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Data assimilation in glaciology

1.1 Introduction

In this short paper, we will give one example of an inverse problem in glaciology.
This problem is fairly simple to state: how to infer a climatic scenario (i.e. how to
reconstruct past polar temperature) from ice volume records?

Ice-sheet dynamics is quite complex. Ice is a non-newtonian fluid, its flow follows
a highly non-linear Stokes equation. One key factor of ice dynamics is surface mass
balance, that is the amount of ice accumulating at the surface (from snow precipitation)
minus the amount of melting ice. This mass budget is related to temperature at the
surface of the ice-sheet, depending in particular on temperature. See textbooks (Greve
and Blatter, 2009) and (Paterson, 1981) for detailed modelling of ice-sheets.

Ice volume observations are available from oceanic records, that give information
about sea level, and therefore about the amount of water stored in ice-sheets, ice-caps
and glaciers.

As far as we know, there are very few past works on this subject. (Bintanja, van
de Wal and Oerlemans, 2004) and (Bintanja, van de Wal and Oerlemans, 2005) use
some a very simple correction method, equivalent to the nudging method, with quite
good results.
The idea of this work is to explore the ability of the adjoint method to solve the inverse
problem of reconstructing past temperature given all available observations. We start
here with a simplified ice-sheet model and perform twin experiments.

We present the ice-sheet model in section 2, the adjoint method in section 3, and
give numerical illustrations in section 4.

1.2 Ice-sheet model

1.2.1 Ice dynamics processes

As the full Stokes model is very costful to run over paleoclimatology time scales (thou-
sands of years), large scale ice-sheet models have been developed, using the so-called
Shallow Ice Approximation (SIA). Such models are able to reproduce ice-sheet evo-
lution over hundreds of thousands of years, for large ice-sheets such as Antarctica,
Greenland, Laurentide and Fennoscandian ice-sheets. One such model, GRISLI, is de-
veloped by LGGE (Ritz, Rommelaere and Dumas, 2001). It is a three dimensional
thermomechanically coupled model, whose main physical processes are summed up in
figure 1.1.
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Fig. 1.1 Physical processes impacting ice-sheet dynamics.

1.2.2 Model equations

As GRISLI model is still costful to run, we will use a simplified, flowline, isothermal
prototype of this model, on a flat bedrock topography, without floating shelves, which
is faster to run, in order to study the paleoclimate inverse problem. Flowline means
that the model is one-dimensional in space.
The first equation is the mass balance equation:

∂H

∂t
= ḃm −

∂
(

UH
)

∂x
, H|t=0 = H0

with

• t time, x latitude

• H(t, x) ice thickness, H0(x) initial ice thickness

• U(t, x) Eulerian velocity averaged over the ice thickness

• ḃm(t, x) surface mass balance rate

Vertically averaged ice velocity U(t) is a diagnostic variable, that is to say it depends
only on geometry variables (S, H) at time t, and it is given by the following equation:

U = uB − a1
∂S

∂x

H2

3
− a2

(

∂S

∂x

)3
H4

3

S = B +H

H ≥ 0

with
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Fig. 1.2 Accumulation, ablation and surface mass balance as a function of surface temper-

ature.

• uB(t, x) basal velocity

• S(t, x) ice surface elevation

• B(t, x) ice base (bedrock elevation, constant in this study)

• a1, a2 given coefficients

1.2.3 Climatic scenario and surface mass balance

The surface mass balance is given as a function of the ice surface temperature:






ḃm = Acc + Abl

Acc = f(TS)
Abl = g(TS)

with

• Acc(t, x) accumulation rate

• Abl(t, x) ablation rate

• TS(t, x) surface temperature

• f, g given functions

See figure 1.2 to see how accumulation and ablation depend on surface temperature.
And finally, the surface temperature itself depends on latitude x, on altitude S, and

on the (poorly known) temperature at the northern point at sea-level height Tclim(t):

TS(t, x) = Tclim(t) + b x+ c S(t, x)

with b, c given coefficients.
The aim of the problem is to infer Tclim(t) from volume measurements.

1.3 Adjoint method and adjoint model

We refer to main and specialized lectures regarding variational data assimilation and
adjoint code construction.
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Fig. 1.3 Past ice volume records. black: mesured data from (Raymo, 1997); blue and red :

different models

1.3.1 Observations and control variables

As we said before, we will use ice volume observations, available from sea level records,
see figure 1.3 from (Paillard and Parrenin, 2004) as an example. As we do twin exper-
iments, we will generate ourselves our data, from a reference “true state”.
In the framework of four-dimensional variational assimilation, we write our inverse
problem as a minimization problem: we want to find the “best” temperature Tclim(t),
sot that the misfit between modeled and observed volume is smallest. This means that
our control variable is the climatic temperature Tclim(t), and our cost function writes
as follows:

J (Tclim) = J b +

∫ tf

t0

‖Vol(t)−Volobs(t)‖2 dt, Vol(t) =

∫

x

H(t, x) dx

where the background term J b is a classical regularising term, involving a background
temperature and background error covariance matrix:

J b(Tclim) = ‖Tclim − T b

clim‖2k

The norm ‖.‖k is classicaly given by:

‖X‖2k =

∫ tf

t=t0

∫ tf

s=t0

k(s, t)X(s)X(t) ds dt

with k a regularizing kernel. In discrete form, this would writes:

‖X‖2
B−1 = XTB−1X

where B is the background error covariance matrix, andX contains Tclim(ti)−T b

clim
(ti)

for all discrete controle times ti.

1.3.2 Adjoint code validation

We minimize our cost function using quasi-Newton descent algorithm. This requires
the gradient of J , obtained thanks to the adjoint model. As our flowline model is
simple and in Matlab, we implemented by hand the adjoint code using classical recipes
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Fig. 1.4 First- (left) and second- (right) order gradient tests.

for adjoint code construction, see e.g. (Giering and Kaminski, 1998). To validate our
gradient, we perform first- and second-order tests, that is we check that the 1st and
2nd order Taylor approximation formula

J (x+ αz) = J (x) + α∇J (x)z +
α2

2
zT∇2J (x)z + o(α2)

is valid. To do so we form

δ = ∇J (x)z, τ =
J (x+ αz)− J (x)

α
, ε =

τ(α, z)− δ(z)

|δ(z)|
, r =

τ(α, z)− δ(z)

α

and we check that ε tends to zero as α tends to zero, and r tends to a constant
depending only on z, see figure 1.4 for an illustration with our model.

1.4 Numerical results on twin experiments

In order to validate our method and ajoint model, we present a first illustration on
twin experiments (see figures 1.5 and 1.6). The principle of such experiment is as fol-
lows: first we choose a reference climatic scenario Tclim, called the “true” temperature
forcing. Second we perform a direct run of the model with the “true” forcing and we
generate synthetic observations (figure 1.5). And finally, we forget that we know the
true temperature, we start with a constant first guess for Tclim, and we perform data
assimilation thanks to the adjoint method, in order to get an assimilated Tclim. We
can then compare our result with the true Tclim (figure 1.6).
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Fig. 1.5 Twin assimilation results: True climatic scenario Tclim (top), generated volume

data (bottom).

Fig. 1.6 Twin assimilation results: Tclim recovered thanks to data assimilation.
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