
HAL Id: hal-00716478
https://hal.inria.fr/hal-00716478

Submitted on 10 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High performance checksum computation for
fault-tolerant MPI over InfiniBand

Alexandre Denis, François Trahay, Yutaka Ishikawa

To cite this version:
Alexandre Denis, François Trahay, Yutaka Ishikawa. High performance checksum computation for
fault-tolerant MPI over InfiniBand. the 19th European MPI Users’ Group Meeting (EuroMPI 2012),
Sep 2012, Vienna, Austria. �hal-00716478�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49879157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00716478
https://hal.archives-ouvertes.fr

High performance checksum computation for
fault-tolerant MPI over InfiniBand

Alexandre DENIS1, Francois TRAHAY2, and Yutaka ISHIKAWA3

1 INRIA Bordeaux – Sud-Ouest / LaBRI, France
alexandre.denis@inria.fr

2 Institut Mines-Telecom, Telecom SudParis, 91011 Evry, France
francois.trahay@it-sudparis.eu

3 University of Tokyo, Japan
ishikawa@il.is.s.u-tokyo.ac.jp

Abstract. With the increase of the number of nodes in clusters, the probability of
failures and unusual events increases. In this paper, we present checksum mech-
anisms to detect data corruption. We study the impact of checksums on network
communication performance and we propose a mechanism to amortize their cost
on InfiniBand. We have implemented our mechanisms in the NEWMADELEINE

communication library. Our evaluation shows that our mechanisms to ensure mes-
sage integrity do not impact noticeably the application performance, which is an
improvement over the state of the art MPI implementations.

Keywords: Checksum, Fault-Tolerance, High-performance networks, InfiniBand

1 Introduction

Since the development of large scale supercomputers have led to systems composed
of hundreds of thousands of components, the likelihood of hardware or software failure
becomes embarrassing. The design of future supercomputers foreshadows an increasing
number of components, decreasing the mean time between failure [4]. Multiple causes
of failures exists — software bugs, hardware failures, failed switch, electromagnetic
perturbation, faulty cable shielding — leading to various types of failures — crashed
nodes, lost packets, data corruption. Communication libraries implement a variety of
mechanisms to detect and survive these failures.

We focus in this paper on the detection of data corruption in MPI network commu-
nication through the use of checksums.

On their way from the sender memory through the receiver memory, messages may
be corrupted with some bits flipped. It may occur on the wire, in the NIC, or on the
PCIe bus. Most network hardware use checksums internally to ensure message integrity
on the wire, but corruption may occur at any other given point [7]. To ensure end-to-
end message integrity from sender memory through receiver memory, communication
libraries use checksums: the sender computes a checksum of the message to be sent and
its headers and sends it with the message headers. The receiver computes the checksum
on the received messages; if it doesn’t match the one received alongside the data, it

means corruption occurred: either the data, the headers, or the checksum itself have
been corrupted during the transfer. In this case, the message is considered as lost and
the communication library retransmits the packet.

In this paper, we study the impact of checksuming on communication performance
and propose mechanisms to amortize their cost on InfiniBand.

The remainder of this paper is organized as follows: Section 2 presents related work.
In Section 3, we analyze the cost of checksum on communication performance. Sec-
tion 4 presents the technique we propose to amortize the cost of checksum computation
on InfiniBand. Results are discussed in Section 5 and we draw a conclusion in Section 6.

2 Related work

Some works have focused on the effectiveness [13, 12] of error detection for various
checksums algorithms, or on the performance [8, 9] of checksum computation. To our
knowledge, these works have not been integrated into any MPI implementation.

Failure detection in MPI relies usually on heart beat technique [2] or on sender-
based logging [16] that consist in detecting remote activity through the network. Such
techniques detect node or link failures, not data corruption.

LA-MPI [11] and OPENMPI [15] ensure the integrity of messages by computing
checksums. This allows to detect corrupted fragments and to retransmit them, but this
technique suffers from a large overhead that significantly impacts the performance of
applications. Since LA-MPI has been superseded by OPENMPI, in this paper we com-
pare our approach against OPENMPI only.

We have implemented our proposed checksum mechanisms in NEW-
MADELEINE [1] since it was more convenient for us to work in our own com-
munication library. However, these mechanisms are intended to be generic and not
specific to NEWMADELEINE, thus they could probably be implemented in any other
MPI implementation.

3 Checksum cost analysis

In this Section, we study the cost of various checksum algorithms and their impact on
communication performance.

Computing checksums has a cost that may lower the available bandwidth. The pre-
cise cost depends on the checksum algorithm, the compiler, and the CPU. In this paper,
we consider the following algorithms: sum– plain sum of 32 bits words; XOR– XOR
all 32 bits words; Adler-32, Fletcher-64 [9], Jenkins One-at-a-time [12], FNV1a [10],
Knuth hashing, MurmurHash2a, Paul Hsieh Superfast– a collection of well-known fast
hashing functions that can be used as error-detection (non-cryptographic) checksum;
CRC– 32 bits CRC computed with SSE 4.2 (non-accelerated CRC is too slow to be
considered here). Algorithms sum and XOR are given as performance reference only,
but are not suitable [13] to detect reliably errors on more than one bit; CRC is expected
to be slow but offers the best error detection; other algorithms are expected to be a good
compromise [8].

 0

 5000

 10000

 15000

 20000

 25000

Plain-Sum

XOR
Adler-32

Fletcher-64

Jenkins-One-at-a-time

Fowler/Noll/Vo

Knuth-Hash

MurmurHash2a

Paul-Hsieh-Superfast

SSE4.2-CRC32

B
an

dw
id

th
 (M

B
/s

)

Fig. 1. Bandwidth of some checksum algorithms on 32 kB blocks.

Figure 1 shows the bandwidth of these checksums on our jack cluster, equipped
with dual-core Xeon X5650 at 2.67 GHz, on 32 kB blocks that fit the L1 cache. The
plain sum and XOR are the fastest, and will likely always be on any hardware. How-
ever, it cannot reliably detect corruption beyond a single bit. For a better error detection,
Fletcher-64, FNV1a, MurmurHash2a and SSE4.2 CRC are good candidates on this par-
ticular machine and compiler. They perform around 6 GB/s which makes 1.5 ns/word,
i.e. 4 cycles per 32-bit word.

We have observed a huge performance discrepancy from one CPU to another, and
from one compiler to another, e.g. Fletcher-64 is 60 % faster with icc than with clang
on Nehalem, and with gcc Fletcher-64 is slower than FNV1a on Nehalem but the
reverse is true on Dunnington. Therefore we use auto-tuning [3] to choose dynamically
the best performing checksum algorithm.

Even when selecting the fastest checksum algorithm, checksum computation has
a huge impact on network performance. Let L be the length of a given message, we
model the checksum time as a linear function in the form Tcsum(L) = L

Bcsum
, and the

network as Tnet(L) = λnet+
L

Bnet
with λnet andBnet the latency and bandwidth of the

network. Both sender and receiver must compute the checksum to ensure data integrity.
For a naive approach — the sender computes the checksum, then sends data, then the
receiver computes the checksum — the total transfer time is: T (L) = L

Bcsum
+ λnet +

L
Bnet

+ L
Bcsum

. The apparent bandwidth converges asymptotically towards 1
1

Bnet
+ 2

Bcsum

On the jack cluster, we have Bnet = 3GB/s and Bcsum = 6GB/s for Fletcher-64,
thus the apparent bandwidth of the naive approach is 1.5GB/s which is 50 % of the
network bandwidth. We get results in this order of magnitude on most contemporary
hardware.

4 Amortizing the cost of checksum computation

In this Section, we present our approach which consists in amortizing the cost of check-
sum computation by combining the checksum and the memory copy wherever it hap-
pens, and in overlapping computation and network transfer.

We have implemented our mechanisms in the NEWMADELEINE communication li-
brary, which decouples upper layers communication requests from network interface.

It applies optimization strategies inbetween in order to use more efficiently the net-
work [1]. For instance, multiple small messages from the application may be aggregated
and sent as a single packet on the network. Another optimization consists in using si-
multaneously multiple links by splitting large messages. To survive network failures, a
sender-based logging mechanism [16] was implemented in NEWMADELEINE. When a
data corruption is detected, the message sent through the faulty link is retransmitted.

4.1 Combining checksum and memory copy

On the jack machine used in the previous Section, the memory bandwidth for read-
ing is 9700 MB/s and the copy bandwidth is 4530 MB/s. Thus, the simplest checksum
algorithms are memory-bound and the others are in the same order of magnitude as
memory bandwidth. It is then expected that a large part of the cost of a naive approach
for checksums will be actually memory access. For multiplexing and to apply opti-
mization strategies, NEWMADELEINE always copies small packets. Even large packets
sent with rendez-vous over InfiniBand go through a super-pipelined protocol [6] using
a copy.

 0

 2

 4

 6

 8

 10

 12

 14

 16

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (G

B
/s

)

Message size (bytes)

sum
xor

adler
fletcher
jenkins

knuth
fnv1a

murmurhash2a
hsieh

crc

(a) copy, then checksum

 0

 2

 4

 6

 8

 10

 12

 14

 16

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (G

B
/s

)

Message size (bytes)

sum
fletcher
jenkins

knuth
fnv1a

crc

(b) combined checksum and copy

Fig. 2. Performance of copy and checksum on cluster jack.

We propose to take benefit from these copies to amortize the cost of checksum,
i.e. reduce the memory accesses needed for checksuming by combining copy and check-
sum, and overlap memory accesses and checksum computation thanks to CPU being
superscalar. We propose to compute the checksum on the fly at every place where data
is copied in NEWMADELEINE. Two approaches are possible: copy data then compute
checksum, relying on data having been fetched in cache by the copy; combine check-
sum computation and memory copy, i.e. for each word fetch from memory, compute
checksum, store at destination.

We have implemented the first approach with the full collection of checksum func-
tions; the benchmarks results are presented in Figure 2(a). We have implemented the
second approach with a selection of checksums; the benchmarks results are depicted in

Figure 2(b). We observe that combining the checksum and the memory copy is always
beneficial, except for SSE 4.2 CRC where the checksum-only implementation is opti-
mized in assembly where the combined version is written in C with compiler intrinsics
for SSE. Once again, we rely on auto-tuning to dynamically decide which version to
use.

4.2 Checksums for small messages (eager send)

In NEWMADELEINE, small packets are sent with an eager protocol: data is copied to
add the headers and to apply optimization strategies such as aggregation of multiple
messages into one packet. To add checksuming, we simply change this copy into the
combined checksum and copy. On the receiver side, NEWMADELEINE receives packets
in its internals buffers, then parses headers, performs matching, and unpacks data to its
final destination in the user buffers. Here again we change the copy into a combined
checksum and copy.

Let λnet and Bnet be the latency and bandwidth of the network; Bcsum+copy the
bandwidth of the combined memory copy and checksum computation, then the total
transfer time for a message of length L sent with eager mode is T (L) = 2×L

Bcsum+copy
+

λnet +
L

Bnet

On the jack cluster, equipped with ConnectX2 InfiniBand QDR HCA, we have
λnet = 1.4µs; Bnet = 3GB/s; Bcsum+copy = 6GB/s. Then we can compute the
expected overhead of checksums to be 34 % on 4 kB messages. This cost is quite high,
but lower than the asymptotic cost since network latency cannot be neglected for small
packets. A pipeline to overlap checksum computation and network transfers wouldn’t
be beneficial since fragmentation overhead would not compensate for the checksum
cost on such small packets.

4.3 Checksums for large messages (rendez-vous)

Large messages are sent through a rendez-vous protocol in NEWMADELEINE. On In-
finiBand, we use a variable depth super-pipeline [6] to fetch data into registered mem-
ory. We propose to combine the checksum computation with the copy performed by
the super-pipeline on both sender and receiver sides. We expect it would amortize the
memory transfers needed for checksum, and overlap checksum computation and net-
work transfers.

As depicted in Figure 3, this protocol overlaps copy and RDMA. The chunk size
Cn = qn is growing from chunk to chunk, as a geometric series with a ratio q being
equal to the bandwidth ratio between network and copy. The size of the first chunkC0 is
determined so as its copy perfectly overlaps the rendez-vous round-trip (C0

Bcopy
= 2λnet

computed by auto-tuning). A sub-blocking mechanism amortizes the cost of the copy
of the last chunk.

We have shown [6] that the total transfer time of the superpipeline protocol is:

Tsuperpipeline(L) =
b

Bcopy(L)
+ g × n+ λnet +

L

Bnet

Sender

Receiver

Network

2

3

4
Copy

Copy

RDMA write

Fig. 3. Super-pipeline for memory copy: a pipeline with a variable chunk size.

with the number of gaps:

n = logq

(
1 +

L

C0
(q − 1)

)
and L is the message length, λnet the network latency, Bnet the network bandwidth,
g the gap as in the LogP model [5], q the ratio of the finite geometric series of chunk
size, and b the sub-block size. The overhead of this protocol compared to the raw net-
work performance is comprised of: the copy of the first sub-block of size b; the n gaps
between packets.

The addition of checksum to the copy has an impact on the first term (copy of the
first sub-block) and on q. The impact on the first term consists in the checksum of a
4 KB sub-block, which is half a micro-second on our jack cluster with FNV1a. The
impact on q used as the base of a logarithm is limited, e.g. with the parameters of the
jack cluster for a 1 MB message, it adds an overhead of one gap, i.e. 300 ns. The total
overhead of checksuming on this example is less than 1 % according to the theoretical
model.

5 Evaluation

In this Section, we present the experimental results obtained by comparing the
checksum-enabled NEWMADELEINE with the original NEWMADELEINE and OPEN-
MPI (ob1 and csum). We used MPICH2-nmad [14] as an MPI interface over NEW-
MADELEINE, and compared against latest stable release OPENMPI 1.4.5. We evaluate
the raw overhead of checksums computation as well as their impact on NAS Parallel
Benchmarks.

The results we present were obtained on the jack and graphene clusters. Clus-
ter jack is equipped with dual-core Xeon X5650 at 2.67 GHz and ConnectX2 QDR
(MT26428) InfiniBand; compiler is icc 12.1. Cluster graphene features ConnectX
DDR (MT26418) InfiniBand cards on quad-core nodes equipped with Intel Xeon
X3440; compiler is gcc 4.4.

5.1 Raw checksum overhead

We used Netpipe to measure the raw MPI performance on InfiniBand on both clus-
ters. Bandwidth results for NEWMADELEINE with various checksum algorithms are de-

 0

 500

 1000

 1500

 2000

 2500

 3000

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

no checksum
Adler

Fletcher
Jenkins

Knuth
FNV1a

Murmurhash2a
Hsieh
CRC

(a) Cluster jack, QDR

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

no checksum
Adler

Fletcher
Jenkins

Knuth
FNV1a

Murmurhash2a
Hsieh
CRC

(b) Cluster graphene, DDR

Fig. 4. NEWMADELEINE bandwidth with various checksums algorithms

picted in Figure 5.1. On both clusters, for small packets before the rendez-vous thresh-
old (16 KB), the impact of checksums is quite high, around 30 %, which is consistent
with our model in Section 4. For these packet sizes, there is no pipelining nor any
mechanism to amortize the cost of checksuming except the combination of copy and
checksum. The performance of these combined operations cannot be higher than the
peak checksum performance, which is much lower than copy for such packet size that
fit the cache.

For messages larger than 16 KB, the bandwidth overhead ranges from 3 % for
64 KB to less than 0.5 % asymptotically for the fastest checksum algorithms. FNV1a
is a sensible default choice on most machines and compilers if auto-tuning has not
been performed yet, but auto-tuning may still improve performance by a few percents,
e.g. Fletcher is 2 % faster than FNV1a on cluster jack (but Fletcher is 40 % slower on
graphene).

We compared our checksum-enabled MPI implementation against OPENMPI. The
bandwidth results are depicted in Figure 5 and 6. On cluster jack (Figure 5), NEW-
MADELEINE and OPENMPI get roughly the same bandwidth without checksums.
When checksums are enabled, the bandwidth is lowered by 20 % for OPENMPI, and
by at most 3 % for NEWMADELEINE, thanks to the super-pipeline protocol. On clus-
ter graphene (Figure 6), OPENMPI is slightly faster than NEWMADELEINE when
checksums are disabled. When checksums are enabled, OPENMPI suffers a perfor-
mance drop of 60 % while the overhead is below 2 % for NEWMADELEINE.

5.2 NAS Parallel Benchmarks

We also run the NAS Parallel Benchmarks on the graphene cluster. Table 1 reports
results for class B on 16 nodes. We report raw performance results (median time from
10 runs) as well as time differences as percentage.

The results show that OPENMPI is slightly faster than MPICH2-nmad when check-
sums are disabled. This can be explained by NEWMADELEINE optimization strategies

 0

 500

 1000

 1500

 2000

 2500

 3000

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

nmad no checksum
nmad FNV1a

OpenMPI ob1 (no checksum)
OpenMPI csum

Fig. 5. Bandwidth over QDR InfiniBand on cluster jack

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

nmad no checksum
nmad FNV1a

OpenMPI ob1 (no checksum)
OpenMPI csum

Fig. 6. Bandwidth over DDR InfiniBand on cluster graphene

is.B.16 lu.B.16 ft.B.16 cg.B.16 mg.B.16
MPICH2-nmad (no checksum) 0.37 s 18.54 s 5.06 s 5.72 s 0.71 s

MPICH2-nmad FNV1a 0.37 s 18.57 s 5.05 s 5.69 s 0.72 s
OPENMPI ob1 0.35 s 17.89 s 4.89 s 5.60 s 0.71 s

OPENMPI csum 0.43 s 19.30 s 5.45 s 6.59 s 0.79 s
OPENMPI csum / OPENMPI ob1 +22.86% +7.88% +11.45% +17.68% +11.27%

MPICH2-nmad FNV1a / MPICH2-nmad no checksum +0% +0.16% -0.20% -0.52% +1.41%
MPICH2-nmad FNV1a / OPENMPI csum -13.95% -3.78% -7.34% -13.66% -8.86%

Table 1. NAS results on cluster graphene

causing a longer software stack, thus a higher latency, with no gain when there is a
single communication flow as in the NAS Parallel Benchmarks.

When checksums are enabled, OPENMPI suffers a performance penalty from 7 %
to more than 22 %. On the other hand, enabling checksums in MPICH2-nmad (FNV1a
is selected by auto-tuning here) has a negligible impact on performance.

When comparing both checksum-enabled OPENMPI and MPICH2-nmad, MPICH2-
nmad is faster by 3 % to 14 %. This demonstrates that our approach to amortize the cost
of checksum computation is competitive.

6 Conclusion and future work

The advent of large scale supercomputers composed of hundreds of thousands of com-
ponents have raised reliability issues. Beside node failures, the interconnection system
may suffer from errors leading to data corruption. The classical solution to detect such
errors is the use of checksums, which have an impact on network performance.

In this paper, we have proposed a mechanism that amortizes the cost of checksum
computation in MPI implementations for InfiniBand. We have implemented and eval-
uated this mechanism. Our evaluation shows that it causes a performance degradation
of at most a few percents in the worst case for micro-benchmarks, and the difference is
negligible on NAS benchmarks. This is a huge improvement over the state of the art.

In the future, we plan to study the integration of these techniques in upper layers of
the software stack. For instance, parallel file systems – such as PVFS – that need reliable
communication subsystems may also benefit from the message integrity mechanism we
proposed.

Acknowledgments. This work was supported in part by the ANR-JST project FP3C.
Experiments presented in this paper were carried out using the Grid’5000 experi-

mental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bod-
ies (see https://www.grid5000.fr).

References

1. Aumage, O., Brunet, E., Furmento, N., Namyst, R.: NewMadeleine: a Fast Communi-
cation Scheduling Engine for High Performance Networks. In: CAC 2007: Workshop
on Communication Architecture for Clusters, held in conjunction with IPDPS 2007.
http://hal.inria.fr/inria-00127356

2. Bertier, M., Marin, O., Sens, P.: Implementation and performance evaluation of an adaptable
failure detector. In: International Conference on Dependable Systems and Networks (2002)

3. Brunet, E., Trahay, F., Denis, A., Namyst, R.: A sampling-based approach for communication
libraries auto-tuning. In: International Conference on Cluster Computing (IEEE Cluster). pp.
299–307. IEEE Computer Society Press, Austin, Texas (Sep 2011), http://hal.inria.fr/inria-
00605735/

4. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale resilience.
International Journal of High Performance Computing Applications 23(4) (2009)

5. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R.,
von Eicken, T.: Logp: towards a realistic model of parallel computation. In: ACM SIGPLAN
symposium on Principles and practice of parallel programming. pp. 1–12. PPOPP ’93, ACM,
New York, NY, USA (1993), http://doi.acm.org/10.1145/155332.155333

6. Denis, A.: A high performance superpipeline protocol for infiniband. In: Jeannot, E., Namyst,
R., Roman, J. (eds.) Proceedings of the 17th International Euro-Par Conference. pp. 276–287.
No. 6853 in Lecture Notes in Computer Science, Springer, Bordeaux, France (Aug 2011),
http://hal.inria.fr/inria-00586015/

7. Dinaburg, A.: Bitsquatting, DNS hijacking without exploitation. In: Black Hat Conference
(Jul 2011)

8. Feldmeier, D.C.: Fast software implementation of error detection codes. IEEE/ACM Trans.
Netw. 3(6), 640–651 (Dec 1995), http://dx.doi.org/10.1109/90.477710

9. Fletcher, J.: An arithmetic checksum for serial transmissions. IEEE Transactions on Com-
munications 30(1), 247 – 252 (jan 1982)

10. Fowler, G., Noll, L.C., Vo, K.P., Eastlake, D.: The FNV non-cryptographic hash algorithm.
IETF Internet-draft (Mar 2012)

11. Graham, R., Choi, S., Daniel, D., Desai, N., Minnich, R., Rasmussen, C., Risinger, L.,
Sukalski, M.: A network-failure-tolerant message-passing system for terascale clusters. In-
ternational Journal of Parallel Programming 31(4) (2003)

12. Jenkins, B.: Hash functions. Dr Dobb’s Journal (Sep 1997)
13. Maxino, T.C., Koopman, P.J.: The effectiveness of checksums for embedded control net-

works. IEEE Transactions on Dependable and Secure Computing 6(1) (Jan 2009)
14. Mercier, G., Trahay, F., Buntinas, D., Brunet, É.: NewMadeleine: An Efficient Support for

High-Performance Networks in MPICH2. In: Proceedings of 23rd IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’09). IEEE Computer Society Press,
Rome, Italy (May 2009), http://hal.archives-ouvertes.fr/hal-00360275

15. Shipman, G., Graham, R., Bosilca, G.: Network fault tolerance in open MPI. Euro-Par 2007
Parallel Processing

16. Zwaenepoel, D., Johnson, D.: Sender-based message logging. In: 17th International Sympo-
sium on Fault-Tolerant Computing

