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Abstract—In this paper, we analyze phenomena related to new mobility model taking into account interaction between
user clumps and hot spots occurring in mobile networks at the different users and show by a mathematical analysis based
occasion of large urban mass gatherings in large cities. Our o pmarkov chain theory that this interaction-mobility mode

analysis is based on observations made on mobility traces GSM . ficient t i d hot ts. For thi i
users in several large cities. Classical mobility models,ush as 'S SUliCient 10 generaté random hot Spots. For his, we wi

the random waypoint, do not allow one to represent the obsemd €present an urban area as a collection of potential hot spot
dynamics of clumps in a proper manner. This motivates the zones. These zones represent potentially attractive aint
introduction and the mathematical analysis of a new interation-  the city during such mass gatherings.
based mobility model, which is the main contribution of the  Tpe hagic assumption in our model is that users influence
present paper. This model is shown to allow one to describe ¢ . . . N
dynamics of clumps and in particular to predict key phenomera each oth_er. In SeCF'dE”' W? first §tudy the "sheep model",
such as the building of hot spots and the scattering between Where this mutual influence is particularly strong and where
hot spots, which play a key role in the engineering of wireles hot spots form at random in time and space, but are stable
networks during such events. We show how to obtain the main once formed (i.e. there is no disaggregation of hot spots in
parameters of this model from simple communication actviy g model yet). We start with the 2-zone case, in which we
measurements and we illustrate this calibration process omeal . . .
cases. find closed forms for the mean time for the formation of a
stable hot spot and for the law of its location. We also give

|. INTRODUCTION asymptotic estimates for these quantities, and upper sound

Traces collected by wireless operators in urban enviroon the convergence speed. We then generalize the previous
ments during multi event mass gatherings reveal that usesults to an arbitrary number of zones.
mobility is extremely volatile and leads to the formation of Section[IV introduces the "sheep and maverick” model,
hot spots, exemplified on the snapshot of Fidure 1 which wasich is more realistic, yet tractable, and which featurks a
gathered during one the 2008 Pdfiste de la Musiquewvhere key phenomena identified on the traces and alluded to above:
unpredicted gatherings are triggered by a large number tbhe formation of hot spots at random times and places, that we
spontaneous street concerts taking place throughout the aowill refer to asfilling, their disaggregation that we will refer
Such observations have also been made during other evertsgsscattering and the dynamics between them.
like a summer festival in Poland and Euro2008 soccer matchesn a last part, we leverage filling and scattering in the "ghee
in Spain and in Romania. A key phenomenon within thiand maverick” model to calibrate our mobility model and show
context concerns the dynamics of these hot spots, namety thhat it can be made consistent with the traces.
formation and their disaggregation which is random both in
space and time.

Accurate and yet tractable user mobility models allowing
one to represent these phenomena would significantly ingprov
the robustness and the realism of the simulators and thq
analytical models used by wireless communication opesator
They would hence ameliorate the understanding of the impac
of mass mobility on QoS within this setting. Predicting hot
spots dynamics could also help in the design and the tuning
of adaptive radio resource allocation schemes, where it i
fundamental to have an idea of some time caracteristicseof th
system. This allows a better utilization of the correspagdi
infrastructure and eventually a better QoS and better cesvi o - o o _
fo end users. AS existing models are not completely adapil S, commesion sehiy dunbite e o Msaui ars on June
to the phenomena we observe on traces, such as the rangostelet, Bastille, Saint-Micheks well as at théarc des Princesthe city
dynamic hot spot phenomena alluded to above, we proposgtagium) andAuteuil (the city park).




Il. THE NEED FOR ANEW MODEL

First, let us describe more precisely the phenomenon
want to model. A first remark is the existence of hot spot{
that follow some dynamics. On the snaphots of Fig. 2, thi
crowd moves in large numbers outside a zone: we shall c{
that ahot spot scatteringA new or a few new hot spots then i
build up at other locations: we shall call thahat spot filling

We now survey existing mobility models and discuss ho
they could be adapted to cope with these phenomena. =

The most popular mobility model used in communication 19h47
networks is probably the Random Waypoint Model (s€e [9]).

This model is easy to simulate and is analytically tractable

in many situations depending of the mobility rules of the
individuals on the domain (wrap around, edge reflectian...
However, it applies to a single mobile user, or to a collectiofg
of users moving independently.

Using this model, in order to take clumping into account, w
would have to choose a trip selection rule which gives mo
mass to potentially attractive zones. As a consequence,
law of the location of a single user would clearly favour #hes
zones. However, such a situation prevents any macroscopic
time dynamics. .Indeed’ with a large number of IndEpendeé't. 2. Communication activity in Paris on June 21st, 20@8ween 07:47
users, all following the same law, each snapshot would é and 11:17 pm. One can observe scattering from the Parc ritese®
more or less the same, very close to the theoretical locati@nuth) to Auteuil (north).
lawf].

Thus, all clumps would happen at predefined locations and
the sudden hot spot scattering as well as the sudden new &@tural attempt could be to work with permanental proeesse
spot aggregation observed in our traces would happen witk2]) that are known to exhibit frequent clumping. However
extremely small probability. permanental processes are nothing lbut particular Cox pro-

More generally, any multi user model built from the supefc€SSes (se€ [12], Remark 3.6.3.). This means that we would
position of many independent single user motions will eithih@ve to choose an underlying intensity measure which varies
the same "lack of hot spot dynamics’, while a key poinfVer tlme_ to cope vv_|th_ the (jynamlcs of clumpmg zones, which
observed within traces is a strong dependence between udgrgs difficult as building directly a convenient model. _
since there is clearly a joint motion from a hotspot to anothe AS for determinantal processes, very little has been writ-
leading toreinforced clumpingn the corresponding zone.  ten yet about time-dependent versions. One way consists

Nomadic Community Mobility Model or Reference Pointn Starting from a gaussian analytlc_f_uncuon, fqr instance
Group Mobility Model (see[[1]) consist in making smallf(2) = >_5>0 anz", Where thea,’s are i.i.d. Gaussian. Such
groups of users move in a mean given direction, while tfeSeries converges almost surely_on the unit disk, and itszer
users themselves are allowed to walk here and there aroand{ffm @ determinantal process. It is then easy to make:{fe
imposed direction. These models are well adapted for a grofifpe-dependent, by using Ornstein - Uhlenbeck processes fo
of visitors in a museum for instance, where the trajectory {8Stance (see_[14]). The spatial processes we obtain are in

more or less the same for everyone. However, such a syst@ff_almost exclusively distributed on the edge of the unit
does not allow us to make groups scatter. disid. Such a phenomenon is too extreme for our purpose.

For instance, it would be better adapted to model a wave of

Let us now review some ideas about modelling usergan'Ck'

interactions. Since we need a strong dependence among use nother class of mobility models that could be considered
is the class of spatial birth and death processes (see [4])

1This follows directly from Sanov’s theorem (séé [3], Theur6.2.10). Let first studied by Preston in 1975 (See [13])- Such a process

us denote by the law of the location of a single user. L&, X»,... X, can simulate characteristic point patterns if one chootes i
be the locations of» users randomly and independently located according

to pu. Let i = 1577, 8, be the empirical measure associated with 2jn fact, this is a direct consequence of the Peres & Viragrém (see

a snapshot: Then for all given evenis, Sanov's theorem states that, for13) Theorem 4.1.1.), which states that the n-th jointristées of the zeros
large values ofn, P(fin, € B) ~ exp [-ninf,cp H(v|u)], where H(v|u) g given by :

denotes the Kullback-Leibler divergence between the twbalility measures

© and v. In particular, if B represents the fact that users do not clump 1 1

where they should according to, H(v|x) will be large forv € B, and pn(21;-. o5 2n) = — det {(1 _ Ziz—v)z} :

the probability to make such an observation will be extrgnsghall whenn ’

is large. In particular, p1 (z) = 1/m(1 — |2|?).

22h17 23h17



stationary distribution in a proper manner. Furthermore, We first study the 2-zone case for the sake of progressive
contrast to the random waypoint model, it provides a readtinexposition.
dynamics. However, this model is known to lead to Gibbs poi%t

processes which are usually not analytically tractable. The 2-zone Problem

In this section we takeK = 2. Let us denote by
This state of the art leads us to the conclusion that therer§t) = (m(¢), N — m(¢)) the state of the system at tinte
a need for a tractable model allowing one to exhibit the tyf@ach mobile stays in his zone during a random exponential
of hot spot dynamics observed in communication traces. time with parametey, before deciding whether to move or
. THE SHEEPMODEL not. All waiting times are supposed to be_i_ndependent. Igroth
words, the system features a superpositionVoExponential

The.aim of this section is. o modgl user clumping in SOM8ocks ¢n clocks in the left zone and/ —m in the right zone).
predefined zones. The basic idea is that users tend to MOVE. the left zone for instance, the superposition of all wijti

towards places where t_here are already more people, CI-"ea{iﬂws should be an exponential clock with parameter, but
a self-enhanced clumping. there is not always a transition, since mobiles have thecehoi
A. General Overview between moving and staying. Since the probability of moving

Let us divide the city intok zones, that are exchanging$ (V —m)/N, the actual resulting clock is a thinning of the
mobiles one with another. In each zone, a mobile waits durisg?-clock with probability (N —m)/N. As a conclusion, it
an exponential time with parametetefore deciding whether 'S aﬂm(_N —m)/N-clock. The same proof could be derived
to change its zone or not. for the right zone. _ _ -

In a first step, let us suppose that the mobiles are totally Thus, the whole process is Markov, with transitions de-
influenced by their environment: they behave as sheep. TH&jibed in Fig[H.
decide to move towards one zone or another with a probability
proportional to the current repartition of the populaticed pm(N-n)
Fig.[3) of the zone. In other words, if we denote By the N
total number of mobiles, by, the number of mobiles in the

N
oo | R T =
first zone, byns the number of mobiles in the second zone, {(m-1. N-m+1) (m, N-n) (|11+-I~N~111-l;\\
etc., a mobile from thé-th zone decides to move to tié-th B — > T

zone with probabilityny /N. Conversely, he decides to stay ) pn (N-m)
in the k-th zone with probability : N
ng Nk
N =1- Z N Fig. 4. Diagram of the markovian transitions.
K #k

Obviously, there ardl absorbing states, which correspond Let us denote by) = (¢ /) the infinitesimal generator.
to the situation where all mobiles are in the same zone (thesd) Mean Absorption TimeWe are interested in charac-
are theK stable hot spots mentioned in the introduction). terizing mobility between different zones. For instances w
would like to give an estimate af, the first time to reach an

/7 absorbing state, starting from the current state of the ortw
Q —1 e n: 7 = inf{t/n(t) = (0,N) or (N,0)}. The average value
of 7 is given byh, = E[r|n(0) = n]. We know (see[[11],
Theorem 3.3.3. about hitting times) that the vedors the
minimum solution of the equation:

1/7

3/ \[ h(O,N) = h(N,O) =0 (1)
. ¢ Vm & {0, N}, > ocicn Gmihin—i) = —1.
. . We prove in appendixJA that:
1 N—m m
o m = 2 Nt 2w @
0<i<m 0<i<N-—-m

Fig. 3. The sheep model. Her®, = 7 and K = 4. The mobile in the upper-
left corner has 4 choices. The four decision probabilitiess @roportional to 2) Asymptotic EstimateTypically, N corresponds to the

the numbers of mobiles. number of users in a city district, thus it is quite large. fder

to speed up computations, it can be useful to use an asymptoti

estimate ofh,. Letz = ny /N, for1 <n; < N —1. We want

an estimate that can be used for large valuegvofand for

Ner=(0,...,N,...,0), 1<k<K. all values ofz. This means that the quality of this estimate
k—th position should only depend of¥. SinceN is large, we consider as a

If we denote a state by = (n1,...,nxk), then an absorbing
state is given by:



continuous variable taking its values]in 1[. The computation C. More Clumping Zones

in appendiA gives: We now consider the same problem with zones.
1) Description of the systemNow a state is aK-uple
n = (ny,ne,...,ng), with >-ni = N. Hence the space of

. . possible states is ak{ — 1)-dimensional variety. A transition
andr, <2/u, wherer, is the absolute error of the approXi=g. o the k-th zone to thek’-th zone is given by

mate. Note thaf{3) is always an equivalent in the mathemlatic
sense, even wheh,, is minimal, that is, whem = 1/N or n—n =n+ey — e (5)

(n —1)/N. Indeed, in that case the approximate is equal to: ) L ) ,
(we merely introduced a migration operator in Kelly’s sense

N (1 1 N -1 N -1 log(N) see [8], 2.3.). In the most general case, there/af& — 1)
——(=log|= |+ log ~ , - . . T
N N N N 1 possible transitions (corresponding to existing couptes’)).
whereas,, remains bounded. Fi§] 5 exemplifies the approx}[_he trsn.smon rate corresponding to the mobility &’ is
mation curve. given by oy

" dnn’ = N .

hn ~ —% ((1 —2)log(l — x) + xlog(x)) 3)

jesessieciocet
st 000, o
s0- 4
401 4
30 —
p/o &
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Fig. 5. Asymptotic estimate of,, [in min]. N = 80 andy = 1 min™1.

The circles represerity,, and the continuous line represents the estimate. Fig. 7. Mean absorption time [in min] foNv = 50, K = 3 and

u = 1 min—!. The z-axis represents the time, whereas the initial state i

3) Absorption Probability' So far we have obtained arepresented on the horizontal plane, in barycentric coatds with respect
) to each of the three absorbing states.

closed form for the mean absorption time, as well as an asymp-

totic estimate. Now we would like to determine the prOba&)lll 2) Absorption Time:Genera"zing equatioﬂZ) leads to:
to reach stat€0, N) rather than statg¢NV,0), starting from 1 N

n= (m, N —m). We shall denote this probability by,. hy = — Z Z _n.’“ (6)
Using @, we obtain the transitions for the imbedded Markov P k<K 0<ieny N —i

chain of the process (see Fig. 6).

(for a proof, see appendixl B).
On fig.[d, we propose a 2-dimensional surface representing
12 the mean absorption time fdx¥ = 3.
- Then, definingz,, = ny/N, it is immediate to generalize

-y Ty e >
equation|[(B) to find:
J [ w7 N
12 h(x) ~ n Z(l —x) log(l — z) (7)
k

Fig. 6. Imbedded Markov chain of the process.

and|r(x)| < K/p.
Conditioning with respect td?, the first transition time, _ 3) Absorption Probability:In the same way as in section

and using Markov property, we get [-B3] we can compute the probability to reach an absorbing
state rather than another one, for example Aay. We use
Pn = 1 Pat(-1,1) + 1 Pot(1,-1)- recursive formulas between a state and its neighbours. For
2 2 example, in the most general case, we have:
Using the fact thap ) = 1 andpy,0) = 0, we conclude ”
immediately that: B Z(k,k’) U

Pn =
Pn = n2/N. 4) Zé,k’) NEN



Using then the fact thatk # K, pye, = 0, we obtain

all the p,,’s recursively. In fact, it is quite easy to generalizt
equation[(%) to obtaip, (K) = nk /N = zk.
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Fig. 8. Reaching probability foN = 50, K =3 andy = 1 min—1.

IV. MAVERICKS AND HOT SPOTSDYNAMICS

So far, we have modeled the phenomenon of clumpir=
in one given zone, which is only an aspect of what can =
observed in dense urban networks during exceptional ever- = —— g
The sheep model has a major drawback, which prevents .. B
to fit reality : as soon as it has reached an absorbing state, it (8) «=0.08
does not evolve any more. This does not account for scagterilt_lig. 9. Mean reaching time [in min] foN' = 50, K — 3 andy = 1 min~".

where a hot spot suddenly disaggregates before reformingria maverickness rate grows fromo to 0.1. Note that the scale of theaxis
other zones.

03 0

) a=0.1

varies.

This section aims at modeling scattering. We introduce some
users, the mavericks, who are not influenced by the others. In T T
the model, mavericks coexist with sheep. During a transitio
mavericks choose uniformly their target zone, includingjrth
current zone, independently from other mobiles (which is a
simple instance of independent random waypoint motion). In
this new model, states of the foriVe;, are not absorbing
anymore.

We introduce maverickness as foll@vsat each transition,
an individual decides to behave as a maverick with proligbili
« (« is the maverickness rate), and as a sheep with probability
1— «. The new rate of thék — k') transition is hence given '
by :

5000

2000

Fig. 10. Maximal mean reaching time [in min] with respectato N = 50,
nk,) K =3andp=1min"L.

1
Gnn’ = UMk (04'—+(1—04)N

K
A. Mean Reaching Time « The mean reaching time grows exponentially withOn
Fig.[10, we have plotted the maximal mean reaching time
with respect ton (this corresponds to the case where all
zones initially contain each approximately/ K individ-
uals).

On Fig.[9, asx increases (in other words, as the system
becomes saturated by mavericks), the surface becomes
3There are several possible coexistence models. A first meolgt consist very quickly plateau-shaped (this is already the case for

in choosing a fixed population of sheep and mavericks at thabiag of the a = 0.08). Apart from the regions close to extremal
evolution; the main objection against this model is thas ifjuite constrained : I hi . | h hich
suppose there are on0 individuals; if we want to reach a "maverickness” states, all reac 'ng tlmgs are more or _eSSt _e.same'_wl _'C
rate 0f0.01% for example, this is impossible. means that reaching times become insensitive to initial

We call reaching time the time to reach any extremal state,
namely a state of the fornNe, from somek. On Fig.[9,
we have plotted the evolution of the mean reaching time with
respect too.

As « grows, one can observe several phenomena: .



state. Even if the system starts from a state close to anThere is a critical value. where the curve’s shape reverses.
extremal point, it takes a large excursion and a long tim&hat does the transition look like? Is it possible to obtain a
to reach one of the extreme states. It is interesting t@mpletely flat curve (or surface in the general case) ?
observe that such a small proportion of mavericks canExpression[{8) shows that it is possible. It is sufficient to
induce such a perturbation (for further details, see sectiimpose N3 — 1 = 0 to obtain a uniform distribution. This
IV-B). This is not yet a proof but just an indication thatcorresponds to the critical value:
there is scattering (we propose a systematic study of
scattering in sectiof TVAC). o - K

" N+K’

B. Phase Transition . . .
« for a < a, the influence of the sheep remains noticeable.

To characterize the phase transition observed in[Rig. 9, we This is the most interesting case, because the system still
calculate the invariant measureof the "sheep and maverick” exhibits clumping.

Markov process, and observe whether there is a valuefof o for a = a., all states are equival@nt

which all configurations are equiprobabte.is given by the  , for a > a., the sheep loose very fast their influence.
equationt@ = 0. Let 8 = K(L we have:

1-a)? As traces reveal the existence of clumping, we shall assume
K np—1 until the end of the paper that < «..
1 . ==
W(n):AHn—k, H(Nﬂ+l)7 (8)
k=1 " i=0

where A is a normalizing constant. This result is proved i©. Macro-states and Hot Spot Dynamics
appendi{C. On Fig. 11, we plot the invariant measure with The system is fully characterized by four parameters, which

respgct th. for K =2 and N = 50. As aIready indicated are N, K, p anda. The three first parameters can be directly
by Fig.[9, it appears that when grows, the influence of d. bud t And vet. it is of maior importance
mavericks is more and more noticeable. For higher values of 2>ured, buér cannot. yet, . ) P :

, the probability is more concentrated on uniformly-spree{a a sense, it repr(_asents t.he prppensny of USers to c[ump.
@ P ow can we make it best fit reality ? We would like to find
states. ) L
a typical characteristic of the system, easy to measure and
strongly related tax. This is what this subsection aims at.

Let us study further the case < a.. If we simulate
such a system, we observe clumping as expected, but we
also observe scattering. We would like to evaluate how often
a scattering happens. However, extremal states of the form
Ne;, are extremely rare, so that it would be difficult to base
our analysis on them. We will rather consider "macro-states
T e which are the union of several states close to one of the
(@) a=0.01 (b) & =0.03 extremal states.

For example, let us denote byl; the macro-state in
which the k-th zone contains a significant proportion of the
population:A; = {n : ny > Ngup}, WhereNg,, is an lower
bound for a zone to be considered as dense. Conversely, we
define B, = {n : ny < Nin¢}, Where Ni,¢ is a lower bound.
Then a scattering is simply a transition fra# to By. More
precisely, fork fixed, we define the corresponding scattering
time S, as the duration between the first instant when we reach
A, and the first instant when we reaéh, after that. Another
option would have consisted in using the last time we ledye
before reaching3; in place. But this is not a stopping time,
which would make such a choice more difficult to handle using
Markov chain theory. Hence the former definition.

The expectation of}, only depends on initial state, regard-
ing that we start ind; or not. If we do not start irdy, then
almost surelyn;, will be equal toNg,, + 1 when we react.

oo

() & =0.038 (d) & = 0.04

€) o =0.05 ) a=02

. ) _— 4As N — oo, this assumption can be interpreted as follows: since
Fig. 11. Invariant measure faV = 50, K =2 andp =1 min™". When ., ~ K/N, it means that, asymptotically, it is enough to have only one
a exceeds).038, the shape of the curve reverses. maverick per zone to saturate the system, which is quiterisimg.



It is shown in appendik D thaE[S|n(®) = n] is given by N are known for instance, we can then deducby solving

the following analytic expression: an inverse problem. If the functioB[S] = f(«) is injective,
eV (Noup+1) N at least fora < «., this inverse problem can be solved
N Z Z Hl<z<] 6(i) @) without ambiguity. It appears thaf(«) is always convex,
w(l —a) e )8+ N —3)’ thus decreasing of), ain[, SO that a necessary and sufficient
. e condition would bex. < o, provided we prove convexity.
with . . On Fig.[I2 this is always the case, but this is not true in
, (N —i)(NB +1) . e _
0(i) = general; a counter-example & = 2, N = 100, Ng,,/N

UN(K -1)8+ N —1) = 0.99%. In practice i, seems to be hard to compute
The expression i {9) only depends on the initial state, andanalytically, so that we could not find a simple sufficient
particular on whether it belongs té;. or not. If we are not in condition.

Ay, then [9) does not depend an By symmetry w.r.tk, we Our experiences show that such counter-examples appear
can denote it byE[S]. Fig.[12 depicts the evolution d&[S] to be extremely rare, especially whéa > 2. It seems that

in function of o for several values ofV. most choices ofV;,; and Ny, satisfy the injectivity off(«)

Let aumin be the value ofyx such thatl[S] is minimum. For on ]0, a.[. However, if it turned out that it is impossible to
certain values ofN, E[S] is strictly decreasing ovel0, 1], chooseNi,s and Ny, properly, we advise to complement the
so thatamin = 1, but for some other values oV (like measure oft[S] with a measure oE[F] for instance.

N =1000), E[S] starts increasing aftet,,;y. In contrast, when measuring juBfF], one has to be more
cautious, since the injectivity af(«) = E[F] on]0, a.[ sSeems
less common.

Let us consider for instance the transfer that happens
betweenParc des Princesind Auteuil (see Fig[R). Observing
carefully our data, we conclude that there are three aiigact
zones:

« Auteuilitself

« the Parc des Princesnorthern part

« the Parc des Princessouthern part
so that we takeX = 3. On Fig.[18, one can see the numbers
of users in each zone.
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Fig. 12. Mean scattering time [in min] with respectdo Ngup/N = 80%,
Ning/N = 20%, K = 3 andy = 1 min~—!. For each curve, the vertical solid 3000
line corresponds to the critical value., while the dotted line corresponds to

amin (Whenever it is less than the right bound of the axis). 2500
=N - =i arc des Princes South
In the same way, we can compute the mean "filling tinie” £ -
of a zone, which is the dual of the scattering time, and whic§ 1so — Auteuil
we propose to define as the time for the population in a give
zone to grow fromNi,s to Ny,p,. We have: 1000
N—Nins+1 N : S00
N [l<ic;€(d)
BF)= Ny Y st o)
_ ; — 0
‘u(l Oé) l:N—NSup j:l ‘](Nﬂ + N ']) 20:00:00 20:30:00 21:00:00 21:30:00 22:00:00
3 time
with
. . Fig. 13. Traces collected during tlit&te de la Musiquéetween the three
e(z) _ 1 _ (N - ’) (N(K — 1)ﬁ + ’) attracting zones.
O(N —1) i(NB+ N —1)

Note that it is easy to find some recursive formulas for the The total number of traces remains more or less constant,
computation ofE[S] and E[F], which allows to decrease theso that we choose an average value\of= 4830. This gives
complexity of their evaluation down to a Big-O o¥. a, = 6.2 x 107, In our data, a SMS signalization lasts about
one second: each time a SMS is sent or received, a new
user is counted, but he is deleted after one second. Theyefor

The aim of this section is to see whether the crowelven if this is not true, but in order to remain consistent,
movements observed in the traces can be described by wer make as if users were staying one second in the zone
"sheep and maverick” mobility model. before disappearing. Thus we put= 1 sec!. Choosing

We propose to us&[S] or E[F] for our calibration. These to calibrate first onAuteulil filling, we take Ny, /N = 55%
guantities can be measured. Let us now see thB{Sf and and N,,¢/N = 45%. After verifying thatg(«) is injective on

V. CALIBRATION WITH TRACES



10, a[, we finda = 0.6 x 10~4, that is,a < «a.. This was to and different densities of population. As for Software Defin

expect, since scattering is very clear in our case. Radio (seel[10]), it consists in deploying base stationsdha
In order to verify this value, we also measure tPac des able to switch from a system (like GSM) to another one (like
Princes Soutfscattering, which yields: = 0.5 x 10~%. UMTS), depending on the demand.

Now, if our model is consistent, it has to predict other Even if they have not been implemented in real networks
clumps or scattering over Paris. Let us consider the tranglet, these two domains are today quite an active field of
Chatelet-Saint Michel-Bastilldor instance, in the heart of research. It is crucial that implemented algorithms carehav
Paris (see Figl_14). These zones are attractive. Besides, apeidea of the typical evolution durations of the system.
consider a fourth zone which is the complementary regionFor instance, if we can predict if a zone that is full will
inside the triangle. That one experiences scattering, @aserremain so for a long time, or if an empty zone will soon fill,
the three attractive zones experience filling at the same.tinbne can decide with much more accuracy whether allocating
resources or not.

4000 More generally, some optimization algorithms are known
4000 to depend massively on the tuning of a key parameter.
3500 - ' For instance,[[6] proposes an algorithm to optimize radio
5000 | / ressources in a 802.11 network, based on Gibbs sampler. The
: "temperature parameter” of the sampler has to be tuned very
2 2500 - — Bastille s -
£ Chatelet carefully, so that the optimizer can react quicklier thag th
g 2000 { santMichel|  typical time of evolution of the system itself. More conelgt
1500 in our case, supposing that we want to take users mobility int
1000 | account in a 802.11 network, if we can anticipate a scatjerin
0. we are able to adapt the optimizer in a suitable manner.
Also in the case of a genetic algorithm, it can be interesting

0 T T T
18:00:00 20:00:00 22:00:00 00:00:00

to adapt the cross-over and the mutation rates of the opimiz
to react to a sudden evolution of the system. Indeed, theshigh
these rates, the stronger the diversity of the genetic jadipal

Fig. 14. Traces collected during tfeéte de la Musiquen the triangle | OUr case, a scattering _'5_||ke|y to modify drastically the
Chatelet-Saint Michel-Bastille system to optimize. Thus it is useful broaden preventativel

the variety of solutions that are explored.
Theoretically, a filing of a zone from 5% to 28% for

instance should last about 10800 seconds, according to FheData Caching in Dense Ad-hoc Networks

value of o we found previously. Now, the filling oBastille In a dense data ad-hoc network, it can be useful to add

lasts about 11300 seconds, so does the fillin@ldtelet and some fixed servers which keep the most frequently asked data
the filling of Saint Michellasts about 11000 seconds, whictin cache memories. Various algorithms already exist on this

time

is very close to our prediction. subject (see for instancel[5][15]). The question is wher@ an
when should we cache memory ?
V1. CONCLUSION AND PERSPECTIVES The idea is to select some strategic places where people

In this paper, we proposed a new mobility model able t¢sually clump together. These are diirzones. Suppose that,
represent and quantify the hot spots found on traces, alo#gjng sectioilV, we have previously evaluatedver the study
with their random time dynamics. Our aim was not to buil@rea, possibly for a different number of users and zonesa,The
a generic mobility model, adapted to every kind of situgtiofineasuring in real-time the actual numbar of users and
but rather to focus on multi-event mass gatherings. We hagemputing the corresponding scattering times, as soon as a
proved our model to be analytically tractable, by derivgitinzone exhibits clumping, one knows how long on average this
closed forms and asymptotic estimates. Using measureme#itt last. In other words, one knows if it is worth caching dat
from a GSM network, we also showed how to calibrate traf that place.
model to fit reality. In addition, our model was proved to be Conversely, if a zone is almost empty, one knows, using
able to predict the order of magnitude of hot spots in difiere”filling times”, if there is a risk that we will soon encountar
time-space situations. peak of population and have to rush to cache memory there.

Apart from the main application, which consists in build-
ing an efficient mobility model for network simulators, we
describe here some applications, that rely on the ability to
predicting clumping or scattering with a good likelihood.

A. Dynamic Spectrum Allocation and Software Defined Radio

Dynamic Spectrum Allocation (segl [7]), consists in allecat
ing variable bandwidth resources, according to differeemtes
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APPENDIX If K = 1, we are in an absorbing state and equation
. . holds. Otherwise, following equatiohl] (5), let us intuoe
A. Resolution of Equatiofi(1 ® ’ :
esolution of Equatiofi (1) €nn’ = hn' — hn. We have:

Y 0<icn dmih,n—s = —1 can be rewritten as:
OsisN Z Gun'hnr = hy Z Gnn’ + Z Gnn’€nn’
N ’ ’ ’
2ha.n-1) = heN-2) = s n X "
2h(N-1,1) — h(n—22) = (]\J;V ) =
N i = nn’€nn’,
2hn = hny(—1,0) = Pnya,—1) = D) otherwise n%:nq €
Thus we have to invert th¢ N — 1) x (N — 1) matrix gpg:
U= (ui,j) with Uj 5 = 2,Ui71‘,1 = Uj—1,5 = —1,’[141'_0' = 0 oth- _ nl
erwise. One can easily check tliat ! is given byV/N, where  pthn = Z Z
the elements ol are: Ik, k' 0<i<n,
) N —np+1 N —np —1
JIN—=1d) ifi>y + Z Nik + Z Nik
Vij =3 . N e 0<i<ny—1 ! 0<i<ng+1 !
(N —j) ifi<iy. St
- — nl N — Nk N — N
Equation [[2) follows immediately. - Z Z N N —np+1 + N — ny
Let us now give an asymptotic estimate of this expression. bO0si<m . .
We introducer = n, /N, t =14i/N anddt = 1/N. We have: —
.= / LT T
N N 0<i<ni—1 0<i<n,, +1
uhy =Nz Z Ll +N(1-x) Z LI 1
= — .z _ — .. — b+
i=n1+1 N i=na+1 N i A g ng + 1
: . . . 1 1
Both sums of the right handside can be interpreted as Riemann + Z - — Z -,
. . k N —1 _ N —i
integrals on[z, 1] and[1 — z, 1]. Let us work out the first one 0<i<ny—1 0<i<n +1
for example: whence
1+1/N 4 N 1 1 1q 1 1 1
[0 X was) e = | X Y
et1/N T i=ni+1 N 1 z b Ho\ o<iene N—i 0<i<n,y N—1
A fortiori: Note that the second sum is well-defined, becayse 0 and
. Ny K > 1, so thatny, < N and N — ¢ cannot be zero. Now, we
—1 - < — .2 < ] ) can prove that{6) verifies equatidd (1):
og(x) Nz — Z N i~ 0g(z)
i=ni+1 1 1
. . . . nknk/
We would obtain the same inequality replacindy 1 — z. Z Gnn’€nn’ = Z Z N_i Z N
Defining the remainder: n’#n (k,k’) 0<i<ny 0<i<n,
N
Tn = |hn + —(55 log(z) + (1 — z)log(1 — 55)) ’ _ i NENE Z o Z 1
a - N . N—i 4L« N—i
k 0<i<ny 0<i<ng,

we haveur, < 2. Thus, our estimate is

0 by symmetry

#

. Z NENg ] 1

and the error is uniformly bounded By y. (o N N-—-np

B. Proof of equation[{6 N ™ N—p) = —1
quator({e) | | > Wy (V=)

We are now looking for a solution of equationl (1) #d _ _ .
dimensions. First, let us start from equatién (6), in order t We still have to prove that in our case, there is no other
prove it satisfies the equation. solution of [1). In other words, we have to prove that the only

First remark: is one of the,s is zero, then we can removesolution of:
zone k without changing the sum ir](6), since the subsum {Vn absorbing hy = 0

‘%(:c log(z) + (1 — z) log(1 — x)),

indexed ovel) < i < ny, is empty. Furthermore, this will not (11)
changel[(ll) either, since transitions towards empty zones ar
forbidden. Thus, without loss of generality we assume that & the zero-vector. As usual, we introdugg, = —An,

n,S are nonzero. and ¢gnny = Appun if n # n’ (where thep,,s are the

Vn non-absorbing >~ ,on-absorbinglnn’ in = 0
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transition probabilities). If there exists a transition— n’ Then the idea is to introduce:
with probability > 0, thenpn,, > 0, andp,, = 0 otherwise. . (N —i)(NB +1i) U
Since h, = 0 if n’ is absorbing, the second line ¢f{11) 6(i) = = NB+ N —i and vy, = —x———
. i(NB+ i) L=, 0()
can be rewritten as: r=m

We obtain the following value ob,, — v;,41:
Z Gnn’ hn’ =0« Z pnn/hn/ = hn-

n’#n N
nom’ exist (1l = a)m(NB+N —m) [T} 6()
Considem such thath,, is maximal. Then by convexity, since ¢ that, forNine + 1 < m < N, v,, is equal to:
all coefficientsp,,, are nonnegative, we see that necessarily N_1
all h,s such thah — n’ exists with probability> 0 are equal N + N Z 1 i
to hn. Step by step, since we can reach at least one absorbing p(l —a) & j(NB+ N —j) Hf\;l 4(7)

state starting from, this provesh, = 0.
Finally, changingh in —h and applying the same result, we Sincegny nhn + v n—1hn—1 = —1, we also have:
see that the minimum of thk,s is zero too, which achieves uy = —1/qn N =2/paN = vy. Finally:

the proof. N XN: 1
Um = )
C. Steady-state Computation pl—a) & G(NB+ N — )T, 6()
In this section, we will explain in several steps how to prove gnq-
(@). First let us takel = 2 and keep notations of sectibn 11I-B.
We are facing with a birth and death process, which is time- N ZN: | JESIC)
i i i U, = = —.
reversflble,. so that we can directly try to satisfy local bak n(l—a) £ j(NB+ N —j)
equations: J=m

To determine thé.,,,s, we still miss an equation. This is the

vm € [0, N = 1], 7(m)gm,m+1 = 7(m + 1)gm-+1,m- last one before reachinfn/n; < Ny} :

We deduce at once:

qunvainthinf + qul)f7NiI)f+1hNinf+l = _1
w(m) = x(0) ][ (v —it (NS ti- o) Together with/y,,+1 — hin,,. = uni,+1, this leads suc-
ey i(NB+ N —1i) cessively to: Yo 56)
Nins <i<j
In order to generalize this formula, we would like to rewrite hNe = 11— Z N : N] >
- . p(l—a) = jINB+N —j)
it in a symmetric manner w.r.; andn.. In fact, we have: J=Ning
ni NB+i—1 1qn2 NB+i—1 and, more generally, to: )
L i 2 5 )
m(m) = W(O)Hbl - Nl;[fiil i h,, = N Z M
[lies == p(l —a) 12N = JINB+N —j)

This is equation[(8) in casi” = 2. Now we can reasonably |n particular, form = N, + 1, we obtain the claimed
suppose that8) still holds in the general case. In facs, #hi formula. Now suppose we are in the general case. It is
quite immediate. Indeed, thanks to the product form[of (8erfectly correct to consider the union of thé — 1 last
we know by the same calculation that in the general case, $hes as one big zone. A sheep will stay in this "macro-zone”
partial balance equations are still satisfied. This coregléte \yith probability % and a maverick will stay with
proof. probability £=1. This last probability is the only adaptation
we have to make in the previous calculation. Introducing

D. Proof of equation({9) B’ = (K —1)3, we obtain the following new recursion:

As previously, let us begin with the cagé = 2. We are in m(NB + N —m)
state(m, N —m) and we are looking for the hitting timk,, Umtl = N _m)(NB+m) ™
of {n/n1 < Nin}. N
We want to obtain an analytical formula df,, (let us _M(l —a)(N—m)(NB+m)’

say for Nj,¢ < m < N, since otherwisé:,,, = 0). If we in- S ]

troduceum, = hm — hm_1, We have the following recursion The rest of the calculation is exactly the same. In particula

(Nt +1<m< N —1): for a fixed n, the result is the same for each such that
m i — .

m(NB+ N —m) "
(N=m)(NB+m) ™
N
(=) (N —m)(NB+m)’

Um+1
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