
HAL Id: hal-00649240
https://hal.inria.fr/hal-00649240v3

Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wave equation numerical resolution: a comprehensive
mechanized proof of a C program

Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero,
Guillaume Melquiond, Pierre Weis

To cite this version:
Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume Melquiond, et
al.. Wave equation numerical resolution: a comprehensive mechanized proof of a C program. Journal
of Automated Reasoning, Springer Verlag, 2013, 50 (4), pp.423-456. �10.1007/s10817-012-9255-4�.
�hal-00649240v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49878576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00649240v3
https://hal.archives-ouvertes.fr

appor t

de r e ch er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
8

2
6

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Wave Equation Numerical Resolution: a

Comprehensive Mechanized Proof of a C Program

Sylvie Boldo — François Clément — Jean-Christophe Filliâtre — Micaela Mayero —

Guillaume Melquiond — Pierre Weis

N° 7826

Décembre 2011

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Wave Equation Numerical Resolution: a Comprehensive

Mechanized Proof of a C Program

Sylvie Boldo∗†, François Clément‡, Jean-Christophe Filliâtre†∗, Micaela Mayero§¶,

Guillaume Melquiond∗†, Pierre Weis‡

Thème : Programmation, vérification et preuves
Observation et modélisation pour les sciences de l’environnement

Équipes-Projets ProVal et Estime

Rapport de recherche n° 7826 — Décembre 2011 — 32 pages

Abstract: We formally prove correct a C program that implements a numerical scheme for the
resolution of the one-dimensional acoustic wave equation. Such an implementation introduces
errors at several levels: the numerical scheme introduces method errors, and floating-point com-
putations lead to round-off errors. We annotate this C program to specify both method error and
round-off error. We use Frama-C to generate theorems that guarantee the soundness of the code.
We discharge these theorems using SMT solvers, Gappa, and Coq. This involves a large Coq devel-
opment to prove the adequacy of the C program to the numerical scheme and to bound errors. To
our knowledge, this is the first time such a numerical analysis program is fully machine-checked.

Key-words: Formal proof of numerical program , Convergence of numerical scheme , Proof of
C program , Coq formal proof , Acoustic wave equation , Partial differential equation , Rounding
error analysis

This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-04) and F
∮

st (ANR-08-
BLAN-0246-01).

∗ Projet ProVal. {Sylvie.Boldo,Jean-Christophe.Filliatre,Guillaume.Melquiond}@inria.fr.
† LRI, UMR 8623, Université Paris-Sud, CNRS, Orsay cedex, F-91405.
‡ Projet Pomdapi. {Francois.Clement,Pierre.Weis}@inria.fr.
§ LIPN, UMR 7030, Université Paris-Nord, CNRS, Villetaneuse, F-93430.
Micaela.Mayero@lipn.univ-paris13.fr.
¶ LIP, Arénaire (INRIA Grenoble - Rhône-Alpes, CNRS UMR 5668, UCBL, ENS Lyon), Lyon, F-69364.

Résolution numérique de l’équation des ondes : une preuve

mécanisée complète d’un programme C

Résumé : Nous prouvons formellement la correction d’un programme C implémentant un
schéma numérique pour la résolution de l’équation des ondes acoustiques en dimension 1. Une
telle implémentation introduit différents types d’erreurs : l’erreur de méthode due au schéma
numérique et l’erreur d’arrondi due aux calculs en virgule flottante. Nous annotons ce programme
C pour spécifier ces deux types d’erreur. Nous utilisons Frama-C pour générer les théorèmes qui
garantissent la correction du code. Nous prouvons ces théorèmes à l’aide de solveurs SMT, de
Gappa et de Coq. Un développement Coq important est nécessaire pour prouver l’adéquation du
programme C au schéma numérique et pour borner les erreurs. À notre connaissance, c’est la
première fois qu’un tel programme d’analyse numérique est complètement vérifié mécaniquement.

Mots-clés : preuve formelle d’un programme numérique, convergence d’un schéma numérique,
preuve de programme C, preuve formelle en Coq, équation des ondes acoustiques, équation aux
dérivées partielles, analyse d’erreur d’arrondi.

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 3

1 Introduction

Ordinary differential equations (ODE) and partial differential equations (PDE) are ubiquitous in
engineering and scientific computing. They show up in nuclear simulation, weather forecast, and
more generally in numerical simulation, including block diagram modelization. Since solutions
to nontrivial problems are non-analytic, they must be approximated by numerical schemes over
discrete grids.

Numerical analysis is a part of applied mathematics that is mainly interested in proving the
convergence of these schemes [22], that is, proving that approximation quality increases as the size
of discretization steps decreases. The approximation quality represents the distance between the
exact continuous solution and the approximated discrete solution; this distance must tend toward
zero in order for the numerical scheme to be useful.

A numerical scheme is typically proved to be convergent with pen and paper. This is a
difficult, time-consuming, and error-prone task. Then the scheme is implemented as a C/C++ or
Fortran program. This introduces new issues. First, we must ensure that the program correctly
implements the scheme and is immune from runtime errors such as out-of-bounds accesses or
overflows. Second, the program introduces round-off errors due to floating-point computations and
we must prove that those errors could not lead to irrelevant results. Typical pen-and-paper proofs
do not address floating-point nor runtime errors. Indeed the huge number of proof obligations, and
their complexity, make the whole process almost intractable. However, with the help of mechanized
program verification, such a proof becomes feasible. In the first place, because automated theorem
provers can alleviate the proof burden. More importantly, because the proof is guaranteed to cover
all aspects of the verification.

Our case study. We consider the acoustic wave equation in an one-dimensional space domain.
The equation describes the propagation of pressure variations (or sound waves) in a fluid medium;
it also models the behavior of a vibrating string. Among the wide variety of numerical schemes
to approximate the 1D acoustic wave equation, we choose the simplest one: the second order
centered finite difference scheme, also known as three-point scheme. To keep it simple, we assume
an homogeneous medium (the propagation velocity is constant) and we consider discretization
over regular grids with constant discretization steps for time and space. Our goal is to prove the
correctness of a C program implementing this scheme.

Method and tools. We use the Jessie plug-in of Frama-C [44, 33] to perform the deductive
verification of this C program. The source code is augmented with ACSL annotations [6] to
describe its formal specification. When submitted to Frama-C, proof obligations are generated.
Once these theorems are proved, the program is guaranteed to satisfy its specification and to
be free from runtime errors. Part of the proof obligations are discharged by automated provers,
e.g. Alt-Ergo [10], CVC3 [5], Gappa [25], and Z3 [28]. The more complicated ones, such as the
one related to the convergence of the numerical scheme, cannot be proved automatically. These
obligations were manually proved with the Coq [8, 20] interactive proof assistant. In the end, we
have formally verified all the properties of the C program. To our knowledge, this is the first time
this kind of verification is machine-checked. The annotated C program and the Coq sources of the
formal development are available from

http://fost.saclay.inria.fr/wave_total_error.html

State of the art. There is an abundant literature about the convergence of numerical schemes,
e.g. see [56, 58]. In particular, the convergence of the three-point scheme for the wave equation
is well-known and taught relatively early [7]. Unfortunately, no article goes into all the details
needed for a formal proof. These mathematical “details” may have been skipped for readability,
but some mandatory details may have also been omitted due to oversights.

In the fields of automatic provers and proof assistants, few works have been done for the
formalization and mechanical proofs of mathematical analysis, and even fewer works for numerical

RR n° 7826

http://fost.saclay.inria.fr/wave_total_error.html

4 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

analysis. The first developments on real numbers and real analysis are from the late 90’s, in
systems such as ACL2 [34], Coq [45], HOL Light [36], Isabelle [32], Mizar [54], and PVS [30]. An
extensive work has been done by Harrison regarding Rn and the dot product [37]. Constructive real
analysis [35, 24, 39] and further developments in numerical analysis [49, 50] have been carried out
at Nijmegen. We can also mention the formal proof of an automatic differentiation algorithm [46].

As explained by Rosinger in 1985, old methods to bound round-off errors were based on “un-
realistic linearizing assumptions” [51]. Further work was done under more realistic assumptions
about round-off errors [51, 52], but none of these assumptions were proved correct with respect
to the numerical schemes. As Roy and Oberkampf, we believe that round-off errors should not be
treated as random variables and that traditional statistical methods should not be used [53]. They
propose the use of interval arithmetic or increased precision to control accuracy. Note that their
example of hypersonic nozzle flow is converging so fast that round-off errors can be neglected [53].
Interval arithmetic can also take method error into account [55]. The final interval is then claimed
to contain the exact solution. This is not formally proved, though. Additionally, the width of the
final interval can be quite large.

There are other tools to bound round-off errors not dedicated to numerical schemes. Some
successful approaches are based on abstract interpretation [23, 29]. In our case, they are of
little help, since there is a complex phenomenon of error compensation during the computations.
Ignoring this compensation would lead to bounds on round-off errors growing as fast as O(2k) (k
being the number of time steps). That is why we had to thoroughly study the propagation of
round-off errors in this numerical scheme to get tighter bounds. It also means that most of the
proofs had to be done by hand to achieve this part of the formal verification.

Outline. Section 2 presents the PDE, the numerical scheme, and their mathematical properties.
Section 3 is devoted to the proofs of the convergence of the numerical scheme and the upper
bound for the round-off error. Finally, Section 4 describes the formalization, i.e. the tools used,
the annotated C program, and the mechanized proofs.

2 Numerical Scheme for the Wave Equation

A partial differential equation (PDE) modeling an evolution problem is an equation involving
partial derivatives of an unknown function of several independent space and time variables. The
uniqueness of the solution is obtained by imposing initial conditions, i.e. values of the function
and some of its derivatives at initial time. The problem of the vibrating string tied down at both
ends, among many other physical problems, is formulated as an initial-boundary value problem
where the boundary conditions are additional constraints set on the boundary of the supposedly
bounded domain [56].

This section, as well as the steps taken at Section 3.1 to conduct the convergence proof of the
numerical scheme, is inspired by [7].

2.1 The Continuous Equation

The chosen PDE models the propagation of waves along an ideal vibrating elastic string that is
tied down at both ends, see [1, 18], see also Figure 1. The PDE is obtained from Newton’s laws
of motion [48].

The gravity is neglected, so the string is supposed rectilinear when at rest. Let xmin and xmax be
the abscissas of the extremities of the string. Let Ω = [xmin, xmax] be the bounded space domain.
Let p(x, t) be the transverse displacement of the point of the string of abscissa x at time t from
its equilibrium position; it is a (signed) scalar. Let c be the constant propagation velocity; it is a
positive number that depends on the section and density of the string. Let s(x, t) be the external
action on the point of abscissa x at time t; it is a source term, such that t = 0 ⇒ s(x, t) = 0.
Finally, let p0(x) and p1(x) be the initial position and velocity of the point of abscissa x. We

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 5

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

tim
e

length

Figure 1: Space-time representation of the signal propagating along a vibrating string. Each curve
represents the string at a different time step.

consider the initial-boundary value problem

∀t ≥ 0, ∀x ∈ Ω, (L(c) p)(x, t)
def
=

∂2p

∂t2
(x, t) +A(c) p(x, t) = s(x, t),(1)

∀x ∈ Ω, (L1 p)(x, 0)
def
=

∂p

∂t
(x, 0) = p1(x),(2)

∀x ∈ Ω, (L0 p)(x, 0)
def
= p(x, 0) = p0(x),(3)

∀t ≥ 0, p(xmin, t) = p(xmax, t) = 0(4)

where the differential operator A(c) is defined by

(5) A(c)
def
= − c2

∂2

∂x2
.

This simple partial derivative equation happens to possess an analytical solution given by the
so-called d’Alembert’s formula [40], obtained from the method of characteristics and the image
theory [38], ∀t ≥ 0, ∀x ∈ Ω,

(6) p(x, t) =
1

2
(p̃0(x− ct) + p̃0(x+ ct)) +

1

2c

∫ x+ct

x−ct

p̃1(y)dy+
1

2c

∫ t

0

(

∫ x+c(t−σ)

x−c(t−σ)

s̃(y, σ)dy

)

dσ

where the quantities p̃0, p̃1, and s̃ are respectively the successive antisymmetric extensions in space
of p0, p1, and s defined on Ω to the entire real axis R.

We have formally verified d’Alembert’s formula as a separate work [42]. But for the purpose of
the current work, we just admit that under reasonable conditions on the Cauchy data p0 and p1 and
on the source term s, there exists a unique solution p to the initial-boundary value problem (1)–(4)
for each c > 0. Simply supposing the existence of a solution instead of exhibiting it, opens the
way to scale our approach to more general cases for which there is no known analytic expression
of a solution, e.g. in the case of a nonuniform propagation velocity c.

RR n° 7826

6 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

For such a solution p, it is natural to associate at each time t the positive definite quadratic
quantity

(7) E(c)(p)(t)
def
=

1

2

∥

∥

∥

∥

(

x 7→ ∂p

∂t
(x, t)

)
∥

∥

∥

∥

2

+
1

2
‖(x 7→ p(x, t))‖2A(c)

where 〈q, r〉 def
=
∫

Ω
q(x)r(x)dx, ‖q‖2 def

= 〈q, q〉 and ‖q‖2A(c)
def
= 〈A(c) q, q〉. The first term is inter-

preted as the kinetic energy, and the second term as the potential energy, making E the mechanical
energy of the vibrating string.

2.2 The Discrete Equations

Let imax be the positive number of intervals of the space discretization. Let the space discretization
step ∆x and the discretization function i∆x be defined as

∆x
def
=

xmax − xmin

imax
and i∆x(x)

def
=

⌊

x− xmin

∆x

⌋

.

Let us consider the time interval [0, tmax]. Let ∆t ∈]0, tmax[be the time discretization step.
We define

k∆t(t)
def
=

⌊

t

∆t

⌋

and kmax
def
= k∆t(tmax).

Now, the compact domain Ω× [0, tmax] is approximated by the regular discrete grid defined by

(8) ∀k ∈ [0..kmax], ∀i ∈ [0..imax], xk
i

def
= (xi, t

k)
def
= (xmin + i∆x, k∆t).

For a function q defined over Ω × [0, tmax] (resp. Ω), the notation qh denotes any dis-
crete approximation of q at the points of the grid, i.e. a discrete function over [0..imax] ×
[0..kmax] (resp. [0..imax]). By extension, the notation qh is also a shortcut to denote the ma-
trix (qki)0≤i≤imax,0≤k≤kmax

(resp. the vector (qi)0≤i≤imax
). The notation q̄h is reserved to the

approximation defined on [0..imax]× [0..kmax] by

q̄ki
def
= q(xk

i) (resp. q̄i
def
= q(xi)).

x

t

xj+1xj−1 xj

tk+1

tk

tk−1

Figure 2: Three-point scheme: pk+1
i (at ×) depends on pki−1, p

k
i , p

k
i+1, and pk−1

i (at •).

Let p0h and p1h be two discrete functions over [0..imax]. Let sh be a discrete function over
[0..imax] × [0..kmax]. Then, the discrete function ph over [0..imax] × [0..kmax] is said to be the
solution of the three-point1 finite difference scheme, as illustrated in Figure 2, when the following
set of equations holds:

(9) ∀k ∈ [2..kmax], ∀i ∈ [1..imax − 1],

(Lh(c) ph)
k
i

def
=

pki − 2pk−1
i + pk−2

i

∆t2
+ (Ah(c) (i

′ 7→ pk−1
i′))i = sk−1

i ,

1In the sense “three spatial points”, for the definition of matrix Ah(c).

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 7

∀i ∈ [1..imax − 1], (L1h(c) ph)i
def
=

p1i − p0i
∆t

+
∆t

2
(Ah(c) (i

′ 7→ p0i′))i = p1,i,(10)

∀i ∈ [1..imax − 1], (L0h ph)i
def
= p0i = p0,i,(11)

∀k ∈ [0..kmax], pk0 = pkimax
= 0(12)

where the matrix Ah(c), a discrete analog of A(c), is defined for any vector qh, by

(13) ∀i ∈ [1..imax − 1], (Ah(c) qh)i
def
= − c2

qi+1 − 2qi + qi−1

∆x2
.

A discrete analog of the energy is also defined by2

(14) Eh(c)(ph)
k+ 1

2
def
=

1

2

∥

∥

∥

∥

∥

(

i 7→ pk+1
i − pki

∆t

)
∥

∥

∥

∥

∥

2

∆x

+
1

2

〈

(i 7→ pki), (i 7→ pk+1
i)

〉

Ah(c)

where, for any vectors qh and rh,

〈qh, rh〉∆x

def
=

∑imax

i=0 qiri∆x, ‖qh‖2∆x

def
= 〈qh, qh〉∆x ,

〈qh, rh〉Ah(c)
def
= 〈Ah(c) qh, rh〉∆x , ‖qh‖2Ah(c)

def
= 〈qh, qh〉Ah(c)

.

Note that the three-point scheme is parameterized by the discrete Cauchy data p0h and p1h,
and by the discrete source term sh. Of course, when these discrete inputs are respectively approx-
imations of the continuous functions p0, p1, and s (e.g. when p0h = p̄0h, p1h = p̄1h, and sh = s̄h),
then the discrete solution ph is an approximation of the continuous solution p.

2.3 Convergence

Let ξ be in]0, 1[. The CFL(ξ) condition (for Courant-Friedrichs-Lewy, see [22]) states that the
discretization steps satisfy the relation

(15)
c∆t

∆x
≤ 1− ξ.

The convergence error eh measures the distance between the continuous and discrete solutions.
It is defined by

(16) ∀k ∈ [0..kmax], ∀i ∈ [0..imax], eki
def
= p̄ki − pki .

Note that when p0h = p̄0h, then for all i, e0i = 0. The truncation error εh measures at which
precision the continuous solution satisfies the numerical scheme. It is defined for k ∈ [2..kmax] and
i ∈ [1..imax − 1] by

εki
def
= (Lh(c) p̄h)

k
i − s̄k−1

i ,(17)

ε1i
def
= (L1h(c) p̄h)i − p̄1,i,(18)

ε0i
def
= (L0hp̄h)i − p̄0,i.(19)

Again, note that when p0h = p̄0h and p1h = p̄1h, then for all i, ε0i = 0 and ε1i = e1i /∆t.
Furthermore, when there is also sh = s̄h, then the convergence error eh is itself solution of the
same numerical scheme with inputs defined by, for all i, k,

p0,i = ε0i = 0, p1,i = ε1i =
e1i
∆t

, and ski = εk+1
i .

2By convention, the energy is defined between steps k and k + 1, hence the notation k + 1

2
.

RR n° 7826

8 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

The numerical scheme is said to be convergent of order 2 if the convergence error tends toward
zero at least as fast as ∆x2+∆t2 when both discretization steps tend toward zero.3 More precisely,
the numerical scheme is said to be convergent of order (m,n) uniformly on the interval [0, tmax] if
the convergence error satisfies4

(20)
∥

∥

∥

(

i 7→ e
k∆t(t)
i

)
∥

∥

∥

∆x
= O[0,tmax](∆xm +∆tn).

The numerical scheme is said to be consistent with the continuous problem at order 2 if the
truncation error tends toward zero at least as fast as ∆x2 + ∆t2 when the discretization steps
tend toward 0. More precisely, the numerical scheme is said to be consistent with the continuous
problem at order (m, n) uniformly on interval [0, tmax] if the truncation error satisfies

(21)
∥

∥

∥

(

i 7→ ε
k∆t(t)
i

)∥

∥

∥

∆x
= O[0,tmax](∆xm +∆tn).

The numerical scheme is said to be stable if the discrete solution of the associated homogeneous
problem (i.e. without any source term, s(x, t) = 0) is bounded independently of the discretization
steps. More precisely, the numerical scheme is said to be stable uniformly on interval [0, tmax] if
the discrete solution of the problem without any source term satisfies

(22) ∃α,C1, C2 > 0, ∀t ∈ [0, tmax], ∀∆x,∆t > 0,
√

∆x2 +∆t2 < α ⇒
∥

∥

∥

(

i 7→ p
k∆t(t)
i

)
∥

∥

∥

∆x
≤ (C1 + C2t)(‖p0h‖∆x + ‖p0h‖Ah(c)

+ ‖p1h‖∆x).

The result to be formally proved at Section 3.1 states that if the continuous solution p is
regular enough on Ω × [0, tmax] and if the discretization steps satisfy the CFL(ξ) condition, then
the three-point scheme is convergent of order (2, 2) uniformly on interval [0, tmax].

We do not admit (nor prove) the Lax equivalence theorem which stipulates that for a wide
variety of problems and numerical schemes, consistency implies the equivalence between stability
and convergence. Instead, we establish that consistency and stability implies convergence in the
particular case of the one-dimensional acoustic wave equation.

2.4 Program

The main part of the C program is listed in Listing 1.
The grid steps ∆x and ∆t are respectively represented by the variables dx and dt, the grid sizes

imax and kmax by the variables ni and nk, and the propagation velocity c by the variable v. The
initial position p0h is represented by the function p0. The initial velocity p1h and the source term
sh are supposed to be zero and are not represented. The discrete solution ph is represented by the
two-dimensional array p of size (imax + 1) × (kmax + 1). (This is a simple naive implementation,
a more efficient implementation would store only two time steps.)

To assemble the stiffness matrix Ah(c), we only have to compute the square of the CFL coeffi-
cient c∆t

∆x
(lines 1–2). Then, we recognize the space loops for the initial conditions: Equation (11)

on lines 6–8, and Equation (10) with p1h = 0 on lines 14–17. The space-time loop on lines 23–
28 for the evolution problem comes from Equation (9). And finally, the boundary conditions of
Equation (12) are spread out on lines 9–10, 18–19, and 29–30.

3 Bounding Errors

3.1 Method Error

We first present the notions necessary to formalize and prove the method error. Then, we detail
how the proof is conducted: we establish the consistency, the stability and prove that these two
properties imply convergence in the case of the one-dimensional acoustic wave equation.

3Note that ∆x tending toward 0 actually means that imax goes to infinity.
4See Section 3.1.1 for the precise definition of the big O notation.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 9

Listing 1: The main part of the C code, without annotations.

0 /∗ Compute the constant coe f f i c i en t of the s t i f f n e s s matrix . ∗/
a1 = dt/dx∗v ;
a = a1∗a1 ;

/∗ F i r s t i n i t i a l condit ion and boundary condit ions . ∗/
5 /∗ Left boundary . ∗/

p [0] [0] = 0 . ;
/∗ Time i te ra t i on −1 = space loop . ∗/
for (i=1; i<ni ; i++) {

p [i] [0] = p0(i ∗dx) ;
10 }

/∗ Right boundary . ∗/
p [ni] [0] = 0 . ;

/∗ Second i n i t i a l condit ion (with p1=0) and boundary condit ions . ∗/
15 /∗ Left boundary . ∗/

p [0] [1] = 0 . ;
/∗ Time i te ra t i on 0 = space loop . ∗/
for (i=1; i<ni ; i++) {

dp = p [i +1][0] − 2.∗p [i] [0] + p [i −1] [0] ;
20 p [i] [1] = p [i] [0] + 0.5∗a∗dp ;

}
/∗ Right boundary . ∗/
p [ni] [1] = 0 . ;

25 /∗ Evolution problem and boundary condit ions . ∗/
/∗ Propagation = time loop . ∗/
for (k=1; k<nk ; k++) {

/∗ Left boundary . ∗/
p [0] [k+1] = 0. ;

30 /∗ Time i te ra t i on k = space loop . ∗/
for (i=1; i<ni ; i++) {

dp = p[i +1][k] − 2.∗p [i] [k] + p [i −1][k] ;
p [i] [k+1] = 2.∗p [i] [k] − p [i] [k−1] + a∗dp ;

}
35 /∗ Right boundary . ∗/

p [ni] [k+1] = 0. ;
}

RR n° 7826

10 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

3.1.1 Big O, Differentiability, and Regularity

When considering a big O equality a = O(b), one usually assumes that a and b are two expressions
defined over the same domain and its interpretation as a quantified formula comes naturally. Here
the situation is a bit more complicated. Consider

f(x,∆x) = O(g(∆x))

when ‖∆x‖ goes to 0. If one were to assume that the equality holds for any x ∈ R
2, one would

interpret it as

∀x, ∃α > 0, ∃C > 0, ∀∆x, ‖∆x‖ ≤ α ⇒ |f(x,∆x)| ≤ C · |g(∆x)|,

which means that constants α and C are in fact functions of x. Such an interpretation happens
to be useless, since the infimum of α may well be zero while the supremum of C may be +∞.

A proper interpretation requires the introduction of a uniform big O relation with respect to
the additional variable x:

(23) ∃α > 0, ∃C > 0, ∀x ∈ Ωx, ∀∆x ∈ Ω∆x, ‖∆x‖ ≤ α ⇒ |f(x,∆x)| ≤ C · |g(∆x)|.

To emphasize the dependency on the two subsets Ωx and Ω∆x, uniform big O equalities are
now written

f(x,∆x) = OΩx,Ω∆x
(g(∆x)).

We now precisely define the notion of “sufficiently regular” functions in terms of the full-fledged
notation for the big O. The further result on the convergence of the numerical scheme requires
that the solution of the continuous equation is actually sufficiently regular. We introduce two
operators that, given a real-valued function f defined on the 2D plane and a point in the plane,
return the values ∂f

∂x
and ∂f

∂t
at this point. Given these two operators, we can define the usual 2D

Taylor polynomial of order n of a function f :

TPn(f,x)
def
= (∆x,∆t) 7→

n
∑

p=0

1

p!

(

p
∑

m=0

(

p

m

)

· ∂pf

∂xm∂tp−m
(x) ·∆xm ·∆tp−m

)

.

Let Ωx ⊂ R
2. We say that the previous Taylor polynomial is a uniform approximation of

order n of f on Ωx when the following uniform big O equality holds:

f(x+∆x)− TPn(f,x)(∆x) = OΩx,R2

(

‖∆x‖n+1
)

.

A function f is then said to be sufficiently regular of order n uniformly on Ωx when all its
Taylor polynomials of order smaller than n are uniform approximations of f on Ωx.

3.1.2 Consistency

The consistency of a numerical scheme expresses that, for ∆x small enough, the continuous
solution taken at the points of the grid almost solves the numerical scheme. More precisely,
we formally prove that when the continuous solution of the wave equation (1)–(4) is sufficiently
regular of order 4 uniformly on [xmin, xmax]× [0, tmax], the numerical scheme (9)–(12) is consistent
with the continuous problem at order (2, 2) uniformly on interval [0, tmax] (see definition (21)
in Section 2.3). This is obtained using the properties of Taylor approximations; the proof is
straightforward while involving long and complex expressions.

The key idea is to always manipulate uniform Taylor approximations that will be valid for all
points of all grids when the discretization steps goes down to zero.

For instance, to take into account the initialization phase corresponding to Equation (10), we
have to derive a uniform Taylor approximation of order 1 for the following continuous function
(for any v sufficiently regular of order 3)

((x, t), (∆x,∆t)) 7→ v(x, t+∆t)− v(x, t)

∆t
− ∆t

2
c2
v(x+∆x, t) − 2v(x, t) + v(x−∆x, t)

∆x2
.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 11

Note that the expression of this function involves both x+∆x and x −∆x, meaning that we
need a Taylor approximation which is valid for both positive and negative growths. The proof
would have been impossible if we had required 0 < ∆x (as a space grid step) in the definition of
the Taylor approximation.

In contrast with the case of an infinite string [13], we do not need here a lower bound for c∆t
∆x

.

3.1.3 Stability

The stability of a numerical scheme expresses that the growth of the discrete solution is somehow
bounded in terms of the input data (here, the Cauchy data u0h and u1h, and the source term sh).
For the proof of the round-off error (see Section 3.2), we need a statement of the same form as
definition (22) of Section 2.3. Therefore, we formally prove that, under the CFL(ξ) condition (15),
the numerical scheme (9)–(12) is stable uniformly on interval [0, tmax].

But, as we choose to prove the convergence of the numerical scheme by using an energetic
technique5, it is more convenient to formulate the stability in terms of the discrete energy. More
precisely, we also formally prove that under the CFL(ξ) condition (15), the discrete energy (14)
satisfies the following overestimation,

√

Eh(c)(ph)k+
1

2 ≤
√

Eh(c)(ph)
1

2 +

√
2

2
√

2ξ − ξ2
·∆t ·

k
∑

k′=1

∥

∥

∥

(

i 7→ sk
′

i

)∥

∥

∥

∆x

for all t ∈ [0, tmax] and with k =
⌊

t
∆t

⌋

− 1.
The evolution of the discrete energy between two consecutive time steps is shown to be pro-

portional to the source term. In particular, the energy is constant when the source is inactive.
Then, we obtain the following underestimation of the discrete energy,

∀k, 1

2

(

1−
(

c
∆t

∆x

)2
)∥

∥

∥

∥

∥

(

i 7→ pk+1
i − pki

∆t

)∥

∥

∥

∥

∥

∆x

≤ Eh(c)(ph)
k+ 1

2 .

Therefore, the non-negativity of the discrete energy is directly related to the CFL(ξ) condition.
Note that this stability result is valid for any input data p0h, p1h, and sh.

3.1.4 Convergence

The convergence of a numerical scheme expresses the fact that the discrete solution gets closer to
the continuous solution as the discretization steps go down to zero. More precisely, we formally
prove that when the continuous solution of the wave equation (1)–(4) is sufficiently regular of
order 4 uniformly on [xmin, xmax]× [0, tmax], and under the CFL(ξ) condition (15), the numerical
scheme (9)–(12) is convergent of order (2, 2) uniformly on interval [0, tmax] (see definition (20) in
Section 2.3).

Firstly, we prove that the convergence error eh is itself the discrete solution of a numerical
scheme of the same form but with different input data6. In particular, the source term (on the
right-hand side) is here the truncation error εh associated with the initial numerical scheme for
ph. Then, the previous stability result holds, and we have an overestimation of the square root
of the discrete energy associated with the convergence error Eh(c)(eh) that involves a sum of the
corresponding source terms, i.e. the truncation error. Finally, the consistency result also makes
this sum a big O of ∆x2 +∆t2, and a few more technical steps conclude the proof.

3.2 Round-off Error

As each operation is done with IEEE-754 floating-point numbers [47], round-off errors will occur
and may endanger the accuracy of the final results. On this program, naive forward error analysis

5The popular alternative, using the Fourier transform, would have required huge additional Coq developments.
6Of course, there is no associated continuous problem.

RR n° 7826

12 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

gives an error bound that is proportional to 2k2−53 for the computation of a pki . If this bound was
sensible, it would cause the numerical scheme to compute only noise after a few steps. Fortunately,
round-off error actually compensate themselves. To take into account the compensations and hence
prove a usable error bound, we need a precise statement of the round-off error [12] to exhibit the
cancellations made by the numerical scheme.

3.2.1 Local Round-off Errors

Let δki be the (signed) floating-point error made in the two lines computing pki (lines 26–27 in List-
ing 1). Floating-point values as computed by the program will be underlined: a, pk

i
to distinguish

them from the discrete values of previous sections. They match the expressions a and p[i][k] in the
annotations, while a and pki can be represented in the annotations by \exact(a) and \exact(p[i][k]),
as described in Section 4.1.4.

The δki are defined as follow:

δk+1
i = pk+1

i
− (2pk

i
− pk−1

i
+ a× (pk

i+1
− 2pk

i
+ pk

i−1
)).

Note that the program explained in Section 2.4 gives us that

pk+1
i

= fl
(

2pk
i
− pk−1

i
+ a× (pk

i+1
− 2pk

i
+ pk

i−1
)
)

where fl(·) means that all the arithmetic operations that appear between the parentheses are
actually performed by floating-point arithmetic, hence a bit off.

In order to get a bound on δki , we need to have the range of pk
i
. For this bound to be usable

in our correctness proof, we need the range to be [−2, 2]. We have proved this fact by using the
bounds on the method error and the round-off error of all the pk and pk−1.

To prove the bound on δki , we perform forward error analysis and then use interval arithmetic
to bound each intermediate error. We prove that, for all i and k, we have |δki | ≤ 78 × 2−52 for a
reasonable error bound for a, that is to say |a− a| ≤ 2−49.

3.2.2 Convolution of Round-off Errors

Note that the global floating-point error ∆k
i = pk

i
− pki depends not only on δki , but also on

all the δk−l
i+j for 0 < l ≤ k and −l ≤ j ≤ l. Indeed round-off errors propagate along floating-

point computations. Their contributions to ∆k
i , which are independent and linear (due to the

structure of the numerical scheme), can be computed by performing a convolution with a function
λ : (Z× Z) → R. This function λ represents the results of the numerical scheme when fed with a
single unit value:

λ0
0 = 1 ∀i 6= 0, λ0

i = 0

λ1
−1 = λ1

1 = a λ1
0 = 2(1− a) ∀i 6∈ {−1, 0, 1}, λ1

i = 0

λk
i = a× (λk−1

i−1 + λk−1
i+1) + 2(1− a)× λk−1

i − λk−2
i

Theorem 1.

∆k
i = pk

i
− pki =

k
∑

l=0

l
∑

j=−l

λl
j δk−l

i+j .

Details of the proof can be found in [12], but this point of view using convolution is new. The
proof mainly amounts to performing numerous tedious transformations of summations until both
sides are proved equal.

The previous proof assumes that the double summation is correct for all (i′, k′) such that
k′ < k. This would be correct if there was an unbounded set of i where pki is computed. This is
no longer the case for a finite string. Indeed, at the ends of the range (i = 0 or imax), p

k
i and pk

i

are equal to 0, so ∆k
i has to be 0 too.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 13

The solution is to define the successive antisymmetric extension in space (as is done for
d’Alembert’s formula in Section 2.1) and to use it instead of δ. This ensures that both ∆k

0

and ∆k
imax

are equal to 0. It does not have any consequence on the values of ∆k
i for 0 < i < imax.

3.2.3 Bound on the Global Round-off Error

The analytic expression of ∆k
i can be used to obtain a bound on the round-off error. We will need

two lemmas for this purpose.

Lemma 1.

+∞
∑

i=−∞
λk
i = k + 1.

Proof. We have

+∞
∑

i=−∞
λk+1
i = 2ǎ

+∞
∑

i=−∞
λk
i + 2(1− ǎ)

+∞
∑

i=−∞
λk
i −

+∞
∑

i=−∞
λk−1
i = 2

+∞
∑

i=−∞
λk
i −

+∞
∑

i=−∞
λk−1
i .

The sum by line verifies a simple linear recurrence. As
∑

λ0
i = 1 and

∑

λ1
i = 2, we have

∑

λk
i = k + 1.

Lemma 2. λk
i ≥ 0.

Proof. The demonstration was found out by M. Kauers and V. Pillwein.
If we denote by P the Jacobi polynomial, we have

λj
n =

n
∑

k=j

(

2k

j + k

)(

n+ k + 1

2k + 1

)

(−1)j+kak = aj
n−j
∑

k=0

P
(2j,0)
k (1− 2a)

Now the conjecture follows directly from the inequality of Askey and Gasper [3], which asserts

that
∑n

k=0 P
(r,0)
k (x) > 0 for r > −1 and −1 < x ≤ 1 (see Theorem 7.4.2 in The Red Book [2]).

Theorem 2.
∣

∣∆k
i

∣

∣ =
∣

∣

∣
pk
i
− pki

∣

∣

∣
≤ 78× 2−53 × (k + 1)× (k + 2).

Proof. According to Theorem 1, ∆k
i is equal to

∑k
l=0

∑l
j=−l λ

l
j δk−l

i+j . We know that for all j and

l, |δlj | ≤ 78×2−52 and that
∑

λl
i = l+1. Since the λk

i are nonnegative, the error is easily bounded

by 78× 2−52 ×
∑k

l=0(l + 1).

3.3 Total Error

Let Eh be the total error. It is the sum of the method error (or convergence error) eh of Sections 2.3
and 3.1.4, and of the round-off error ∆h of Section 3.2.

From Theorem 2, we can estimate7 the following upper bound for the spatial norm of the
round-off error when ∆x ≤ 1 and ∆t ≤ tmax/2: for all t ∈ [0, tmax],

∥

∥

∥

(

i 7→ ∆
k∆t(t)
i

)∥

∥

∥

∆x
=

√

√

√

√

imax
∑

i=0

(

∆
k∆t(t)
i

)2

∆x

≤
√

(imax + 1)∆x× 78× 2−53 ×
(

tmax

∆t
+ 1

)

×
(

tmax

∆t
+ 2

)

≤
√
xmax − xmin + 1× 78× 2−53 × 3× t2max

∆t2
.

7When tmax

∆t
≥ 2, we have

(

tmax

∆t
+ 1

) (

tmax

∆t
+ 2

)

≤ 3
t
2
max

∆t2
.

RR n° 7826

14 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

Thus, from the triangular inequality for the spatial norm, we obtain the following estimation
of the total error:

∀t ∈ [0, tmax], ∀∆x, ‖∆x‖ ≤ min(αe, α∆) ⇒
∥

∥

∥

(

i 7→ Ek∆t(t)
i

)∥

∥

∥

∆x
≤ Ce(∆x2 +∆t2) +

C∆

∆t2

where the convergence constants αe and Ce were extracted from the Coq proof (see Section 3.1.4)
and are given in terms of the constants for the Taylor approximation of the exact solution at
degree 3 (α3 and C3), and at degree 4 (α4 and C4) by

αe = min(1, tmax, α3, α4),

Ce = 2µtmax

√
xmax − xmin

(

C′
√
2
+ µ(tmax + 1)C′′

)

with µ =
√
2√

2ξ−ξ2
, C′ = max(1, C3 + c2C4 + 1), and C′′ = max(C′, 2(1 + c2)C4), and where the

round-off constants α∆ and C∆, as explained above, are given by

α∆ = min(1, tmax/2),

C∆ = 234× 2−53 × t2max

√
xmax − xmin + 1.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Space step dx

T
ot

al
 e

rr
or

Figure 3: Upper bound for the total error in log-scale. Left: for ∆x and ∆t satisfying the
CFL condition. The lighter area (in yellow) represents the higher values above 104, whereas the
darker area represents the lower values below 10−1. Right: for an optimal CFL condition with
∆t = 1−ξ

c
∆x. The green crosses represent the effective total error computed by the C program

for a few values of the space step.

To give an idea of the relative importance of both errors, we consider the academic case where
the space domain is the interval [0, 1], the velocity of waves is c = 1, and there is no initial
velocity (u1(x) = 0) nor source term (s(x, t) = 0). We suppose that the initial position is given
by u0(x) = χ(2(x − x0)/l) where x0 = 0.5, l = 0.25, and χ is the C4 function defined on [−1, 1]
by χ(z) = (cos(π2 z))

5, and with null continuation on the real axis. For this function, we may take

α3 = α4 =
√
2/2, C3 = 5120

√
2, and C4 = 409600/3. The corresponding solution presents two

hump-shaped signals that propagate in each direction along the string, see Figure 1.
The upper bound on the total error is represented in Figure 3. Note that everything is in

logarithmic scale. Of course, decreasing the size of the grid step decreases the method error, but
in the same time, it increases the round-off error. Hence, the existence of a minimum for the upper
bound on the total error (about 0.02 in our test case), corresponding to optimal grid step sizes.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 15

Fortunately, the effective total error usually happens to be much smaller than this upper bound
(by about a factor of 106 in our example).

Even if the effective total error on this example is off by several orders of magnitude with
respect to the theoretical bound, this experiment is still reassuring. First, the left side of Figure 3
shows that the optimal choice (the darker part) for choosing ∆x and ∆t is reached near the
limit of the CFL condition. This property matches common knowledge from numerical analysis.
Second, the right side shows that both the effective error and the theoretical error have the same
asymptotic behavior. So the properties we have verified in this work are not intrinsically easier
than the best theorems one could state. It is just that the constants of the formulas extracted
from the proofs (which we did not tune for this specific purpose) are not optimal for this example.

4 Mechanization of Proofs

In Sections 3.1 and 3.2, we have mostly described the method and round-off errors introduced when
solving the wave equation problem with the given numerical scheme. We do not yet know whether
this formalization actually matches the program described in Section 2.4 and fully given in Ap-
pendix A. In addition, the program might contain programming errors like out-of-bound accesses,
which would possibly be left unattended while comparing the program and its formalization.

To fully verify the program, our process is as follows. First, we annotated the C program with
comments specifying its behavioral properties, that is, what the program is supposed to compute.
Second, we let Frama-C/Why generate proof obligations that state that the program matches its
specification and that its execution is safe. Third, we used automated provers and Coq to prove
all of these obligations.

Section 4.1 presents all the tools we have used for verifying the C program. Then Section 4.2
explains how the program was annotated. Finally, Section 4.3 shows how we proved all the
obligations, either automatically or with a proof assistant.

4.1 Tools

Several software packages are used in this work. The formal proof of the method error has been
made in Coq. The formal proof of the round-off error has been made in Coq, and using the Gappa
tactic. The certification of the C program has used Frama-C (with the Jessie plug-in), and to
prove the produced goals, we used Gappa, SMT provers, and the preceding Coq proofs. This
section is devoted to present these tools and necessary libraries.

4.1.1 Coq

Coq8 is a formal system that provides an expressive language to write mathematical definitions, ex-
ecutable algorithms, and theorems, together with an interactive environment for proving them [8].
Coq’s formal language is based on the Calculus of Inductive Constructions [21] that combines
both a higher-order logic and a richly-typed functional programming language. Coq allows to
define functions or predicates, that can be evaluated efficiently, to state mathematical theorems
and software specifications, and to interactively develop formal proofs of these theorems. These
proofs are machine-checked by a relatively small kernel, and certified programs can be extracted
from them to external programming languages like Objective Caml, Haskell, or Scheme [43].

As a proof development system, Coq provides interactive proof methods, decision and semi-
decision algorithms, and a tactic language for letting the user define its own proof methods.
Connection with external computer algebra system or theorem provers is also available.

The Coq library is structured into two parts: the initial library, which contains elementary
logical notions and data-types, and the standard library, a general-purpose library containing
various developments and axiomatizations about sets, lists, sorting, arithmetic, real numbers, etc.

8http://coq.inria.fr/

RR n° 7826

http://coq.inria.fr/

16 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

In this work, we mainly use the Reals standard library [45], that is a classical axiomatization
of an Archimedean ordered complete field. We chose Reals to make our numerical proofs because
we do not need an intuitionistic formalization.

For floating-point numbers, we use a large Coq library9 initially developed in [26] and extended
with various results afterwards [11]. It is a high-level formalization of IEEE-754 with gradual
underflow. This is expressed by a formalization where floating-point numbers are pairs (n, e)
associated with real values n× βe. The requirements for a number to be in the format (emin, β

p)
are

|n| < βp and emin ≤ e.

This formalization is convenient for human interactive proofs as testified by the numerous
proofs using it. The huge number of lemmas available in the library (about 1400) makes it
suitable for a large range of applications. This library has since then been superseded by the
Flocq library [16], but it was not yet available at the time we proved the floating-point results of
this work.

4.1.2 Frama-C, Jessie, Why, and the SMT Solvers

We use the Frama-C platform10 to perform formal verification of C programs at the source-
code level. Frama-C is an extensible framework that combines static analyzers for C programs,
written as plug-ins, within a single tool. In this work, we use the Jessie plug-in for deductive
verification. C programs are annotated with behavioral contracts written using the ANSI C
Specification Language (ACSL for short) [6]. The Jessie plug-in translates them to the Jessie
language [44], which is part of the Why verification platform [31]. This part of the process is
responsible for translating the semantics of C into a set of Why logical definitions (to model C
types, memory heap, etc.) and Why programs (to model C programs). Finally, the Why platform
computes verification conditions from these programs, using traditional techniques of weakest
preconditions, and emits them to a wide set of existing theorem provers, ranging from interactive
proof assistants to automated theorem provers. In this work, we use the Coq proof assistant
(Section 4.1.1), SMT solvers Alt-Ergo [19], CVC3 [5] and Z3 [28], and the automated theorem
prover Gappa (Section 4.1.3). Details about automated and interactive proofs can be found in
Section 4.3. The dataflow from C source code to theorem provers can be depicted as follows:

ACSL-annotated
C program

Frama-C
(Jessie plug-in)

Why

Coq

Alt-Ergo

CVC3

Z3

Gappa

More precisely, to run the tools on a C program, we use a graphical interface called gWhy. A
screenshot is in Appendix B. In this interface, we may call one prover on one or on many goals.
We then get a graphical view of how many goals are proved and by which prover.

In ACSL, annotations are using first-order logic. Following the programming by contract ap-
proach, the specifications involve preconditions, postconditions, and loop invariants. Contrary to
other approaches focusing on run-time assertion checking, ACSL specifications do not refer to C
values and functions, even if pure, but refer instead to purely logical symbols. In the following
contract for a function computing the square of an integer x

9http://lipforge.ens-lyon.fr/www/pff/
10http://www.frama-c.cea.fr/

INRIA

http://lipforge.ens-lyon.fr/www/pff/
http://www.frama-c.cea.fr/

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 17

//@ ensures \ r e su l t == x ∗ x ;
int square (int x) ;

the postcondition, introduced with ensures, refers to the return value \result and argument x. Both
are denoting mathematical integer values, for the corresponding C values of type int. In particular,
x ∗ x cannot overflow. Of course, one could give function square a more involved specification that
handles overflows, e.g. with a precondition requiring x to be small enough. Simply speaking, we
can say that C integers are reflected within specifications as mathematical integers, in an obvious
way. The translation of floating-point numbers is more subtle and explained in Section 4.1.4.

4.1.3 Gappa

The Gappa tool11 adapts the interval-arithmetic paradigm to the proof of properties that occur
when verifying numerical applications [25]. The inputs are logical formulas quantified over real
numbers whose atoms are usually enclosures of arithmetic expressions inside numeric intervals.
Gappa answers whether it succeeded in verifying it. In order to support program verification,
one can use rounding functions inside expressions. These unary operators take a real number
and return the closest real number in a given direction that is representable in a given binary
floating-point format. For instance, assuming that operator ◦ rounds to the nearest binary64
floating-point number, the following formula states that the relative error of the floating-point
addition is bounded:

∀x, y ∈ R, ∃ε ∈ R, |ε| ≤ 2−53 ∧ ◦(◦(x) + ◦(y)) = (◦(x) + ◦(y))× (1 + ε).

Converting straight-line numerical programs to Gappa logical formulas is easy and the user can
provide additional hints if the tool were to fail to verify a property. The tool is specially designed to
handle codes that are performing convoluted manipulations. For instance, it has been successfully
used to verify a state-of-the-art library of correctly-rounded elementary functions [27]. In the
current work, Gappa has been used to check much simpler properties. (In particular, no user hint
was needed to discharge a proof automatically.) But the length of their proofs would discourage
even the most dedicated users if they were to be manually handled. One of the properties is the
round-off error of a local evaluation of the numerical scheme (Section 3.2.1). Other properties
mainly deal with proving that no exceptional behavior occurs while executing the program: due
to the initial values, all the computed values are sufficiently small to never cause overflow.

The verification of some formulas requires reasonings that are so long and intricate [27], that it
might cast some doubts on whether an automatic tool actually succeeded in proving them. This
is especially true when the tool ends up proving a property stronger than what the user expected.
That is why Gappa also generates a formal certificate that can be mechanically checked by a proof
assistant. This feature has served as the basis for a Coq tactic for automatically solving goals
related to floating-point and real arithmetic [15]. The tactic reads the current Coq goal, generates
a Gappa goal, executes Gappa on it, recovers the certificate, and converts it to a complete proof
term that Coq matches against the current goal. At this point, whether Gappa is correct or not
no longer matters: the original Coq goal is formally proved by a complete Coq proof.

This tactic has been used whenever a verification condition would have been directly proved
by Gappa, if not for some confusing notations or encodings of matrix elements. We just had to
apply a few basic Coq tactics to put the goal into the proper form and then call the Gappa tactic
to discharge it automatically.

4.1.4 Floating-Point Formalizations

A natural question is the link between the various representations of floating-point numbers.
We assume that the execution environment (mostly the processor) complies with the IEEE-754
standard [47], which defines formats, rounding modes, and operations. The C program we consider
is compiled in an assembly code that will directly use these formats and operations. We also

11http://gappa.gforge.inria.fr/

RR n° 7826

http://gappa.gforge.inria.fr/

18 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

assume that the compiler optimizations preserve the visible semantics of floating-operations from
the original code, e.g. no use of the extended registers. Such optimizations could have been taken
into account though, but at a cost [17].

When verifying the C program, the floating-point operations are translated by Frama-C/-
Jessie/Why following some previous work by two of the authors [14]. A floating-point number f is
modeled in the logic as a triple of real numbers (r, e,m). Value r simply stands for the real number
that is immediately represented by f ; value e stands for the exact value of f , as obtained if no
rounding errors had occurred; finally, value m stands for the model of f , which is a placeholder
for the value intended to be computed and filled by the user. The two latter values have no
existence in the program, but are useful for the specification and the verification. In particular,
they help state assertions about the rounding or the model error of a program. In ACSL, the
three components of the model of a floating-point number f can be referred to using f, \exact(f),
and \model(f), respectively. \round error(f) is a macro for the rounding error, that is, \abs(f -
\exact(f)).

For instance, the following excerpt from our C program specifies the error on the content of
the dx variable, which represents the grid step ∆x (see Section 2).

dx = 1./ ni ;
/∗@ asser t

@ dx > 0. && dx <= 0.5 &&
@ \abs(\ exact (dx) − dx) / dx <= 0x1 .p−53;
@ ∗/

Note that 0x1.p-53 is a valid ACSL (and C too) literal meaning 2−53.
Proof obligations are extracted from the annotated C program by computing weakest precondi-

tions and then translated to automated and interactive provers. For SMT provers, the three fields
r, e, and m, of floating-point numbers are expressed as real numbers and operations on floating-
point numbers are uninterpreted relations axiomatized with basic properties such as bounds on the
rounding error or monotonicity. For Gappa too, the fields are seen as real numbers. The tool, how-
ever, knows about floating-point arithmetic and its relation to real arithmetic. So floating-point
operations are translated to the corresponding symbols from Gappa.

For Coq, we use the formalization described in Section 4.1.1 with a limited precision and
gradual underflow (so that subnormal numbers are correctly translated). It is based on the real
numbers of the standard library, which are also used for the translation of the exact and the model
parts of the floating-point number.

While the IEEE-754 standard defines infinities and Not-a-Number as floating-point values, our
translation does not take them into account. This does not compromise the correctness of the
translation though, as each operation has a precondition that raises a proof obligation to guarantee
that no exceptional events occur, such as overflow or division by zero, and therefore no infinities
nor Not-a-Number are produced by the program.

To summarize, there is one assumption about the actual arithmetic being executed (IEEE-754
compliant and no overly aggressive optimizations from the compiler) and three formalizations of
floating-point arithmetic used to verify the program: one used by Jessie/Why and then sent to
the SMT solvers, one used by Gappa, and one used by Coq. The combination of these three
different formalizations does not introduce any inconsistency. Indeed, we have formally proved in
Coq that Gappa’s and Coq’s formalizations are equivalent for floating-point formats with limited
precision and gradual underflow, that is, IEEE-754 formats. We have also formally proved that
the Jessie/Why specifications and the properties for SMT provers are compatible with these for-
malizations, including the absence of special values (infinity or Not-a-Number) and the possibility
to disregard the upper bound on reals representing floating-point numbers.

In fact, there is a fourth formalization of floating-point arithmetic involved, which is the one
used internally by the interval computations of Gappa for proving results about real-valued ex-
pressions. It is not equivalent to the previous ones, since it is a multi-precision arithmetic, but
it has no influence whatsoever on the formalization that Gappa uses for modeling floating-point
properties.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 19

4.2 Program Annotations

The full annotations are given in Appendix A. We give here hints about how to specify this
program.

There are two axiomatics. The first one corresponds to the mathematics: the exact solution
of the wave equation and its properties. It defines the needed values (the exact solution p, and its
initialization p0). We here assume that s and p1 are zero functions. It also defines the derivatives
of p (psol1, first derivative for the first variable of p, and psol11, second derivative for the first
variable, and psol2 and psol22 for the second variable) as functions such that their value is the limit

of p(x+∆x)−p(x)
∆x

when ∆x → 0. As the ACSL annotations are only first order, these definitions are
quite cumbersome: each derivative needs 5 lines to be defined.

We also put as axioms the fact that the solution has the expected properties (1–4). The
last property needed on the exact solution is its regularity. We require it to be near its Taylor
approximations of degrees 3 and 4 on the whole interval [xmin, xmax]. For instance, the following
annotation states the property for degree 3.

/∗@ axiom pso l su f f r egu l a r 3 :
@ 0 < alpha 3 && 0 < C 3 &&
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 3 ==>
@ \abs(psol (x + dx , t + dt) − psol Taylor 3 (x , t , dx , dt)) <=
@ C 3 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 3)) ;
@∗/

The second axiomatic corresponds to the properties and loop invariant needed by the program.
For example, we require the matrix to be separated: it means that a line of the matrix should
not mix with another line (or a modification could alter another point of the matrix). We also
state the existence of the loop invariant analytic error that is needed for applying the results of
Section 3.2.

The initializations functions are specified, but not stated. This corresponds firstly to the
function array2d alloc that initializes the matrix and p zero that produces an approximation of the
p0 function. Our program verification is modular: our proofs are generic with respect to p0 and
its implementation.

The preconditions of the main functions are the following ones:

• imax and kmax must be greater than one, but small enough so that imax +1 and kmax +1 do
not overflow;

• the grid sizes ∆x must fulfill some mathematical conditions that are required for the con-
vergence of the scheme;

• the floating-point values computed for the grid sizes must be near their mathematical values;

• to prevent exceptional behavior in the computation of a, the time discretization step must
be greater than 2−1000 and c∆t

∆x
must be greater than 2−500.

There are two postconditions, corresponding to the method and round-off errors. See Sec-
tions 3.1 and 3.2 for more details.

4.3 Automation and Manual Proofs

This section is devoted to formal specifications and proofs corresponding to the bounds proved in
Section 3. We give some key points of the automated proofs.

Big O. In section 3.1.1, we present two interpretations of the big O notation. Usual mathematical
pen-and-paper proofs switch from one interpretation to the other depending on which one is the
most adapted, without noticing that they may not be equivalent. The formal development was
helpful in bringing into light the erroneous reasoning hidden by the usage of big O notations. We

RR n° 7826

20 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

introduced the notion of uniform big O in [13] in the context of an infinite string. In the present
paper, we consider the case of the finite string, hence for compactness reasons, both notions are in
fact equivalent. However, we still use the more general uniform big O notion to share most of the
proof developments between the finite and the infinite cases. Regarding automation, a decision
procedure has been developed in [4]; unfortunately, those results were not applicable since we
needed a more powerful big O.

Differential operators. As long as we were studying only the method error, we did not have
to define the differential operators nor assume anything about them [13]. Their only properties
appeared through their usage: function p is a solution of the partial differential equation and
it is sufficiently regular. This is no longer possible for the annotated C program. Indeed, due
to the underlying logic, the annotations have to define p as a solution of the PDE by using
first-order formulas stating differentiability, instead of second-order formulas involving differential
operators. Since the formalization of Taylor approximations has been left unchanged, the natural
way to relate the C annotations with the Coq development is therefore to define the operators as
actual differential operators. Note that this has forced us to introduce a small axiom. Indeed, our
definition of Taylor approximation depends on differential operators that are total functions, while
Coq’s standard library defines only partial operators. So we have assumed the existence of some
total operators that are equal to the partial ones whenever applied to differentiable functions.
The axiom states absolutely nothing about the result of these operators for nondifferentiable
functions, so no inconsistencies are introduced this way. This is just a specific instance of Hilbert
ε operator [57], which does not make the logic inconsistent [41].

Method error. The Coq proof of the method error is about 5000-line long. About half of it
is dedicated to the wave equation and the other half is re-usable (definition and properties of the
dot product, the big O, Taylor expansions. . .). We formally proved without any axiom that the
numerical scheme is convergent of order 2, which is the known mathematical result. An interesting
aspect of the formal proof in Coq is that we were able to extract the constants α and C appearing
in the big O for the convergence result in order to obtain their precise values. The recursive
extraction was fully automatic after making explicit some inlining. The mathematical expressions
are given in Section 3.3.

Round-off errors. Except for Lemma 2, all the proofs described in section 3.2 have been
done and machined-checked using Coq. In particular, the proof of the bound on δki was done
automatically by calling Gappa from Coq. Lemma 2 is a technical detail compared to the rest
of our work, that is not worth the immense Coq development it would require: keen results on
integrals but also definitions and results about the Legendre, Laguerre, Chebychev, and Jacobi
polynomials.

The program proof. Given the program code, the Why tool generates 149 verification condi-
tions that have to be proved. While possible, proving all of them in Coq would be rather tedious.
Moreover, it would lead to a rather fragile construct: any later modification to the code, however
small it is, would cause different proof obligations to be generated, which would then require ad-
ditional human interaction to adapt the Coq proofs. We prefer to have automated provers (SMT
solvers and Gappa) discharge as many of them as possible, so that only the most intricate ones are
left to be proven in Coq. The following table shows how many goals are discharged automatically
and how many are left to the user.12

12Note that verification conditions might be discharged by one or several automated provers.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 21

Prover Proved Behavior VC Proved Safety VC Total
Alt-Ergo 18 80 98
CVC3 18 89 107
Gappa 2 20 22
Z3 21 63 84

Automatically proved 23 94 117

Coq 21 11 32

Total 44 105 149

On safety goals (matrix access, loop variant decrease, overflow), automatic provers are helpful:
they prove about 90 % of the goals. On behavior goals (loop invariant, assertion, postcondition),
automatic provers succeed for half of the goals. As our loop invariant involves an uninterpreted
predicate, the automatic provers cannot prove all the behavior goals (they would have been too
complicated anyway). That is why we resort to an interactive higher-order theorem prover, namely
Coq.

Coq proofs are split into two sets: first, the mathematical proof of convergence and second,
the proofs of bounded round-off errors and absence of runtime errors. Appendix C displays the
layout of the Coq formalization.

The following tabular gives the compilation times of the Coq files on a 3-GHz dual core machine.

Type of proofs Nb spec lines Nb lines Compilation time
Convergence 991 5 275 42 s
Round-off + runtime errors 7 737 13 175 32 min

Note that most theorem statements regarding round-off and runtime errors are automatically
generated (7 321 lines out of 7 737) by the Frama-C/Jessie/Why framework.

The compilation time may seem prohibitive; it is mainly due to the size of the theorems and to
calls to the omega decision procedure for Presburger arithmetic. The difficulty does not lie in the
arithmetic statement itself, but rather in a large number of useless hypotheses. In order to reduce
the compilation time, we could manually massage the hypotheses to speed up the procedure, but
this would defeat the point of using an automatic tactic.

5 Conclusion

In the end, having formally verified the C program means that all of the proof obligations gen-
erated by Frama-C/Jessie/Why have been proved, either by automated tools or by Coq formal
proofs. These formal proofs depend on some axioms specific to this work: the fact about Jacobi
polynomials, the existence and regularity of a solution to the EDP, and the existence of differen-
tial operators. The last two have been tackled by subsequent works, which means that the only
remaining Coq axiom is the one about Jacobi polynomials.

We succeeded in verifying a C program that implements a numerical scheme for the resolution
of the one-dimensional acoustic wave equation. This is comprised of three sets of proofs. First we
formalized the wave equation and proved the convergence of a scheme for its numerical resolution.
Second we proved that the C program behaves safely: no out-of-bound array accesses and no
overflow during floating-point computations. Third we proved that the round-off errors are not
causing the numerical results to go astray. This is the first verification of this kind of program
that covers all its aspects, both mathematics and implementation.

This work shows a tight synergy between researchers from applied mathematics and logic.
Three domains are intertwined here: applied mathematics for an initial proof that was enriched
and detailed upon request, computer arithmetic for smart bounds on round-off errors, and formal
methods for machine-checking them. This may be the reason why such proofs never appeared
before, as this kind of collaboration is uncommon.

RR n° 7826

22 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

Each proof came with its own hurdles. For ensuring the correct behavior of the program,
the most tedious point was to prove that setting a result value did not cause other values to
change, that is, that all the lines of the matrix are properly separated. In particular, verifying the
loop invariant requires checking that, except for the new value, the properties of the memory are
preserved. An unexpectedly tedious part was to check that the program actually complies with
our mathematical model for the numerical scheme.

Another difficulty lies in the mathematical proof itself. We based our work on proofs found in
books, courses, and articles. It appears that pen-and-paper proofs are sometimes sketchy: they
may be fuzzy about the needed hypotheses, especially when switching quantifiers. We have also
learned that filling the gaps may cause us to go back to the drawing board and to change the basic
blocks of our formalization to make them more generic (e.g. devising a big O that needs to be
uniform and also generic with respect to a property P).

An unexpected side effect of having performed this formal verification in Coq is our ability to
automatically extract the constants hidden inside the proofs. That way, we are able to explicitly
bound the total error rather than just having the usual O(∆x2 + ∆t2) bound. In particular, we
can compare the magnitudes of the method error and round-off error and then decide how to scale
the discretization grid.

Coq could have offered us more: it would have been possible to describe and prove the algorithm
directly in Coq. The same formalism would have been used all the way long, but we were more
interested in proving a real-life program in a real-life language. This has shown us the difficulties
lying in the memory handling for matrices. In the end, we have a C code with readable annotations
instead of a Coq theorem and that seems more convincing to applied mathematicians.

For this exploratory work, we considered the simple three-point scheme for the one-dimen-
sional wave equation. Further works involve scaling to higher-dimension. The one-dimensional
case showed us that summations and finite support functions play a much more important role in
the development than we first expected. We are therefore moving to the SSReflect interface and
libraries for Coq [9], so as to simplify the manipulations of these objects in the higher-dimensional
case.

This example also exhibits a major cancellation of rounding errors and it would be interesting
to see under which conditions numerical schemes behave so well.

Another perspective is to generalize our approach to other higher-order numerical schemes for
the same equation, and to other PDEs. However, the proofs of Section 3.1 are entangled with
particulars of the presented problem, and would therefore have to be redone for other problems.
So a more fruitful approach would be to prove once and for all the Lax equivalence theorem that
states that consistency implies the equivalence between convergence and stability. This would
considerably reduce the amount of work needed for tackling other schemes and equations.

References

[1] J. D. Achenbach. Wave Propagation in Elastic Solids. North Holland, Amsterdam, 1973.

[2] George E. Andrews, Richard Askey, and Ranjan Roy. Special functions. Cambridge University
Press, Cambridge, 1999.

[3] Richard Askey and George Gasper. Certain rational functions whose power series have positive
coefficients. The American Mathematical Monthly, 79:327–341, 1972.

[4] Jeremy Avigad and Kevin Donnelly. A Decision Procedure for Linear “Big O” Equations. J.
Autom. Reason., 38(4):353–373, 2007.

[5] Clark Barrett and Cesare Tinelli. CVC3. In 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of LNCS, pages 298–302. Springer-Verlag, July
2007. Berlin, Germany.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 23

[6] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, version 1.5,
2009.

[7] É. Bécache. Étude de schémas numériques pour la résolution de l’équation des ondes. Master
Modélisation et simulation, Cours ENSTA, 2009.

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer, 2004.

[9] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical Big Operators.
In 21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs’08),
volume 5170 of LNCS, pages 86–101, Montreal, Canada, 2008. Springer.

[10] François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala, Stéphane Les-
cuyer, and Alain Mebsout. The Alt-Ergo automated theorem prover, 2008.

[11] Sylvie Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis, École
Normale Supérieure de Lyon, November 2004.

[12] Sylvie Boldo. Floats & Ropes: a case study for formal numerical program verification. In
36th International Colloquium on Automata, Languages and Programming, volume 5556 of
LNCS - ARCoSS, pages 91–102, Rhodos, Greece, July 2009. Springer.

[13] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Formal proof of a wave equation resolution scheme: the method
error. In Matt Kaufmann and Lawrence C. Paulson, editors, 1st Interactive Theorem Prov-
ing Conference (ITP), volume 6172 of LNCS, pages 147–162, Edinburgh, Scotland, 2010.
Springer.

[14] Sylvie Boldo and Jean-Christophe Filliâtre. Formal Verification of Floating-Point Programs.
In 18th IEEE International Symposium on Computer Arithmetic, pages 187–194, Montpellier,
France, June 2007.

[15] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. Combining Coq and
Gappa for certifying floating-point programs. In Jacques Carette, Lucas Dixon, Claudio Sarce-
doti Coen, and Stephen M.Watt, editors, 16th Calculemus Symposium, volume 5625 of Lecture
Notes in Artificial Intelligence, pages 59–74, Grand Bend, ON, Canada, 2009.

[16] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-point
algorithms in Coq. In Elisardo Antelo, David Hough, and Paolo Ienne, editors, 20th IEEE
Symposium on Computer Arithmetic, pages 243–252, Tübingen, Germany, 2011.

[17] Sylvie Boldo and Thi Minh Tuyen Nguyen. Proofs of numerical programs when the compiler
optimizes. Innovations in Systems and Software Engineering, 7:1–10, 2011.

[18] L. M. Brekhovskikh and V. Goncharov. Mechanics of Continua and Wave Dynamics.
Springer, 1994.

[19] Sylvain Conchon, Évelyne Contejean, Johannes Kanig, and Stéphane Lescuyer. CC(X): Se-
mantical combination of congruence closure with solvable theories. In Post-proceedings of the
5th International Workshop on Satisfiability Modulo Theories (SMT 2007), volume 198-2 of
Electronic Notes in Computer Science, pages 51–69. Elsevier Science Publishers, 2008.

[20] The Coq reference manual.

[21] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In P. Martin-Löf
and G.Mints, editors, Colog’88, volume 417 of LNCS. Springer-Verlag, 1990.

RR n° 7826

24 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

[22] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical
physics. IBM Journal of Research and Development, 11(2):215–234, 1967.

[23] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. The ASTRÉE analyzer. In ESOP, number 3444 in LNCS,
pages 21–30, 2005.

[24] Lúıs Cruz-Filipe. A Constructive Formalization of the Fundamental Theorem of Calculus.
In Herman Geuvers and Freek Wiedijk, editors, 2nd International Workshop on Types for
Proofs and Programs (TYPES 2002), volume 2646 of LNCS, Berg en Dal, Netherlands, 2002.
Springer.

[25] Marc Daumas and Guillaume Melquiond. Certification of bounds on expressions involving
rounded operators. Transactions on Mathematical Software, 37(1):1–20, 2010.

[26] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library for floating-point
numbers and its application to exact computing. In TPHOLs, pages 169–184, 2001.

[27] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying the floating-
point implementation of an elementary function using Gappa. Transactions on Computers,
60(2):242–253, 2011.

[28] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. In TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[29] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Védrine.
Towards an industrial use of FLUCTUAT on safety-critical avionics software. In FMICS,
volume 5825 of LNCS, pages 53–69. Springer, 2009.

[30] Bruno Dutertre. Elements of mathematical analysis in PVS. In Joakim von Wright, Jim
Grundy, and John Harrison, editors, 9th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’96), volume 1125 of LNCS, pages 141–156, Turku, Finland,
1996. Springer.

[31] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In 19th International Conference on Computer Aided Verifi-
cation, volume 4590 of LNCS, pages 173–177, Berlin, Germany, July 2007. Springer.

[32] Jacques D. Fleuriot. On the mechanization of real analysis in Isabelle/HOL. In Mark Aagaard
and John Harrison, editors, 13th International Conference on Theorem Proving and Higher-
Order Logic (TPHOLs’00), volume 1869 of LNCS, pages 145–161. Springer, 2000.

[33] The Frama-C platform for static analysis of C programs, 2008.

[34] Ruben Gamboa and Matt Kaufmann. Nonstandard analysis in ACL2. Journal of Automated
Reasoning, 27(4):323–351, 2001.

[35] Herman Geuvers and Milad Niqui. Constructive reals in Coq: Axioms and categoricity. In
Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack, editors, 1st International
Workshop on Types for Proofs and Programs (TYPES 2000), volume 2277 of LNCS, pages
79–95, Durham, United Kingdom, 2002. Springer.

[36] John Harrison. Theorem Proving with the Real Numbers. Springer, 1998.

[37] John Harrison. A HOL theory of euclidean space. In Joe Hurd and Thomas F. Mel-
ham, editors, 18th International Conference on Theorem Proving and Higher-Order Logic
(TPHOLs’05), volume 3603 of LNCS, pages 114–129. Springer, 2005.

[38] F. John. Partial Differential Equations. Springer, 1986.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 25

[39] Robbert Krebbers and Bas Spitters. Type classes for efficient exact real arithmetic in Coq.
arXiv:1106.3448v1, 2011.

[40] J. le Rond D’Alembert. Recherches sur la courbe que forme une corde tendue mise en vibra-
tions. In Histoire de l’Académie Royale des Sciences et Belles Lettres (Année 1747), volume 3,
pages 214–249. Haude et Spener, Berlin, 1749.

[41] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of CC with predicative induction
and judgmental equality. Logical Methods in Computer Science, 7(4:5), 2011.

[42] Catherine Lelay and Guillaume Melquiond. Différentiabilité et intégrabilité en Coq. Applica-
tion à la formule de d’Alembert. In 23èmes Journées Francophones des Langages Applicatifs,
pages 119–133, Carnac, France, 2012.

[43] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
2nd International Workshop on Types for Proofs and Programs (TYPES 2002), volume 2646
of LNCS, Berg en Dal, Netherlands, 2003. Springer.

[44] Claude Marché. Jessie: an intermediate language for Java and C verification. In Programming
Languages meets Program Verification (PLPV), pages 1–2, Freiburg, Germany, 2007. ACM.

[45] Micaela Mayero. Formalisation et automatisation de preuves en analyses réelle et numérique.
PhD thesis, Université Paris VI, 2001.

[46] Micaela Mayero. Using theorem proving for numerical analysis (correctness proof of an auto-
matic differentiation algorithm). In Victor Carreño, César Muñoz, and Sofiène Tahar, editors,
15th International Conference on Theorem Proving and Higher-Order Logic, volume 2410 of
LNCS, pages 246–262, Hampton, VA, USA, 2002. Springer.

[47] Microprocessor Standards Committee. IEEE Standard for Floating-Point Arithmetic. IEEE
Std. 754-2008, pages 1–58, August 2008.

[48] I. Newton. Axiomata, sive Leges Motus. In Philosophiae Naturalis Principia Mathematica,
volume 1. London, 1687.

[49] Russell O’Connor. Certified exact transcendental real number computation in Coq. In 21st
International Conference on Theorem Proving in Higher Order Logics (TPHOLs’08), volume
5170 of LNCS, pages 246–261. Springer, 2008.

[50] Russell O’Connor and Bas Spitters. A computer-verified monadic functional implementation
of the integral. Theoretical Computer Science, 411(37):3386–3402, 2010.

[51] Elemer E. Rosinger. Propagation of round-off errors and the role of stability in numerical
methods for linear and nonlinear PDEs. Applied Mathematical Modelling, 9(5):331–336, 1985.

[52] Elemer E. Rosinger. L-convergence paradox in numerical methods for PDEs. Applied Math-
ematical Modelling, 15(3):158–163, 1991.

[53] Christopher J. Roy and William L. Oberkampf. A comprehensive framework for verification,
validation, and uncertainty quantification in scientific computing. Computer Methods in
Applied Mechanics and Engineering, 200(25-28):2131–2144, 2011.

[54] Piotr Rudnicki. An overview of the MIZAR project. In Types for Proofs and Programs, pages
311–332, 1992.

[55] Barbara Szyszka. An interval method for solving the one-dimensional wave equation. In 7th
EUROMECH Solid Mechanics Conference (ESMC2009), Lisbon, Portugal, 2009.

[56] James William Thomas. Numerical Partial Differential Equations: Finite Difference Methods.
Number 22 in Texts in Applied Mathematics. Springer, 1995.

RR n° 7826

26 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

[57] Richard Zach. Hilbert’s “Verunglueckter Beweis,” the first epsilon theorem, and consistency
proofs.

[58] D. Zwillinger. Handbook of Differential Equations. Academic Press, 1998.

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 27

A Source Code

0

/∗@ axiomatic d i r i ch let maths {
@
@ log i c r ea l c ;
@ log i c r ea l p0(r ea l x) ;

5 @ log i c r ea l psol (r ea l x , r ea l t) ;

@ axiom c pos : 0 < c ;

@ log i c r ea l psol 1 (r ea l x , r ea l t) ;
10 @ axiom pso l 1 def :

@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dx ;
@ \abs(dx) < C ==>
@ \abs ((psol (x + dx , t) − psol (x , t)) / dx − psol 1 (x , t)) < eps ;

15

@ log i c r ea l psol 11 (r ea l x , r ea l t) ;
@ axiom psol 11 def :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dx ;

20 @ \abs(dx) < C ==>
@ \abs ((psol 1 (x + dx , t) − psol 1 (x , t)) / dx − psol 11 (x , t)) < eps ;

@ log i c r ea l psol 2 (r ea l x , r ea l t) ;
@ axiom pso l 2 def :

25 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dt ;
@ \abs(dt) < C ==>
@ \abs ((psol (x , t + dt) − psol (x , t)) / dt − psol 2 (x , t)) < eps ;

30 @ log i c r ea l psol 22 (r ea l x , r ea l t) ;
@ axiom psol 22 def :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ \ f o r a l l r ea l eps ; \ ex i s t s r ea l C; 0 < C && \ f o r a l l r ea l dt ;
@ \abs(dt) < C ==>

35 @ \abs ((psol 2 (x , t + dt) − psol 2 (x , t)) / dt − psol 22 (x , t)) < eps ;

@ axiom wave eq 0 : \ f o r a l l r ea l x ; 0 <= x <= 1 ==> psol (x , 0) == p0(x) ;
@ axiom wave eq 1 : \ f o r a l l r ea l x ; 0 <= x <= 1 ==> psol 2 (x , 0) == 0;
@ axiom wave eq 2 :

40 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ 0 <= x <= 1 ==> psol 22 (x , t) − c ∗ c ∗ psol 11 (x , t) == 0;
@ axiom wave eq dir ichlet 1 : \ f o r a l l r ea l t ; psol (0 , t) == 0;
@ axiom wave eq dir ichlet 2 : \ f o r a l l r ea l t ; psol (1 , t) == 0;

45 @ log i c r ea l psol Taylor 3 (r ea l x , r ea l t , r ea l dx , r ea l dt) ;
@ log i c r ea l psol Taylor 4 (r ea l x , r ea l t , r ea l dx , r ea l dt) ;

@ log i c r ea l alpha 3 ; l og i c r ea l C 3 ;
@ log i c r ea l alpha 4 ; l og i c r ea l C 4 ;

50

@ axiom pso l su f f r egu l a r 3 :
@ 0 < alpha 3 && 0 < C 3 &&
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 3 ==>

55 @ \abs(psol (x + dx , t + dt) − psol Taylor 3 (x , t , dx , dt)) <=
@ C 3 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 3)) ;

@ axiom pso l su f f r egu l a r 4 :
@ 0 < alpha 4 && 0 < C 4 &&

60 @ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ 0 <= x <= 1 ==> \ sqrt (dx ∗ dx + dt ∗ dt) <= alpha 4 ==>
@ \abs(psol (x + dx , t + dt) − psol Taylor 4 (x , t , dx , dt)) <=
@ C 4 ∗ \abs(\pow(\ sqrt (dx ∗ dx + dt ∗ dt) , 4)) ;

RR n° 7826

28 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

65 @ axiom pso l l e :
@ \ f o r a l l r ea l x ; \ f o r a l l r ea l t ;
@ 0 <= x <= 1 ==> 0 <= t ==> \abs (psol (x , t)) <= 1;

@ log i c r ea l T max ;
70 @ axiom T max pos : 0 < T max;

@ log i c r ea l C conv ; l og i c r ea l alpha conv ;
@ lemma alpha conv pos : 0 < alpha conv ;
@

75 @ } ∗/

/∗@ axiomatic d i r i ch l e t p rog {
@

80 @ predicate ana l y t i c e r ro r{L}
@ (double ∗∗p , integer ni , integer i , integer k , double a , double dt)
@ reads p [. .] [. .] ;
@
@ lemma ana l y t i c e r ro r l e {L} :

85 @ \ f o r a l l double ∗∗p ; \ f o r a l l integer ni ; \ f o r a l l integer i ;
@ \ f o r a l l integer nk ; \ f o r a l l integer k ;
@ \ f o r a l l double a ; \ f o r a l l double dt ;
@ 0 < ni ==> 0 <= i <= ni ==> 0 <= k ==>
@ 0 < \exact (dt) ==>

90 @ ana l y t i c e r ro r (p , ni , i , k , a , dt) ==>
@ \ sqrt (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) < alpha conv ==>
@ k <= nk ==> nk <= 7598581 ==> nk ∗ \exact (dt) <= T max ==>
@ \exact (dt) ∗ ni ∗ c <= 1 − 0x1 .p−50 ==>
@ \ f o r a l l integer i1 ; \ f o r a l l integer k1 ;

95 @ 0 <= i1 <= ni ==> 0 <= k1 < k ==>
@ \abs(p [i1] [k1]) <= 2;
@
@ predicate separated matrix{L}(double ∗∗p , integer l e n i) =
@ \ f o r a l l integer i ; \ f o r a l l integer j ;

100 @ 0 <= i < l e n i ==> 0 <= j < l e n i ==> i != j ==>
@ \base addr (p [i]) != \base addr (p [j]) ;
@
@ log i c r ea l sqr norm dx conv err{L}
@ (double ∗∗p , r ea l dx , r ea l dt , integer ni , integer i , integer k)

105 @ reads p [. .] [. .] ;
@ l og i c r ea l sqr (r ea l x) = x ∗ x ;
@ lemma sqr norm dx conv err 0{L} :
@ \ f o r a l l double ∗∗p ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ \ f o r a l l integer ni ; \ f o r a l l integer k ;

110 @ sqr norm dx conv err (p , dx , dt , ni , 0 , k) == 0;
@ lemma sqr norm dx conv err succ{L} :
@ \ f o r a l l double ∗∗p ; \ f o r a l l r ea l dx ; \ f o r a l l r ea l dt ;
@ \ f o r a l l integer ni ; \ f o r a l l integer i ; \ f o r a l l integer k ;
@ 0 <= i ==>

115 @ sqr norm dx conv err (p , dx , dt , ni , i + 1 , k) ==
@ sqr norm dx conv err (p , dx , dt , ni , i , k) +
@ dx ∗ sqr (psol (1. ∗ i / ni , k ∗ dt) − \exact (p [i] [k])) ;
@ l og i c r ea l norm dx conv err{L}
@ (double ∗∗p , r ea l dt , integer ni , integer k) =

120 @ \ sqrt (sqr norm dx conv err (p , 1. / ni , dt , ni , ni , k)) ;
@
@ } ∗/

125 /∗@ requi res l e n i >= 1 && len j >= 1;
@ ensures
@ \val id range (\ resu l t , 0 , l e n i − 1) &&
@ (\ f o r a l l integer i ; 0 <= i < l e n i ==>
@ \val id range (\ r e su l t [i] , 0 , l en j − 1)) &&

130 @ separated matrix (\ resu l t , l e n i) ;
@ ∗/

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 29

double ∗∗ar ray2d a l loc (int l en i , int l en j) ;

135 /∗@ requi res (l != 0);
@ ensures
@ \ round error (\ r e su l t) <= 14 ∗ 0x1 .p−52 &&
@ \exact (\ r e su l t) == p0(\ exact (x)) ;
@ ∗/

140 double p zero (double xs , double l , double x) ;

/∗@ requi res
@ ni >= 2 && nk >= 2 && l != 0 &&

145 @ dt > 0. && \exact (dt) > 0. &&
@ \exact (v) == c && \exact (v) == v &&
@ 0x1 .p−1000 <= \exact (dt) &&
@ ni <= 2147483646 && nk <= 7598581 &&
@ nk ∗ \exact (dt) <= T max &&

150 @ \abs(\ exact (dt) − dt) / dt <= 0x1 .p−51 &&
@ 0x1 .p−500 <= \exact (dt) ∗ ni ∗ c <= 1 − 0x1 .p−50 &&
@ \ sqrt (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) < alpha conv ;
@
@ ensures

155 @ \ f o r a l l integer i ; \ f o r a l l integer k ;
@ 0 <= i <= ni ==> 0 <= k <= nk ==>
@ \ round error (\ r e su l t [i] [k]) <= 78. / 2 ∗ 0x1 .p−52 ∗ (k + 1) ∗ (k + 2);
@
@ ensures

160 @ \ f o r a l l integer k ; 0 <= k <= nk ==>
@ norm dx conv err (\ resu l t , \exact (dt) , ni , k) <=
@ C conv ∗ (1. / (ni ∗ ni) + \exact (dt) ∗ \exact (dt)) ;
@ ∗/

double ∗∗ forward prop (int ni , int nk , double dt , double v ,
165 double xs , double l) {

/∗ Output var iab le . ∗/
double ∗∗p ;

170 /∗ Local var iab les . ∗/
int i , k ;
double a1 , a , dp , dx ;

dx = 1./ ni ;
175 /∗@ asser t

@ dx > 0. && dx <= 0.5 &&
@ \abs(\ exact (dx) − dx) / dx <= 0x1 .p−53;
@ ∗/

180 /∗ Compute the constant coe f f i c i en t of the s t i f f n e s s matrix . ∗/
a1 = dt/dx∗v ;
a = a1∗a1 ;
/∗@ asser t

@ 0 <= a <= 1 &&
185 @ 0 < \exact (a) <= 1 &&

@ \ round error (a) <= 0x1 .p−49;
@ ∗/

/∗ Allocate space−time var iab le for the d i screte so lut ion . ∗/
190 p = array2d a l loc (ni+1, nk+1);

/∗ F i r s t i n i t i a l condit ion and boundary condit ions . ∗/
/∗ Left boundary . ∗/
p [0] [0] = 0 . ;

195 /∗ Time i te ra t i on −1 = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&
@ ana l y t i c e r ro r (p , ni , i − 1 , 0 , a , dt) ;

RR n° 7826

30 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

@ loop var iant ni − i ; ∗/
200 for (i=1; i<ni ; i++) {

p [i] [0] = p zero (xs , l , i ∗dx) ;
}
/∗ Right boundary . ∗/
p [ni] [0] = 0 . ;

205 /∗@ asser t ana l y t i c e r ro r (p , ni , ni , 0 , a , dt) ; ∗/

/∗ Second i n i t i a l condit ion (with p one=0) and boundary condit ions . ∗/
/∗ Left boundary . ∗/
p [0] [1] = 0 . ;

210 /∗ Time i te ra t i on 0 = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&
@ ana l y t i c e r ro r (p , ni , i − 1 , 1 , a , dt) ;
@ loop var iant ni − i ; ∗/

215 for (i=1; i<ni ; i++) {
/∗@ asser t \abs (p [i −1][0]) <= 2; ∗/
/∗@ asser t \abs (p [i] [0]) <= 2; ∗/
/∗@ asser t \abs (p [i +1][0]) <= 2; ∗/
dp = p[i +1][0] − 2.∗p [i] [0] + p [i −1] [0] ;

220 p [i] [1] = p[i] [0] + 0.5∗a∗dp ;
}
/∗ Right boundary . ∗/
p [ni] [1] = 0 . ;
/∗@ asser t ana l y t i c e r ro r (p , ni , ni , 1 , a , dt) ; ∗/

225

/∗ Evolution problem and boundary condit ions . ∗/
/∗ Propagation = time loop . ∗/
/∗@ loop invar iant

@ 1 <= k <= nk &&
230 @ ana l y t i c e r ro r (p , ni , ni , k , a , dt) ;

@ loop var iant nk − k ; ∗/
for (k=1; k<nk ; k++) {

/∗ Left boundary . ∗/
p [0] [k+1] = 0. ;

235 /∗ Time i te ra t i on k = space loop . ∗/
/∗@ loop invar iant

@ 1 <= i <= ni &&
@ ana l y t i c e r ro r (p , ni , i − 1 , k + 1 , a , dt) ;
@ loop var iant ni − i ; ∗/

240 for (i=1; i<ni ; i++) {
/∗@ asser t \abs(p [i −1][k]) <= 2; ∗/
/∗@ asser t \abs(p [i] [k]) <= 2; ∗/
/∗@ asser t \abs(p [i +1][k]) <= 2; ∗/
/∗@ asser t \abs(p [i] [k−1]) <= 2; ∗/

245 dp = p[i +1][k] − 2.∗p [i] [k] + p[i −1][k] ;
p [i] [k+1] = 2.∗p [i] [k] − p [i] [k−1] + a∗dp ;

}
/∗ Right boundary . ∗/
p [ni] [k+1] = 0. ;

250 /∗@ asser t ana l y t i c e r ro r (p , ni , ni , k + 1 , a , dt) ; ∗/
}

return p ;

255 }

INRIA

Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program 31

B Screenshot

This is a screenshot of gWhy: we have the list of all the verification conditions and if they are
proved by the various automatic tools.

RR n° 7826

32 S. Boldo, F. Clément, J-C. Filliâtre, M. Mayero, G. Melquiond, & P. Weis

C Dependency Graph

In the following graph, the ellipse nodes are Coq files formalizing the wave equation and the
convergence of its numerical scheme. The octagon nodes are Coq files that deal with proof obliga-
tions generated from the dirichlet.c program file, that is, propagation of round-off errors and
error-free execution. Arrows represent dependencies between the Coq files.

INRIA

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Numerical scheme for the wave equation
	The continuous equation
	The discrete equations
	Convergence
	Program

	Bounding errors
	Method error
	Big O, differentiability, and regularity
	Consistency
	Stability
	Convergence

	Round-off error
	Local round-off errors
	Convolution of round-off errors
	Bound on the global round-off error

	Total error

	Mechanization of proofs
	Tools
	Coq
	Frama-C, Jessie, Why, and the SMT solvers
	Gappa
	Floating-point formalizations

	Program annotations
	Automation and manual proofs

	Conclusion
	Source code
	Screenshot
	Dependency graph

