hide the I/O phase. However, many HPC simulations
do not exhibit a linear scalability: this enlarges the spectrum
of applications that could benefit from Damaris.

In this work, we have used only one dedicated core per
node, as it turned out to be an optimal choice. However,
Damaris can be deployed on several cores per node. Two
different interaction semantics are then available: dedicated
cores may have a symmetrical role but are attached to different
clients of the node (e.g. they all perform I/O on behalf of dif-
ferent groups of client cores), or they can have an asymmetric
behavior, (e.g. one dedicated core receives data from clients
and writes it to files, while another one performs visualization
or data-analysis). Due to space constraints, deeper insights on
semantics is left outside the scope of this paper.

B. Positioning Damaris in the “I/O landscape”

Through its capability of gathering data into larger buffers
and files, Damaris can be compared to the ROMIO data
aggregation feature [29]. Yet, data aggregation is performed
synchronously in ROMIO: all cores that do not perform
actual writes in the file system must wait for the aggrega-
tor processes to complete their operations. Through space-
partitioning, Damaris can perform data aggregation and po-
tential transformations in an asynchronous manner and still
use the idle time remaining in the dedicated cores.

Other efforts are focused on overlapping computation with
I/O in order to reduce the impact of I/O latency on overall
performance. Overlap techniques can be implemented directly
within simulations [24], using asynchronous communications.
Yet non-blocking file operation primitives are not part of
the current MPI-2 standard. Potential benefits of overlapping

communication and computation are explored in [26]. Our
Damaris approach aims to exploit such potential benefits.

Other approaches leverage data-staging and caching mech-
anisms [23], [15], or forwarding approaches [2] to achieve
better I/O performance. Forwarding architectures run on top of
dedicated resources in the platform, which are not configurable
by the end-user. Moreover, these dedicated resources are
shared by all users, which leads to cross-applications access
contention and thus to jitter. However, the trend towards I/O
delegate systems underscores the need for new I/O approaches.
Our approach relies on dedicated I/O cores at the application
level rather than hardware I/O-dedicated or forwarding nodes,
with the advantage of letting the user configure its dedicated
resources to best fit its needs.

The use of local memory to alleviate the load on the file
system is not new. The Scalable Checkpoint/Restart by Moody
et al. [20] already makes use of node-level storages to avoid
the heavy load caused by periodic global checkpoints. Yet their
work does not use dedicated resources or threads to handle or
process data, and the checkpoints are not asynchronous.

Some research efforts have focused on reserving computa-
tional resources as a bridge between the simulation and the
file system or other back-ends such as visualization engines.
In such approaches, I/O at the simulation level is replaced by
asynchronous communications with a middleware running on a
separate set of computation nodes, where data is stored in local
memory and processed prior to effective storage. PreDatA [31]
is such an example: it performs in-transit data manipulation
on a subset of compute nodes prior to storage, allowing more
efficient I/O in the simulation and more simple data analytics,
at the price of reserving dedicated computational resources.
The communication between simulation nodes and PreDatA
nodes is done through the DART [10] RDMA-based transport
method, hidden behind the ADIOS interface which allows the
system to adapt to any simulation that has an ADIOS I/O
backend. However, given the high ratio between the number
of nodes used by the simulation and the number of PreDatA
nodes, the PreDatA middleware is forced to perform streaming
data processing, while our approach using dedicated cores
in the simulation nodes permits keeping the data longer in
memory or any local storage devices, and to smartly schedule
all data operations and movements. Clearly some simulations
would benefit from one approach or the other, depending on
their needs in terms of memory, I/O throughput and compu-
tation performance, but also the two approaches – dedicating
cores or dedicating nodes – are complementary and we could
imagine a framework that make use of the two ideas.

Space-partitioning at the level of multicore SMP nodes,
along with shared memory, has also successfully been used to
optimize communications between coupled simulations [14].
In contrast to this work which does not focus on I/O, our
goal is precisely to optimize I/O to remove the performance
bottleneck usually created by massively concurrent I/O and
the resulting jitter.

Closest to our work are the approaches described in [16]
and [19]. While the general goals of these approaches are sim-
ilar (leveraging service-dedicated cores for non-computational
tasks), their design is different, and so is the focus and
the (much lower) scale of their evaluation. [16] is an effort
parallel to ours. It mainly explores the idea of using dedicated

cores in conjunction with the use of SSDs to improve the
overall I/O throughput. Architecturally, it relies on a FUSE
interface, which introduces useless copies through the Kernel
and reduces the degree of coupling between cores. Using
small benchmarks we noticed that such a FUSE interface is
about 10 times slower in transferring data than using shared
memory. In [19], active buffers are handled by dedicated
processes that can run on any node and interact with cores
running the simulation through network. In contrast to both
approaches, Damaris makes a much more efficient design
choice using the shared intra-node memory, thereby avoiding
costly copies and buffering. The approach defended by [16] is
demonstrated on a small 32-node cluster (160 cores), where
the maximum scale used in [19] is 512 cores on a POWER3
machine, for which the overall improvement achieved for the
global run time is marginal. Our experimental analysis is much
more extensive and more relevant for today’s scales of HPC
supercomputers: we demonstrate the excellent scalability of
Damaris on a real supercomputer (Kraken, ranked 11th in the
Top500 supercomputer list) up to almost 10,000 cores, with
the CM1 tornado simulation, one of the target applications
of the Blue Waters postpetascale supercomputer project. We
demonstrate not only a speedup in I/O throughput by a factor
of 15 (never achieved by previous approaches), but we also
demonstrate that Damaris totally hides jitter and substantially
cuts down the application run time at such high scales (see
Figure 4): execution time is cut by 35% compared to the file-
per-process approach with 9,216 cores, whereas the largest
experiment in [19] (512 cores) with a real-life application only
shows a very marginal improvement in execution time. With
Damaris, the execution time for CM1 at this scale is even
divided by 3.5 compared to approaches based on collective-
I/O! Moreover, we further explore how to leverage the spare
time of the dedicated cores (e.g. we demonstrate that it can
be used to compress data by a factor of 6).

VI. CONCLUSIONS

Efficient management of I/O variability (aka jitter) on to-
day’s Petascale and Post-Petascale HPC infrastructures is a key
challenge, as jitter has a huge impact on the ability to sustain
high performance at the scale of such machines (hundreds of
thousands of cores). Understanding its behavior and proposing
efficient solutions to reduce its effects is critical for preparing
the advent of Exascale machines and their efficient usage by
applications at the full machine scale. This is precisely the
challenge addressed by this paper. Given the limited scalability
of existing approaches to I/O in terms of I/O throughput and
also given their high I/O performance variability, we propose
a new approach (called Damaris) which originally leverages
dedicated I/O cores on multicore SMP nodes in conjunction
with an efficient usage of shared intra-node memory. This
solution provides the capability not only to better schedule data
movement through asynchronous I/O, but also to leverage the
dedicated I/O cores to do extra useful data pre-processing prior
to storage or visualization (such as compression or formatting).

Results obtained with one of the challenging target appli-
cations of the Blue Waters postpetascale supercomputer (now
being delivered at NCSA), clearly demonstrate the benefits
of Damaris in experiments with up to 9216 cores performed
on the Kraken supercomputer (ranked 11th in the Top500
list). Damaris completely hides I/O jitter and all I/O-related

costs and achieves a throughput 15 times higher than standard
existing approaches. Besides, it reduces application execution
time by 35% compared to the conventional file-per-process
approach. Execution time is divided by 3.5 compared to
approaches based on collective-I/O! Moreover, it substantially
reduces storage requirements, as the dedicated I/O cores enable
overhead-free data compression with up to 600% compression
ratio. To the best of our knowledge, no concurrent approach
demonstrated such improvements in all these directions at such
scales. The high practical impact of this promising approach
has recently been recognized by application communities
expected to benefit from the Blue Waters supercomputer and,
for these reasons, Damaris was formally validated to be used
by these applications on Blue Waters.

Our future work will focus on several directions. We plan to
quantify the optimal ratio between I/O cores and computation
cores within a node for several classes of HPC simulations.
We are also investigating other ways to leverage spare time
of I/O cores. A very promising direction is to attempt a
tight coupling between running simulations and visualization
engines, enabling direct access to data by visualization engines
(through the I/O cores) while the simulation is running. This
could enable efficient inline visualization without blocking the
simulation, thereby reducing the pressure on the file systems.
Finally, we plan to explore coordination strategies of I/O cores
in order to implement distributed I/O scheduling.

ACKNOWLEDGMENTS

This work was done in the framework of a collaboration be-

tween the KerData INRIA - ENS Cachan/Brittany team (Rennes,

France) and the NCSA (Urbana-Champaign, USA) within the Joint

INRIA-UIUC Laboratory for Petascale Computing. Some experi-

ments were carried out using the Grid’5000/ALADDIN-G5K exper-

imental testbed (see http://www.grid5000.fr/) and Kraken at NICS

(see http://www.nics.tennessee.edu/). The authors also acknowledge

the PVFS developers, the HDF5 group, Kraken administrators and

the Grid’5000 users, who helped properly configuring the tools and

platforms used for this work. We thank Robert Wilhelmson and for his

insights on the CM1 application and Dave Semeraro (NCSA, UIUC)

for our fruitful discussions on visualization/simulation coupling.

REFERENCES

[1] Damaris open-source implementation: http://damaris.gforge.inria.fr.
[2] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,

L. Ward, and P. Sadayappan. Scalable I/O forwarding framework
for high-performance computing systems. In Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
pages 1–10, September 2009.

[3] G. H. Bryan and J. M. Fritsch. A benchmark simulation for moist non-
hydrostatic numerical models. Monthly Weather Review, 130(12):2917–
2928, 2002.

[4] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig.
Small-file access in parallel file systems. International Parallel and
Distributed Processing Symposium, pages 1–11, 2009.

[5] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur. PVFS: a
parallel file system for linux clusters. In Proceedings of the 4th annual
Linux Showcase & Conference - Volume 4, Berkeley, CA, USA, 2000.
USENIX Association.

[6] C. Chilan, M. Yang, A. Cheng, and L. Arber. Parallel I/O performance
study with HDF5, a scientific data package, 2006.

[7] A. Ching, A. Choudhary, W. keng Liao, R. Ross, and W. Gropp.
Noncontiguous I/O through PVFS. page 405, Los Alamitos, CA, USA,
2002. IEEE Computer Society.

[8] P. Dickens and J. Logan. Towards a high performance implementation of
MPI-I/O on the Lustre file system. On the Move to Meaningful Internet
Systems OTM 2008, 2008.

[9] P. M. Dickens and R. Thakur. Evaluation of Collective I/O Implemen-
tations on Parallel Architectures. Journal of Parallel and Distributed
Computing, 61(8):1052 – 1076, 2001.

[10] C. Docan, M. Parashar, and S. Klasky. Enabling high-speed asyn-
chronous data extraction and transfer using DART. Concurrency and
Computation: Practice and Experience, pages 1181–1204, 2010.

[11] S. Donovan, G. Huizenga, A. J. Hutton, C. C. Ross, M. K. Petersen,
and P. Schwan. Lustre: Building a file system for 1000-node clusters,
2003.

[12] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris:
Leveraging Multicore Parallelism to Mask I/O Jitter. Rapport de
recherche RR-7706, INRIA, Nov 2011.

[13] A. Esnard, N. Richart, and O. Coulaud. A steering environment for
online parallel visualization of legacy parallel simulations. In Distributed
Simulation and Real-Time Applications, 2006. DS-RT’06. Tenth IEEE
International Symposium on, pages 7–14. IEEE, 2006.

[14] Fan Zhang and Manish Parashar and Ciprian Docan and Scott Klasky
and Norbert Podhorszki and Hasan Abbasi. Enabling In-situ Execution
of Coupled Scientific Workflow on Multi-core Platform. 2012.

[15] F. Isaila, J. G. Blas, J. Carretero, R. Latham, and R. Ross. Design and
evaluation of multiple level data staging for Blue Gene systems. IEEE
Transactions on Parallel and Distributed Systems, 99(PrePrints), 2010.

[16] M. Li, S. Vazhkudai, A. Butt, F. Meng, X. Ma, Y. Kim, C. Engel-
mann, and G. Shipman. Functional partitioning to optimize end-to-end
performance on many-core architectures. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12. IEEE Computer Society,
2010.

[17] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf. Managing variability in the IO performance
of petascale storage systems. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–12, Washington, DC, USA, 2010.
IEEE Computer Society.

[18] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin.
Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS). In Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, CLADE
’08, pages 15–24, New York, NY, USA, 2008. ACM.

[19] X. Ma, J. Lee, and M. Winslett. High-level buffering for hiding periodic
output cost in scientific simulations. IEEE Transactions on Parallel and
Distributed Systems, 17:193–204, 2006.

[20] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. SC Conference, pages 1–11, 2010.

[21] Mpich2. http://www.mcs.anl.gov/research/projects/mpich2/.
[22] NCSA. BlueWaters project, http://www.ncsa.illinois.edu/BlueWaters/.
[23] A. Nisar, W. keng Liao, and A. Choudhary. Scaling parallel I/O

performance through I/O delegate and caching system. In High Perfor-
mance Computing, Networking, Storage and Analysis, 2008. SC 2008.
International Conference for, 2008.

[24] C. M. Patrick, S. Son, and M. Kandemir. Comparative evaluation of
overlap strategies with study of I/O overlap in MPI-IO. SIGOPS Oper.
Syst. Rev., 42:43–49, October 2008.

[25] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-
IO/GPFS an Optimized Implementation of MPI-IO on Top of GPFS.
page 58, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[26] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis. Quantifying
the potential benefit of overlapping communication and computation in
large-scale scientific applications. In SC 2006 Conference, Proceedings
of the ACM/IEEE, page 17, 2006.

[27] F. Schmuck and R. Haskin. GPFS A shared-disk file system for large
computing clusters. In Proceedings of the First USENIX Conference on
File and Storage Technologies. Citeseer, 2002.

[28] D. Skinner and W. Kramer. Understanding the causes of performance
variability in HPC workloads. In IEEE Workload Characterization
Symposium, pages 137–149. IEEE Computer Society, 2005.

[29] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O in
ROMIO. Symposium on the Frontiers of Massively Parallel Processing,
page 182, 1999.

[30] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf,
K. Karavanic, and L. Oliker. Parallel I/O performance: From events
to ensembles. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1 –11, april 2010.

[31] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. PreDatA –
preparatory data analytics on peta-scale machines. In Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on,
2010.

