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Abstract: This paper deals with the problem of source localization in diffusion processes via
several sensor devices providing pointwise concentration measures; sensors are assumed to be
arranged in circular arrays, they can be fixed along the array or they can turn along a circular
path defined by the array. The originality of the proposed source localization solution lies in
the computation of the gradient and of higher-order derivatives (i. e., the Hessian) from Poisson
integrals; in opposition to other solutions published in the literature, this computation does
neither require specific knowledge of the solution of the diffusion process, nor the use of proving
signals, but only exploits properties of the pde. The Laplacian of the measured value is null
on the studied domain; such an assumption is justified for isotropic diffusive sources in steady-
state. The paper also presents some simulation results of a source-seeking torque control law for
mobile non-holonomic robots looking for a heat source in a room, where the source is modeled
as a small circular region.

Keywords: Source seeking, sensor networks, multi-agent systems

1. INTRODUCTION

This paper deals with the problem of source localization
via several sensor devices providing pointwise concentra-
tion measures; sensors are assumed to be arranged in
circular arrays, they can be fixed along the array or they
can turn along a circular path defined by the array.

Source localization is relevant to many applications of
vapor emitting sources (Porat and Nehorai, 1996) such
as explosive detection, drug detection, sensing leakage or
hazardous chemicals, pollution sensing and environmental
studies; sound source localization (Zhang et al., 2008)
is pertinent for intelligent conference calls systems that
identify the speakers to improve sound and video quality;
other applications also include heat source localization and
vent sources in underwater field.

There exist in the literature a variety of methods to treat
the problem of source localization and related issues. Many
techniques deal with formulations associated with isotropic
diffusion processes described by diffusion equations for
which a closed-form solution is known; as the explicit
solution depends on the source location (among other
parameters), several identification methods have been de-

⋆ The research leading to these results has received funding from
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2013) under grant agreements n. 223866 FeedNetBack and n. 257462
HYCON2 network of excellence.

vised to estimate the source position: Matthes et al. (2004)
proposed a two-step identification procedure, dealing with
the inhomogeneous case and a fixed sensor array; Porat
and Nehorai (1996) formulated a similar problem but with
moving sensors, using a maximum-likelihood approach to
estimate the source position, and considering moving sen-
sors which update their position so as to approximately
minimize the estimation error, by following the gradient
of the Cramér-Rao bound to error variance. More funda-
mental problems such as source identifiability and opti-
mal sensor placement are discussed in depth by Khapalov
(2010) using concepts and ideas of control system theory.
The above mentioned approaches can be viewed as inverse
problems for partial differential equations, with the goal
of finding the initial conditions or a forcing term. Because
of their nature, all such methods share the common draw-
backs of heavy computations, and of high sensitivity to the
explicit knowledge of the closed-form solution of the pde

describing the diffusion process.

Another related but quite different approach for source
localization is based on extremum seeking techniques
(Ariyur and Krstić, 2003). In contrast to the methods
mentioned previously, this approach is not based on any
particular structure or knowledge of the diffusion solu-
tion; the method only applies for moving sensors, as it
relies on the idea of collecting rich enough information to
approximate the gradient through the use of a periodic



probing signal. Adaptations of this idea to the problem
of source localization with a non-holonomic unicycle have
been previously reported in [Cochran and Krstić, 2007]
for the stability study, and by Cochran et al. (2007) for
application of this idea to several scenarios.

The method presented here follows a distinct direction
than the ones previously cited: on the one hand, it does not
require specific knowledge of the solution of the diffusion
process, but only exploits properties of the pde, and it
can compute the gradient direction from the pointwise
concentration samples with a small computation load; on
the other hand, it does not make use of a probing signal
and thus avoids the oscillations required by extremum
seeking techniques. The main idea consists in using Poisson
integrals to compute the gradient necessary to perform
source search, and also other higher-order derivatives (in
particular, the Hessian), which can be useful to implement
different control laws; the main assumption is that the
diffusion is described by the Laplacian pde, i.e., that the
Laplacian of the measured value is null on the studied
domain: such an assumption is justified for isotropic diffu-
sive sources in steady-state. Other potential benefits are:
extensions to 3d source localization (will be reported else-
where), and intrinsic high-frequency filtering (derivatives
are computed using integrals) that makes the methods low
sensitive to measurement noise.

The paper formalizes and extends previous ideas from
Moore and Canudas de Wit (2010), and Briñón Arranz
et al. (2011), where the gradient has been approximated
by the sum of pointwise measurements around a circle
weighted by the position vector of each sampler to its
center of rotation.

2. PROBLEM FORMULATION

We consider diffusion processes where the source is
isotropic and the diffusion is homogeneous, so that the
diffusion is described by the well-known diffusion equa-
tion (1). For the sake of simplicity, we focus on the 2-
dimensional case, where the diffusion happens in the (x, y)-
plane; we will use the notation z = (x, y) to denote a
point z ∈ R

2, and, whenever convenient, we will also
use the notation z = ρeiθ to denote the point (x, y) =
(ρ cos θ , ρ sin θ), using the usual bijection between points
in R

2 and elements of C. However, all operations will be
intended as operations on reals and on vectors in R

2; in
particular, all derivatives are intended as (partial) deriva-
tives of real-valued functions, and integrals are intended
as entry-wise integrals of the real-valued entries of the
vectors. For an open set Ω ⊂ R

2, we will denote its border
with ∂Ω and its closure with Ω̄ = Ω ∪ ∂Ω.

The 2-dimensional isotropic and homogeneous diffusion is
described by the following linear parabolic pde with con-
stant coefficients, known as “isotropic diffusion equation”
or as “heat equation”

∂f(z, t)

∂t
− κ∆f(z, t) = 0 , ∀z ∈ Ω , t ≥ 0 (1)

where Ω is an open subset of R
2, ∆ is the Laplacian

operator defined by ∆f(z) = ∂2f
∂x2 + ∂2f

∂y2 , κ is the isotropic

diffusion coefficient. Such an equation can describe various
diffusion phenomena: for instance, f can represent the

temperature or the concentration of a chemical (e.g., a
pollutant, or salinity).

In this work, we assume that the diffusion process is
fast enough, so that our main interest is in studying
only the steady-state behavior resulting from equation
(1); therefore, we limit our attention to solutions of the
following equation, known as Laplace equation

∆f(z) = 0 , ∀z ∈ Ω .

Our interest is in the case where the steady-state has
been reached but a source is still emitting somewhere
at a constant rate, and our goal is to find the source
location. As a model for such a source, we assume that
the source occupies a portion of space not belonging to
Ω, and it affects the values of f in Ω by imposing a
boundary condition. More precisely, we consider an open
domain Ω = Ω̃\Ωs, where Ω̃ ⊂ R

2 is a connected bounded
set representing the region we are interested in studying,
and Ωs is a small connected subset of Ω̃ which represents
the area occupied by the source. Hence, the boundary of
Ω is formed by two parts: an external one, equal to the
boundary of Ω̃ and denoted by ∂Ωext, and an inner one,
equal to the boundary of the source region Ωs and denoted
by ∂Ωin.

As an illustrative family of examples, we consider a source
of heat in a room, where the source is modeled as a small
circular region Ωs imposing a constant given value of f at
the inner boundary ∂Ωin; within this family, we consider
at first a simple example, where f can be written in closed
form, and then a richer example, where f can be computed
numerically with the finite elements method.

Example 1. (Heater in a circular room with constant
Dirichlet boundary conditions) Consider a circular room
with a circular heater at its center c. Denoting by Br(c)
the open ball Br(c) := { z : ‖z − c‖ < r }, we have that the

room is Ω̃ = Br(c) and the heater location is Ωs = Bρ(c),
where the center c is the same for both balls, but the radius
ρ is much smaller than r. In this example, we assume that
the boundary conditions are a constant temperature Ts

around the source and a smaller constant temperature Text

on the wall, so that we are looking for a solution of the
following Dirichlet problem:




∆f(z) = 0 in Ω = Br(c) \Bρ(c)

f(z) = Ts on ∂Ωin = ∂Bρ(c)

f(z) = Text on ∂Ωext = ∂Br(c) .

(2)

It is easy to verify that all functions of the form f(z) =
α log‖z − c‖ + β satisfy ∆f(z) = 0 for all z 6= c, so
in particular for all z ∈ Ω; moreover, it is easy to see
that such functions are constant along circles centered in
c. Then, by imposing the given boundary conditions, one
can find the correct values of α and β, and can find the
following solution f to the problem (2):

f(z) =
Text log(‖z − c‖/ρ)− Ts log(‖z − c‖/r)

log(r/ρ)
.

Thanks to the properties of the Laplacian operator, and
to choice of the boundary conditions, this is actually the
only solution of the problem (2). �

Example 2. (Heater in a rectangular room with mixed
Dirichlet-Neumann boundary conditions) Consider now



Fig. 1. Steady-state temperature in the room from Example 2

a rectangular room: similarly to Example 1, a circular
heater Ωs lies in the middle of the room, and imposes a
constant boundary condition f(z) = Ts for all z ∈ ∂Ωin.
On the walls, the boundary condition is imposed not on f ,
but on the derivative of f in the direction of the outward
unit normal n: we assume that ∇f(z) · n = 0 along the
walls, which models isolating walls; in the middle of the
back wall, a large window is open, and imposes a constant
boundary condition f(z) = Text due to the outer colder
temperature. The temperature profile at the steady state
can be obtained by solving the Laplacian equation with
the above-described boundary conditions by the use of
a finite-element method. Figure 1 shows the temperature
obtained by solving the above-described problem via the
FreeFem++ software (see [Hecht et al., 2004]), for a room
10 m wide and 6 m long; the window is 6 m large and the
heater occupies a circle with a radius of 50 cm; the heater’s
temperature is Ts = 45 ℃, and the temperature outside
the window is Text = 10 ℃. �

The solutions of the Laplace equation ∆f = 0 are called
harmonic, and have particular properties; in the next
section we will recall some of these properties, which we
will then exploit in order to design algorithms for source
seeking.

Because in our setup the inner boundary ∂Ωin represents a
source, we assume that values of f on ∂Ωin are higher than
values of f on ∂Ωext; under this assumption, the maximum
principle (see Proposition 1) ensures that the maximum
value of f on Ω̄ is attained on ∂Ωin. Hence, the problem
of finding the source can be described as the problem of
finding the maximum value of f on Ω̄; more precisely,
having assumed a constant value for f along ∂Ωin, we will
consider that the source seeking problem is solved if any
point along ∂Ωin has been reached.

3. GRADIENT COMPUTATION USING POISSON
INTEGRAL FORMULA

In this section we present the preliminaries, and the
method based on Poisson integrals that we will use to com-
pute the function f(z) and its nth order derivatives at any
point inside a circular region by using only measurements
along a circular path (the border of the circle where the
sensors are placed); in particular, we will provide specific
formulas to estimate the gradient ∇f(z0) at the center
of the sensor array by using only informations from the
circular path.

3.1 Harmonic functions

We start by recalling some important properties of har-
monic functions, which can be found for instance in text-
books such as [Folland, 1995] and [Axler et al., 2001].

Definition 1. (Harmonic function) Let Ω ⊆ R
2 be an

open set. A function f : Ω → R is harmonic in Ω if
f ∈ C2(Ω) and ∆f(z) = 0 for all z ∈ Ω. �

The above definition of a harmonic function requires the
function to be twice-differentiable. Then, it is possible
to prove that harmonic functions have a much higher
regularity: if f is harmonic on Ω, then f is analytic
(Folland, 1995, Coroll. 2.11), and in particular f ∈ C∞(Ω).
Moreover, the assumption that f ∈ C2(Ω) in the definition
of a harmonic function is convenient for having well-
defined second-order partial derivatives, but it is not an
essential assumption: any distribution f ∈ D(Ω) which
satisfies ∆f = 0 in D(Ω) is indeed a harmonic function
(Folland, 1995, Coroll. 2.20), and hence belongs to C∞(Ω).

Harmonic functions satisfy the so-called maximum princi-
ple (and an analogous property for the minimum), which
imposes strong limitations on the location of extrema of
such functions, and thus helps us to ensure that our opti-
mization method does not get trapped into local maxima.
Two useful versions of the maximum principle are the
following (see [Axler et al., 2001, Coroll. 1.9] or [Folland,
1995, Coroll. 2.14] for the former and [Axler et al., 2001,
Claim 1.29] for the latter).

Proposition 1. (Maximum principle) Let Ω ⊂ R
2 be a

bounded open set, and let f : Ω̄ → R be continuous in Ω̄
and harmonic in Ω. Then, the maximum value of f on Ω̄
is achieved on ∂Ω. �

Proposition 2. (Local maximum principle) Let Ω ⊆ R
2

be a connected open set, and let f : Ω → R be harmonic
on Ω. If f has a local maximum in Ω, then f is constant. �

Consider now the Dirichlet problem with homogeneous
boundary condition

{
∆f(z) = 0 in Ω

f(z) = g(z) on ∂Ω .
(3)

Under some regularity assumptions on the border ∂Ω of
the domain and on the function g describing the imposed
border conditions, there exists a unique solution of (3)
which is continuous on Ω̄. For some particular domains,
such a solution can be characterized in the form of an
integral, involving the values of g on ∂Ω and a function
(called “Poisson kernel”) depending on the shape of the
domain. When the domain is the unit ball centered at
the origin, i.e., Ω = B1(0) := { z : ‖z‖ < 1 }, the Poisson
kernel is the following (Axler et al., 2001, eq. 1.15)

PB1(0)(z, ζ) :=
1− ‖z‖

2

‖z − ζ‖
2 , z ∈ B1(0) , ζ ∈ ∂B1(0) .

This kernel allows to write the solution of the Dirichlet
problem on the unit ball, as follows.

Proposition 3. (Axler et al., 2001, Thm. 1.17) Given a
continuous function g : ∂B1(0) → R, define the function

f : B1(0) → R as follows



f(z) :=





1

2π

∫ 2π

0

PB1(0)(z, e
iθ)f(eiθ) dθ z ∈ B1(0)

g(z) z ∈ ∂B1(0) .

Then, f is continuous on B1(0) and is harmonic on
B1(0). �

Moreover, the solution of the Dirichlet problem is unique,
and hence, for any function f which is harmonic on the
unit ball and continuous on its closure, f(z) at points
inside the ball can be computed with a formula involving
only the values of the restriction of f to the border ∂B1(0).

Proposition 4. (Axler et al., 2001, Thm. 1.21) Let

f : B1(0) → R be continuous on B1(0) and harmonic on
B1(0). Then, for all z ∈ B1(0),

f(z) =
1

2π

∫ 2π

0

PB1(0)(z, e
iθ)f(eiθ) dθ .

�

By a simple dilation and translation of coordinates (map-
ping z to (z− z0)/R) it is possible to obtain an analogous
formula for the ball BR(z0) := { z : ‖z − z0‖ < R } (see
e.g. [Folland, 1995, Chapt. 2, Exercise 1]).

Proposition 5. (Poisson integral formula forBR(z0)) Let

f : BR(z0) → R be continuous on BR(z0) and harmonic on
BR(z0). Then, for all z ∈ BR(z0),

f(z) =
1

2π

∫ 2π

0

PBR(z0)(z, z0 +Reiθ)f(z0 +Reiθ) dθ ,

where PBR(z0)(z, ζ) is the Poisson kernel for BR(z0), de-
fined as follows:

PBR(z0)(z, ζ) :=
R2 − ‖z − z0‖

2

‖z − ζ‖
2

z ∈ BR(z0) ,

ζ ∈ ∂BR(z0) .

�

3.2 Gradient computation using Poisson integral formula

Consider an open set Ω ⊆ R
2 and a function f harmonic

on Ω. Poisson integral formula given in Proposition 5 can
be applied to any ball BR(z0) such that its closure BR(z0)
is contained in Ω, because this ensures that f is harmonic
and continuous in BR(z0); this allows to compute the value
of f(z) at points z inside the ball by using measurements of
f along the circle ∂BR(z0). The Poisson integral formula
also gives a technique to compute derivatives (gradient,
Hessian etc.) of f at any point inside a ball BR(z0), with
an integral involving only the values of f along the circle
∂BR(z0), as follows.

Proposition 6. Let Ω ⊆ R
2 be an open set, and f : Ω →

R be harmonic on Ω. For any z0 ∈ Ω, for any R > 0 such
that BR(z0) ⊆ Ω, for any z = (x, y) ∈ BR(z0), and for any
non-negative integers m,n,

∂m+nf(z)

∂xm∂yn

=
1

2π

∫ 2π

0

∂m+n

∂xm∂yn
PBR(z0)(z, z0+Reiθ)f(z0+Reiθ) dθ .

Proof : The assumptions ensure that f is harmonic and
continuous on BR(z0), so that the Poisson integral formula

from Proposition 5 holds true. Then, it is immediate
to notice that in the Poisson integral formula the only
dependence on z is in the Poisson kernel, so that one
can exchange integration (which is with respect to θ) and
derivation (which is with respect to x and/or y). �

In particular, the gradient can be computed as follows: for
all z ∈ BR(z0),

∇f(z) =
1

2π

∫ 2π

0

∇zPBR(z0)(z, z0 +Reiθ)f(z0 +Reiθ) dθ,

where the gradient of the Poisson kernel with respect to
z = (x, y) is the following

∇zPBR(z0)(z, ζ) =
2

‖z − ζ‖
2 (z0−z)+

2PBR(z0)(z, ζ)

‖z − ζ‖
2 (ζ−z).

Remark 1. The integral formulas given in Propositions 5
and 6 become significantly simpler when z = z0, the center
of the circle BR(z0) on which the integral is computed; for
instance, one can obtain the following formula for f(z0)
(also known as the Mean Value Theorem)

f(z0) =
1

2π

∫ 2π

0

f(z0 +Reiθ) dθ

and the following expressions for the gradient and for the
Hessian matrix, respectively

∇f(z0) =
1

πR

∫ 2π

0

f(z0 +Reiθ)

(
cos θ
sin θ

)
dθ , (4)

H(z0) =
2

πR2

∫ 2π

0

f(z0 +Reiθ)

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
dθ .

(5)

�

Remark 2. A discrete approximation of Eq. (4) had al-
ready been used by Moore and Canudas de Wit (2010),
and Briñón Arranz et al. (2011), for source seeking in
the context of underwater vehicles (where each vehicle is
assumed to be rotating over a circle); in both works only
very mild assumptions where done on the function f , and
the use of the integral formula (4) was justified by the fact
that, for every f which is C1 in a neighborhood of z0,

lim
R→0

1

πR

∫ 2π

0

f(z0 +Reiθ)

(
cos θ
sin θ

)
dθ = ∇f(z0)

and, for every integer N ≥ 3,

lim
R→0

2

RN

N∑

j=1

f(z0 +Rei
2jπ
N )

(
cos 2jπ

N

sin 2jπ
N

)
= ∇f(z0) ,

as it was proved in Briñón Arranz et al., 2011, Lemma 1
using the Taylor expansion of f and trigonometric prop-
erties. Our paper provides a framework in which the inte-
gral formula for the gradient computation is indeed exact
for any given R > 0 (provided that the ball BR(z0) is
contained in Ω), and not only in the limit for R → 0;
a non-vanishing radius is necessary in order to attenuate
the effect of quantization and measurement noise. Other
advantages of our approach are that the Poisson integral
formula allows to obtain higher order derivatives, and al-
lows a generalization to higher dimension (3d applications
will be the object of our future work). �

4. SOURCE-SEEKING STRATEGY

In this section we describe a method for solving the source-
seeking problem described in Section 2. The main idea



is to use gradient, and possible high-order derivatives,
information obtained from the values sensed along a circle,
thanks to the Poisson formulas presented in previous
sections.

4.1 Mobile sensing devices

We consider several mobile robots, each endowed with
one or more sensors providing pointwise concentration
measures; we consider the problem where each robot is
required to perform the source localization task. The pres-
ence of multiple robots can be useful to ensure redundancy,
so as to protect against failures, and also to better describe
the source boundary, in a scenario where each robot is able
to find only one point on ∂Ωs.

The robots’ dynamics can be modeled in various ways,
depending on the application at hand: as an example, we
consider robots modeled as a nonholonomic unicycle{

ż(t) = veiθ(t)

θ̈(t) = u(t)
(6)

controlled by the torsional torque u(t). z(t) describes the
rotational point of the robot in the plane, and θ(t) is the
heading angle; the heading velocity v is assumed here to
be constant, but different strategies can be alternatively
devised.

RRR

Fig. 2. Possible sensor deployment over a robot. Left figure: N

sensors are fixed along a circular path at the top of the robot,
with equispaced angles; right figure: a single sensor is rotating
fast on the top of the robot.

Here, the central point is how to design the control
u(t) using information from the sensors devices to reach
the source origin. Ideally, we would like each robot to
compute the gradient at its center position z(t) by using
the Poisson formula (4), with z0 = z(t); to this aim, it
needs to collect measurements on a circle ∂BR(z(t)) and
to compute the Poisson integral. Two practical ways to
obtain good approximations are the following.

A first effective sensing device (depicted on the left in
Figure 2) consists in N sensors, arranged along a circular
array of radius R, centered at the robot’s central position
z(t) with equispaced angles, namely, the jth sensor is

at position zj(t) = z(t) + Rei
2jπ
N ; then, the integral is

approximated by the Riemann sum using the N measured
values. Notice that, thanks to the rotational invariance of
the Laplacian, it is not crucial to specify whether the array
of sensors maintains an orientation fixed with respect to
the absolute coordinate system, or it is solidly connected
to the robot and it rotates with the robot heading angle
(in the latter case, the robot will compute the gradient in
the local coordinate system). We denote the measurement
of the jth sensor at time t by

f̂j(z(t)) = f(zj(t)) + wj(t) ,

where wj(t) is the measurement noise; with this notation,
the approximated version of the Poisson formula (4) is

∇̂f(z(t)) =
2

NR

N∑

j=1

f̂j(z(t))

(
cos 2jπ

N

sin 2jπ
N

)
. (7)

Similarly, the approximated Hessian can be obtained from
Eq. (5) as follows:

Ĥf(z(t)) =
4

NR2

N∑

j=1

f̂j(z(t))

(
cos 4jπ

N
sin 4jπ

N

sin 4jπ
N

− cos 4jπ
N

)
. (8)

A second setup (depicted on the right in Figure 2) is
obtained by considering only one sensor instead of N , but
allowing for a rotation of the sensor around the center of
the robot; in this case, either it is supposed that the robot
stays still during such a rotation, so that the integrals
in Eqs. (4) and (5) are perfecly computed (apart from
the measurement noise), or the robot moves during the
rotation but with a speed sufficiently slow with respect to
the rotation of the sensor, so that only a small error is
introduced due to the deviation from the perfect circle.

In this paper we focus on the first setup.

4.2 Source-localization feedback design

The main idea is to perform a gradient ascent, with
the gradient being computed by Eq. (7). In general, a
harmonic function f might not be convex; however, the
local maximum principle (see Proposition 2) ensures that
f does not have any local maximum insideΩ: hence, search
is ensured not to get trapped in any local maximum, except
possibly on the outer boundary ∂Ωext. The termination of
the search on a local maximum on ∂Ωext can be avoided
by introducing some simple rule that allows to distinguish
the external boundary from the internal one; for instance,
one might have a knowledge of a rough lower bound on
the value of f at the source, which is also an upper bound
for values on the external boundary.

The gradient ascent strategy can be implemented by
defining a reference heading θr(z) in the direction of the
gradient of the source at the point z, using formula (7).
As the system is second-order, it requires a damping term
involving time derivatives of both the heading angle and
its reference; time derivatives of θr can be computed from
the approximated gradient (7) and Hessian (8).

The proposed feedback is




u(t) = kP[θr(z)− θ(t)] + kD[θ̇r(z)− θ̇(t)] ,

θr(z) = arg ∇̂f(z) ,

θ̇r(z) = v
(
cos θ(t), sin θ(t)

)
Ĥf(z)

(
0 −1

1 0

)
∇̂f(z)

‖∇̂f(z)‖2
,

(9)

where ∇̂f(z(t)) and Ĥf(z(t)) are defined by Eqs. (7)
and (8).

Clearly, the reference heading angle θr(z) is an approxima-
tion of the gradient’s angle θg(z) = arg∇f(z). Moreover,

the expression for θ̇r(z) is an approximation of θ̇g(z) =
d
dtθg(z(t)). Indeed, by the chain rule,

θ̇g(z) = (ẋ, ẏ)

(
∂θg(z)

∂x

∂θg(z)

∂y

)
.



Fig. 3. Trajectories of the heat-seeking agents described in sect. 4.3.

Here, (ẋ, ẏ) = v
(
cos θ(t) , sin θ(t)

)
by (6), while the spatial

derivatives of θg(z) are computed from the expression

θg = arctan
(

∂f
∂y

/∂f
∂x

)
, as follows

(
∂θg(z)

∂x

∂θg(z)

∂y

)
=

1

‖∇f(z)‖2

(
∂2f(z)
∂y∂x

∂f(z)
∂x

−
∂f(z)
∂y

∂2f(z)

∂2x

∂2f(z)

∂2y

∂f(z)
∂x

−
∂f(z)
∂y

∂2f(z)
∂x∂y

)

= Hf(z)

(
0 −1
1 0

)
∇f(z)

‖∇f(z)‖2
.

4.3 Simulation results

We consider the problem of locating a heat source in a
room, described in Example 2. The agents are robots such
as those depicted on the left in Fig. 2, each having N = 12
sensors arranged on a circle with radius R = 20 cm, at
equally spaced angles of 30°; we consider the motion and
control laws given by Eqs. (6) and (9), where the constant
velocity is chosen as v = 0.1 m/s. We suppose that the
measurements are affected by white Gaussian noise of
standard deviation σ = 0.5.

Figure 3 shows the trajectories of a set of robots starting
from different locations: all agents reach the source, and
their trajectories are perpendicular to the contour lines
of the temperature; the small dithering in the robot
trajectories is due to the noise in the measurements. The
initial orientation is chosen as θ(0) = arctan(y0/x0), and

the initial angular velocity is θ̇(0) = 0; the values for the
control constants are chosen as kP = 100 and kD = 20.

5. CONCLUSION

In this paper, we have addressed the problem of local-
ization of a source, with mobile robots endowed with
sensors providing pointwise concentration measures. We
have focused our attention on sources that can be mod-
eled by the Laplacian pde, which describes the steady
state of homogeneous isotropic diffusion or heat; we have
exploited the properties of the solutions of such equa-
tion (without making use of any explicit expression for
the solution itself) in order to find formulas to compute
the gradient of the measured quantity, as well as higher-
order derivatives, using pointwise measurements along a
circle. This allows the robots to implement a control law
which drives them towards the source, either by a simple
gradient-ascent strategy, or by some higher-order control
law involving other derivatives. As an illustrative example,
we have considered the search of a heat source in a room,
with a robot modeled as a unicycle whose torque angle is

controlled with a law involving the gradient and Hessian
of the temperature.
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Briñón Arranz, L., Seuret, A., and Canudas de Wit, C.
(2011). Collaborative estimation of gradient direction by
a formation of AUVs under communication constraints.
In Proc. of the 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC),
5583–5588. Orlando, FL, USA.

Cochran, J. Siranosian, A., Ghods, N., and Krstić, M.
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