
HAL Id: hal-00717244
https://hal.archives-ouvertes.fr/hal-00717244

Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified hardware/software co-synthesis solution for
signal processing systems

Endri Bezati, Hervé Yviquel, Mickaël Raulet, Marco Mattavelli

To cite this version:
Endri Bezati, Hervé Yviquel, Mickaël Raulet, Marco Mattavelli. A unified hardware/software co-
synthesis solution for signal processing systems. Design and Architectures for Signal and Image Pro-
cessing (DASIP), 2011 Conference on, 2011, France. pp.1 -6, �10.1109/DASIP.2011.6136877�. �hal-
00717244�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49878521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00717244
https://hal.archives-ouvertes.fr

A UNIFIED HARDWARE/SOFTWARE CO-SYNTHESIS SOLUTION FOR SIGNAL

PROCESSING SYSTEMS

Endri Bezati1, Hervé Yviquel2, Mickaël Raulet3, Marco Mattavelli1

1 Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

{firstname.lastname}@epfl.ch
2 IRISA/University of Rennes 1, F-22300 Lannion, France

{firstname.lastname}@irisa.fr
3 IETR/INSA of Rennes, F-35708 Rennes, France

{firstname.lastname}@insa-rennes.fr

ABSTRACT

This paper presents a methodology to specify from a high-

level data-flow description an application for both hardware

and software synthesis. Firstly, an introduction to RVC-CAL

data-flow programming and Orcc framework is presented.

Furthermore, an analysis of a close to gate intermediate repre-

sentation (XLIM) is bestowed. As a proof of concept a JPEG

codec was written purely in RVC-CAL to test the co-synthesis

tools and then an analysis of the generated hardware and soft-

ware results are given. Our experience shows that using RVC-

CAL can unify the process of creating the same application

for software and hardware without modifying a single source

code for each solution.

Index Terms— Co-Design, Co-Synthesis, Dataflow,

FPGA, JPEG, OpenForge, Orcc, RVC-CAL, XLIM

1. INTRODUCTION

Signal processing applications becomes more and more com-

plicated and their complexity continuously grow at each gen-

eration. This is the case, for instance, of video compression

standards that following the demand for higher quality video

transmitted by smaller and smaller bandwidths, achieve the

objective at the expense of introducing, at each new standard

release, a large increase of codec complexity. Developing

implementations for heterogeneous platform of such applica-

tions is always a difficult challenge. Currently frameworks

capable of generating code from the same, ideally high-level

specification, for both Hardware and Software synthesis are

not available or presents severe limitations.

C is one possible high level language as C to Gates tools

and their corresponding design flows (ImpulseC [2], Handel-

C [10] and Spark [7]) generate VHDL code from C-like spec-

This work is part of the ACTORS European Project (Adaptivity and Con-

trol of Resources in Embedded Systems), funded in part by the European

Unions Seventh Framework Programme. Grant agreement no 216586

ifications. Thus, the entire design space is far from being

completely explored because these tools handle only hard-

ware code generation. Moreover, approaches to high-level

hardware synthesis fall broadly into two categories:

• those that attempt to adapt software programming lan-

guages to the creation of hardware by creating tools

that translate software programs into circuit descriptions

such as Catapult C, c2h, PICO Express, ImpulseC,

• those that devise one or more new languages (textual or

visual), designed to be more amenable to the generation

of efficient hardware e.g., Handel-C [5], Mitrion-C, Mo-

bius.

The approaches in the first category attempt to leverage soft-

ware tools and a large community of programmers. However,

the goal of translating real-world applications written in a lan-

guage such as C into efficient hardware implementations has

proven elusive, despite considerable efforts in this direction.

Although hardware code generation by the CAL data-

flow language has been presented in the past [3, 9] with the

OpenDF framework, this paper presents an approach for uni-

fied hardware and software synthesis starting from the same

program (specification).

This paper is organized as follow: Firstly, Section 2 gives

a brief introduction of CAL data-flow programming and its

associate compiler called Open RVC-CAL Compiler. Then,

two sections make the following contributions:

• We present a complete compilation flow from RVC-CAL

towards HDL synthesis (Section 3). This flow uses the

XLIM Intermediate Representation (IR), an XML for-

mat for representing a language independent model of

imperative programs based on a well-known form called

three-address code (TAC or 3AC).

• We give a co-design case study, in which a JPEG Codec

written only in RVC-CAL is partitioned into components

and then synthesized to both SW and HW (Section 4).

Finally Section 6 outlines the current limitation of the ap-

proach and discusses the perspectives of future extensions.

2. BACKGROUND

This section presents RVC-CAL, a standardized subset of the

original CAL Actor Language, the Open RVC-CAL Com-

piler, an open-source framework that supports RVC-CAL for

generating implementation code, and OpenForge, a synthesis

tool developed by Xilinx.

2.1. RVC-CAL Data-flow Programming

CAL Actor Language is a language based on the Actor model

of computation for data-flow systems [6]. An actor, is a mod-

ular component that encapsulates its own state. Each actor in-

teracts with each other through FIFO channels, see Figure 1.

An actor in general may contain state variables, global param-

eters, actions, procedures, functions and finite state machine

that control the executions of actions. CAL enables concur-

rent development and provides strong encapsulation proper-

ties. CAL is used in a variety of applications and has been

compiled to hardware and software implementations. The

RVC-CAL language is a subset of the CAL language and it

is normalized by ISO/IEC as a part of the RVC standard. Al-

though it has some restrictions in data types and features that

are in used in CAL [4, 6], is sufficient and efficient for speci-

fying streaming and signal processing systems such as MPEG

compression technology.

Fig. 1. The CAL computing model.

2.2. Open RVC-CAL Compiler

The Open RVC-CAL Compiler (Orcc)1 is an open-source

framework designed to generate implementation code from a

network of RVC-CAL actors specified by a network topology

description [15].

The Frontend has the task of parsing all actors and trans-

lating them to an Intermediate Representation (IR). Such IR

is a data structure that is built from input data (the actor) to

1Orcc is available at http://orcc.sf.net

Fig. 2. Orcc framework chain.

a program, and from which part or all of the output data of

the program is constructed in turn. The next steps is to run

a language target-specific back-end. The idea is to let flex-

ibility to the backends for generating optimized code and to

preserve features of the CAL language that does not overspec-

ify scheduling information.

The Backends generate code depending on the targets.

Their purpose is to create target specific code. Each backend

will parse the hierarchical network from a top-level network

and its child network. Also optionally it flattens the hierar-

chical network. Orcc for the moment offers a variety of back-

ends. These back-ends are C, C++, LLVM, VHDL, XLIM,

etc.

To generate a software decoding solution we used the C

backend of Orcc. The generated C code is ANSI-C compati-

ble and it is portable to different platforms such as Windows,

Linux, Mac OS X and others.

Orcc gives the possibility to create native actors and na-

tive procedures. A native actor can be written directly in C or

VHDL (for modelsim simulation). The purpose of these na-

tive actors is to offer the possibility to use the host Input/Out-

put (write a file, display an image). As RVC-CAL has not its

standard library to communicate with the host, native actors

permit that.

2.3. OpenForge and HDL code generation

Forge was a research tool developed by Xilinx for their C to

gate implementation. Forge has fallen to the public domain

and was renamed to OpenForge. The first tool that permitted

the CAL to HDL was the OpenDF framework (a CAL simu-

lator) with the use of OpenForge as a backend for the Verilog

HDL generation. Often in RVC-CAL literature this tool is

called as CAL2HDL [9, 12]. XLIM OpenDF code genera-

tion does not support all the RVC-CAL subset and it is too

slow compared to the XLIM generation of the Orcc. Thus the

choice of creating an XLIM backend was a must.

OpenForge takes as an input an XLIM file, which is just

the representation of the static single assignment (SSA) form

of an actor in an XML format. Then the synthesis stage fol-

lows with the analysis of the SSA representation into a web

of circuits built from a set of basic operations like arithmetic,

logic, flow control, memory accesses and etc.

Also OpenForge as an intelligent synthesis tool supports

the unrolling of loops, or the insertion of registers to improve

the maximal clock rate of the general circuit (pipe-lining). Fi-

nally the OpenForge will generate a Verilog file that repre-

sents the RVC-CAL actor with an asynchronous handshake-

style interface for each of its ports. Orcc generates a Top

VHDL that connects the Verilog generated actors with back-

to-back or using FIFO buffers into a complete system. Also

the FIFO buffers can be synchronous or asynchronous (given

the user choice). Give the previous statement it is easy to sup-

port multi-clock-domain data-flow designs (different clock

domains can be given directly from the Orcc user interface).

Orcc can also generate directly VHDL code for the actors

and the network [13], but as the VHDL code generation is

not mature enough it was not used for this implementation.

Future work on the VHDL Backend will maybe provide an

alternative to the OpenForge.

3. XLIM CODE GENERATION

This section presents first the XLIM representation then the

compilation process of an RVC-CAL application towards a

hardware target.

3.1. Presentation of the XLIM representation

The XML Language-Independent Model (XLIM) is an inter-

mediate representation (IR) developed by Xilinx [1] to make

the code optimizations of data-flow programs easier. Indeed,

the source code written by developers and also the abstract

syntax tree (AST) usually produced by the parser at the be-

ginning of the compilation process are not ideal to compute

analysis and transformation of code due to their lexical struc-

ture.

XLIM is mainly an XML document containing several el-

ements which describes the behavior of a data-flow actor: the

interfaces of the actor (inputs and outputs), the set of state

variables, the computational procedure of each action and fi-

nally the action scheduler which manages the execution of the

actions according to.

The XLIM representation is a close to gate representation

which requires the respect of the following properties to rep-

resent directly the dependency relation between the different

elements of the program and consequently permit code opti-

mizations for hardware targets:

• Static single assignment form (SSA) requires that each

variable used by the program is assigned exactly once.

As a consequence, a variable assigned several times in

the initial form of IR is transformed in different ver-

sions of the variable (for example a variable x which is

assigned three times is transformed on three variables

x1, x2 and x3) and some special statements called φ-

functions are inserted at join nodes of the control-flow

graph in order to assign a variable according to the exe-

cution path (for example the statement x3 ← φ(x1, x2)
expresses that x3 has the value of x1 if the program

jumped from the first node and x2 if it jump from the

second one).

• Three-address code (3AC) representation describes

each basic operation executed in the program (like

addition or multiplication) by the following 4-tuple

(Operator,Operand1, Operand2, Result) where

Operand1, Operand2 and Result are the variables and

Operator is a primitive operator (an arithmetic operator

for example). As a result, there is no more complex

expression containing several primitive operations.

3.2. XLIM backend

Fig. 3. The compilation flow of the XLIM backend.

The Open RVC-CAL Compiler (Orcc) includes an XLIM

backend which corresponds to an RVC-CAL frontend for

tools like OpenForge or XLIM2C [14]. The default compila-

tion flow is presented in Fig. 3 and consists on several passes

and particularly some transformations the intermediate repre-

sentation of Orcc:

• Inlining of RVC-CAL functions and procedures, indeed

the XLIM does not support the call instruction because

of its low representation level.

• SSA transformation is made to validate the needed SSA

property and consists in indexing variables and adding

φ-functions.

• 3AC transformation splits complex expressions includ-

ing several primitive operations to multiple 3AC compli-

ant instructions.

• Copy propagation is an optimization which removes

the direct assignment of a variable to another variable

like a := b by replacing all uses of a by b.

• Cast adder: the XLIM representation use a precise type

system (for typename and size) which needs explicit cast

instructions. These cast instructions are added thanks to

the bit exact precision of Orcc IR by visiting the type of

each expression and variable.

• Array flattener transforms multidimensional arrays to

unidimensional ones and made computation of right in-

dex.

After these transformations, the actors are printed in XML

format respecting XLIM properties using a template en-

gine called StringTemplate [11]. This mechanism permits to

quickly generate XLIM files (at most few seconds), increases

flexibility (several backends were developed in Orcc) and re-

duces maintenance cost (a template is easier to change than a

program).

Fig. 4. The RVC-CAL Codec: a) JPEG Encoder, b) JPEG Decoder.

4. USER CASE: AN RVC-CAL JPEG CODEC

As a user case a JPEG Codec was chosen and it was writ-

ten purely in RVC-CAL
2. The JPEG codec is based on the

ITU-T. IS 1091 standard. The idea was to implement the

encoder in the FPGA and the decoder in a computer host.

The JPEG Codec is implemented based on the simple profile

and is using a static quantification and Huffman Table. This

was chosen only for simplicity, using RVC-CAL is very easy

to add an actor that can have as inputs different quantifica-

tion and/or Huffman tables without changing the JPEG codec

model structure.

4.1. RVC-CAL JPEG Encoder

The RVC-CAL JPEG encoder is modeled as a serial data-flow

application. Then encoding is done at a Macro-block (MB)

level. The input of the encoder is giving in Raster 4:2:0 YUV

format (see Fig.5) , this format was chosen due to the output

of the input camera. The encoder is separated in six actors.

The JPEG standard describe the encoding in a block level of

64 pixels. In 4:2:0 format there are four luminance (Y) blocks

of 8x8 for two chrominance (one for U and one for V) blocks

of 8x8.

Fig. 5. The YUV 4:2:0 Macro-Block representation.

So the first actor in the encoder is the Raster to MB opera-

tion. The actor is taking as inputs the Y, Cb and Cr together

and a signal SOI that indicates the Size Of the Image. The

next step is to transform the YUV pixels to a Forward Dis-

crete Cosine Transform (FDCT) and to quantify them. The

FDCT and the Quantization works in 8x8 block level. So for

2The JPEG Codec is available at http://orc-apps.sf.net

an MB the FDCT and the Quantization actors are process-

ing six blocks of 8x8, this can give a potential parallelism in

the JPEG algorithm, this will be described in the future work

section. The most important part of the JPEG encoder is the

Huffman actor. This actor is specific to 4:2:0 MB scheme,

it will treat the luminance blocks and then the two chromi-

nance blocks. The Huffman will generate two bit-streams (not

shown in the Fig.4), one for the luminance and one for the

chrominance. For simplifying the JPEG model a merger ac-

tor was created so that it can serialize the previous bit-streams.

Finally the Streamer actor will add all the necessary informa-

tion (start/stop flags, quantization and Huffman tables) so that

a proper JPEG bit-stream is correctly generated.

4.2. RVC-CAL JPEG Decoder

The RVC-CAL Decoder is the inverse process of the JPEG

encoder, but with quality loss of the encoded image due to

the lossless nature of the JPEG compression. The decoder

is separated in four actors. The first step is to decode the

JPEG bit-stream. So the JPEG Parser is retrieving all the nec-

essary information form the bit-stream. Next, the Huffman

actor is responsible to decode the Huffman encoding of the

transformed and quantified 4:2:0 YUV blocks. Finally the in-

verse quantization and the Inverse DCT (IDCT) actors form

the 4:2:0 MBs of the reconstructed image.

4.3. A Co-Design example of the JPEG Codec

Orcc framwork offers the possibility to generate source code

for hardware and software. Given the RVC-CAL of the JPEG

Codec, the encoder can be implemented in a FPGA board and

the decoder can be compiled as an ANSI C program so that it

can run on each platform that has an ANSI C compiler. For

our user case a Virtex 6 FPGA board with a PCI-express con-

nector and an Intel iCore 7 PC host were used. The commu-

nication between the FPGA board and the PC was done via

the PCI-Express port.

The RVC-CAL JPEG encoder is implemented in the Virtex

6 FPGA board. Orcc first generates the XLIM intermediate

representation and then it calls the OpenForge Back-end.In

the end the Verilog source code files compose the generated

code for each actor and a VHDL file that represents the net-

work of the actors. Xilinx PCIe IPCore does the commu-

Fig. 6. The RVC-CAL JPEG Codec partitioned in Hardware

and Software.

nication between the generated code and the PCI-express. A

camera connected with the FPGA board via the HD-SDI inter-

face gives the acquisition of the input image. Then the image

is compressed by the RVC-CAL JPEG Encoder and is then

transmitted by the PCI-Express.

Xilinx provides a basic Linux driver for the PCI-Express

port, which permits to read and write values from the PCI-

Express bus. With the help of the native actors in Orcc, a read

or source PCI-Express actor was written so that the RVC-CAL

C or C++ generated application could communicate with the

PCI-Express bus. The RVC-CAL JPEG decoder application

is generated in C so that it can be implemented in the PC Host.

As an input for the JPEG decoder the PCI-Express source ac-

tor is giving a correct JPEG bit-stream to decode. Then finally

the decoder decodes the bit-stream and is then displaying the

images on the computer screen.

4.4. Results

The RVC-CAL JPEG Codec has 1653 source code lines: 990

lines for the encoder and 663 lines for the decoder. The num-

bers of lines are quite comparable for those of an entirely writ-

ten JPEG codec in pure C. Thus the number of lines depends

on the authors source code and how he/she is programming.

Hence writing in RVC-CAL is really easy and intuitive. For

example the Fig. 7 presents the source code of the Quantiza-

tion actor written in RVC-CAL.

The RVC-CAL JPEG encoder takes 22 % of the Virtex 6

FPGA (see Fig. 8) and it can encode 14 Frames per second

with a 50Mhz clock (the time was measured by Xilinx Chip

scope) for a set of 512x512 input images. The time for en-

coding 30 images of 512x512 plus the transfer from the PCI-

express bus is ≃ 3 seconds.

The open-source Xilinx PCI-Express driver is too slow

compared to the PCI-Express 1x standard, the images are

stocked in the DDR RAM of the FPGAs board and it takes

almost one second to pass the encoded images from the DDR

to the host via the PCI-Express bus. Thought no optimiza-

tion in RVC-CAL code was done and the serial architecture

of the RVC-CAL JPEG encoder is penalizing the throughput.

A simple splitting of the YUV components can increase the

theoretical performance by 3 even 5 if an intelligent splitting

is implied in the 4 blocks of the Y.

In the other side of the PCI-Express bus the JPEG Decoder

can decode 135 Frames/sec for a set of images with a reso-

lution at 512x512. Still here the potential parallelism of the

YUV splitting it is not taken in account due to the serial ar-

package j p e g . e n c o d e r ;

i m p o r t j p e g . e n c o d e r . common . T a b l e s . QT;

i m p o r t j p e g . e n c o d e r . common . T a b l e s . z i g z a g ;

a c t o r Q u a n t i z a t i o n ()

i n t (s i z e =32) In ⇒ i n t (s i z e =32) Out :

i n t Block Type := 0 ; / / B l o c k T y p e = 0 , 1 , 2 , 3 (Luma) ,

/ / B l o c k T y p e = 4 ,5 (Chroma)

Quant : a c t i o n In : [v a l] r e p e a t 64 ⇒ Out : [d a t a] r e p e a t 64

var

L i s t (t y p e : i n t (s i z e =24) , s i z e =64) d a t a

do

f o r e a c h u i n t i i n 0 . . 63 do

i f (v a l [z i g z a g [i]] > 0) then

d a t a [i] := (v a l [z i g z a g [i]] +

(QT[Block Type >> 2] [i] >> 1)

) / QT[Block Type >> 2] [i] ;

e l s e

d a t a [i] := (v a l [z i g z a g [i]] −

(QT[Block Type >> 2] [i] >> 1)

) / QT[Block Type >> 2] [i] ;

end

end

Block Type := (Block Type + 1) mod 6 ;

end

end

Fig. 7. The Quantization (Q) actor in the JPEG encoder writ-

ten in RVC-CAL.

Logic utilization Used Utilization %

Registers 10033 6

Slice LUTs 13308 16

LUT-FF pairs 4241 22

IOB 85 14

Block RAM 85 6

Fig. 8. Synthesis Information on Virtex 6 FPGA

chitecture of the RVC-CAL JPEG Decoder.

5. CONCLUSION AND FUTURE WORK

This co-synthesis solution is still in progress and a lot of work

is to be done. The work is separated in two fronts, the code

generation and the code optimization of the RVC-CAL Appli-

cations (JPEG Codec for this paper). Code generation is nat-

urally separated in software and hardware code generation.

Different metrics and code analysis are being developed so

that the generated code is more efficient. Although in soft-

ware code generation the current bottleneck is the network

and actor scheduling, efforts are being given for a dynamic

scheduling that will take into account the dynamic execution

of actors in a multi-core platform and the load balancing.

As for hardware code generation, optimization can be done

directly in the XLIM code generation for reducing the num-

ber of Slices in the synthesized code. Due to the nature of

the Orcc IR a lot of intermediate variables are added so that

the generated code for software is more efficient and easier to

Fig. 9. Potential YUV component parallelism for the JPEG

encoder.

interpret by the C/C++ compilers. But OpenForge is not rec-

ognizing that the intermediate variable comes from the same

variable so it is adding more registers. A test was conducted

between the Orcc XLIM and the OpenDF XLIM generation

and demonstrated that actors with a lot of calculation (FDCT

in our example) had almost twice the requirement in slice than

the OpenDF XLIM code generation but still the Orcc XLIM

throughput was 20 % higher. A possible quick fix for this

problem is envisaged. Another approach which is not yet fi-

nalized is the different clock domain in actors so that a less

power consumption or better performance can be achieved,

depending the specification of the developer. As was men-

tioned in the OpenForge subsection actors can be totally asyn-

chronous.

As for the RVC-CAL source code different metrics are be-

ing developed to help the developer to optimize its source

code. A simple optimization in signal processing is the split-

ting of components. Here for the JPEG encoder a potential

splitting of the YUV components gives a strong parallelism

in the design (Fig. 9). As for coding in RVC-CAL is really

easy and intuitive the programmer should take in account that

its design will be data-flow by nature and potential parallelism

occurs by its design.

This paper has presented a solution to generate code of

the same application for hardware and software co-synthesis

along with the first implementation of a JPEG Codec writ-

ten purely in RVC-CAL. Orcc framework goes one step fur-

ther than what was done in the OpenDF framework and it is

offering software synthesis plus a better XLIM code gener-

ation. Even if a lot of work is need to be done to achieve

better results both in hardware and in software level the cur-

rent solution is one of the few framework in the market and in

academia that can offer software and hardware code synthesis

from the same specification.

6. REFERENCES

[1] XLIM: An XML Language-Independent Model. Technical re-

port, Xilinx DSP Division, 2007.

[2] A. Antola, M. Santambrogio, M. Fracassi, P. Gotti, and C. San-

dionigi. A novel hardware/software codesign methodology

based on dynamic reconfiguration with impulse c and codevel-

oper. In Programmable Logic, 2007. SPL’07. 2007 3rd South-

ern Conference on, pages 221–224. IEEE.

[3] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von

Platen, M. Mattavelli, and M. Raulet. OpenDF: a dataflow

toolset for reconfigurable hardware and multicore systems.

SIGARCH Comput. Archit. News, 36(5):29–35, 2008.

[4] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mat-

tavelli, and M. Raulet. Overview of the MPEG Reconfigurable

Video Coding Framework. Springer journal of Signal Process-

ing Systems. Special Issue on Reconfigurable Video Coding,

2009.

[5] Celoxica. Handel-C Language Reference Manual, 2004.

[6] J. Eker and J. Janneck. CAL Language Report. Technical

Report ERL Technical Memo UCB/ERL M03/48, University

of California at Berkeley, Dec. 2003.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: a high-

level synthesis framework for applying parallelizing compiler

transformations. In VLSI Design, 2003. Proceedings. 16th In-

ternational Conference on, pages 461 – 466, jan. 2003.

[8] ISO/IEC FDIS 23001-4. MPEG systems technologies – Part

4: Codec Configuration Representation, 2009.

[9] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and

M. Raulet. Synthesizing hardware from dataflow programs:

An mpeg-4 simple profile decoder case study. In Signal Pro-

cessing Systems, 2008. SiPS 2008. IEEE Workshop on, pages

287 –292, oct. 2008.

[10] E. Khan, M. El-Kharashi, F. Gebali, and M. Abd-El-Barr. Ap-

plying the handel-c design flow in designing an hmac-hash

unit on fpgas. Computers and Digital Techniques, IEE Pro-

ceedings -, 153(5):323 – 334, sept. 2006.

[11] T. J. Parr. Enforcing strict model-view separation in template

engines. In Proceedings of the 13th international conference

on World Wide Web, WWW ’04, pages 224–233, New York,

NY, USA, 2004. ACM.

[12] N. Siret, I. Sabry, J. Nezan, and M. Raulet. A codesign synthe-

sis from an mpeg-4 decoder dataflow description. In Circuits

and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, pages 1995 –1998, 30 2010-june 2 2010.

[13] N. Siret, M. Wipliez, J.-F. Nezan, and A. Rhatay. Hardware

code generation from dataflow programs. In Design and Ar-

chitectures for Signal and Image Processing (DASIP), 2010

Conference on, pages 113 –120, 2010.

[14] C. von Platen. CAL ARM Compiler, Jan. 2010. Report of

ACTORS project.

[15] M. Wipliez, G. Roquier, and J. Nezan. Software Code Gener-

ation for the RVC-CAL Language. Journal of Signal Process-

ing Systems, 2009.

