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Abstract

In this paper, we introduce Waveform Length (WL), a

new feature for ElectroEncephaloGraphy (EEG) signal

classification which measures the signal complexity. We

also propose the Waveformlength Optimal Spatial Filter

(WOSF), an optimal spatial filter to classify EEG sig-

nals based on WL features. Evaluations on 15 subjects

suggested that WOSF with WL features provide perfor-

mances that are competitive with that of Common Spa-

tial Patterns (CSP) with Band Power (BP) features, CSP

being the optimal spatial filter for BP features. More in-

terestingly, our results suggested that combining WOSF

with CSP features leads to classification performances

that are significantly better than that of CSP alone (80%

versus 77% average accuracy respectively).

1. Introduction

Brain-Computer Interfaces (BCI) are communica-

tion systems that enable users to send commands to

a computer by using only their brain activity [8], this

activity being generally measured using ElectroEn-

cephaloGraphy (EEG). Most EEG-based BCI are de-

signed around a pattern recognition approach: In a first

step, features describing the relevant information con-

tained in EEG signals are extracted [2]. They are then

used as input to a classifier in order to identify the class

of the mental state [2]. Therefore, the efficiency of a

BCI, in terms of recognition rate, depends mostly on

the choice of appropriate features and classifiers.

For BCI based on mental tasks, e.g., motor imagery

(imagination of limb movements) [8], one of the most

popular and efficient feature is Band Power (BP) [2],

i.e., the EEG signal power in a given frequency band.

Their efficiency has been further increased by the de-

sign of the Common Spatial Patterns (CSP) algorithm,

an optimal spatial filter for EEG classification based

on BP features [3]. Using CSP for spatial filtering

and BP as features has become a gold standard to de-

sign BCI-based on mental tasks [2]. For instance, this

setup was the basis of most of the winning entries of

the last BCI competitions for motor imagery data sets

(http://www.bbci.de/competition/). Despite the avail-

ability of such algorithms, current BCI performances

are still far from being satisfactory, and the BCI com-

munity keeps stressing the need to further explore and

design alternative features for improved performance

and robustness [6][9].

In this paper, we introduce such an alternative fea-

ture: Waveform Length (WL). WL measures the length

of a given waveform, which is also a measure of the sig-

nal complexity [10]. WL was initially designed to clas-

sify ElectroMyoGraphy (EMG) signals, and has been

proved to be one of the most robust and efficient fea-

ture for this task [10]. As both EEG and EMG measure

an electrical signal resulting from the activity of neuron

populations (cortical neurons for EEG, motor ones for

EMG), it seems promising to explore whether a feature

that can successfully classify EMG could also success-

fully classify EEG. Finally, since spatial filtering is a

key element in EEG signal analysis [3], we also propose

an algorithm to obtain optimal spatial filters to classify

EEG signals based on WL features.

This paper is organized as follows: Section 2 gives

more details about BP features and CSP. Then, Section

3 describes WL features and the algorithm we propose

to obtain optimal spatial filters for such features. They

are evaluated and compared with CSP and BP features

in Section 4, on 2 different data sets (a motor imagery

data set and a mental rotation one). Finally, a conclu-

sion is provided in Section 5.

2 Band Power features and CSP

A BP feature is defined as the EEG signal power for

a given channel and frequency band. A classical way to

obtain such a feature is to 1) band-pass filter the signal

in this given frequency band, 2) square it, 3) average it



over a given time window and 4) take its logarithm, to

make the feature distribution more normal-like [8]. For-

mally, bp, the BP feature of a band-pass filtered signal

x = (x1, . . . , xN ) can be obtained as follows:

bp = log(
1

N

N∑

i=1

x2
i ) = log(

1

N
‖x‖22) = log(var(x))

(1)

with ‖‖2 being the l2-norm. The last part of this equa-

tion assumes a zero mean for EEG signals, which is usu-

ally the case after band-pass filtering.

Due to volume conduction, EEG signals inherently

have a low spatial resolution, and the relevant informa-

tion they contain is generally spread over several chan-

nels. To alleviate this issue and improve the signal-

to-noise ratio, spatial filtering algorithms such as CSP

have been proposed. CSP aims at learning spatial filters

which can maximize the variance of band-pass filtered

EEG signals from one class while minimizing the vari-

ance of those from the other class [3]. As the variance

of EEG signals filtered in a given frequency band corre-

sponds to the signal power in this band (see Eq. 1), CSP

aims at achieving optimal discrimination for BCI based

on BP features. Formally, CSP uses the spatial filters w

which extremize the following function:

JCSP (w) =
‖wTX1‖

2
2

‖wTX2‖22
=

wTXT
1 X1w

wTXT
2 X2w

=
wTC1w

wTC2w

where T denotes transpose,Xi is the training band-pass

filtered signal matrix for class i (with the samples as

rows and the channels as columns) and Ci the spatial

covariance matrix from class i. In practice, the covari-

ance matrix Ci is defined as the average covariance ma-

trix of each trial from class i [3]. JCSP (w) appears to
be a generalized Rayleigh quotient, and as such, the spa-

tial filters w that maximize or minimize it are the eigen-

vectors corresponding to the largest and lowest eigen-

values, respectively, of the Generalized EigenValue De-

composition (GEVD) of matrices C1 and C2. Once the

spatial filters wi obtained, extracting feature bpi is sim-

ply achieved by computing the BP feature of the EEG

signals X after spatial projection, in other words:

bpi = log(wT
i X

TXwi) = log(var(wTX))

3 WL and its optimal spatial filter

The WL feature that we introduce in this paper can

be extracted from an EEG signal x as follows [10]:

wl = log(
∑N−1

i=1 |xi+1 − xi|) = log(
N−1∑

i=1

|∆xi|)

= log(‖∆x‖1)

with |x| being the absolute value of x, and ‖‖1 the l1-
norm. This feature measures the cumulative length of

the EEG signal analyzed. To maximize the efficiency

of this feature for EEG classification, it should be ex-

tracted after appropriate spatial filtering, in the same

way as BP efficiency is maximized by CSP spatial fil-

tering. Therefore, we also propose a spatial filter that

is optimal for classification based on WL features. We

denote this new spatial filter Waveformlength Optimal

Spatial Filter (WOSF). In order to derive such an algo-

rithm, we have to find spatial filters w which maximize

the waveform length of spatially projected EEG signals

from one class, while minimizing it for the other class.

Formally, this means extremizing the following objec-

tive function:

JWOSF1(w) =
‖wTX2:N

1 − wTX
1:(N−1)
1 ‖1

‖wTX2:N
2 − wTX

1:(N−1)
2 ‖1

=
‖wT∆X1‖1
‖wT∆X2‖1

with ∆X = X2:N −X1:(N−1) and Xi:j being the sig-

nal matrix X with only rows i to j, i.e., with only EEG

samples from indexes i to j. Unfortunately, the l1-norm
is not differentiable. This makes the optimization of

JWOSF1 unconvenient, iterative, complex and compu-

tationally expensive. Therefore, we decided to optimize

the spatial filters using the l2-norm rather than the l1-
norm, which, as we will see later on, leads to a closed-

form and computationally efficient solution, similar to

that of CSP. Thus, our objective function becomes:

JWOSF2(w) =
‖wT∆X1‖2
‖wT∆X2‖2

=
wT∆XT

1 ∆X1w

wT∆XT
2 ∆X2w

=
wTD1w

wTD2w

with Di = ∆XT
i ∆Xi. This is again a generalized

Rayleigh quotient, and as such, the spatial filters which

maximizes or minimizes JWOSF2 are the eigenvectors

corresponding to the largest and lowest eigenvalues ob-

tained by GEVD of matrices D1 and D2. As for CSP,

the ∆Xi matrices used in practice are the average ∆X

matrices computed for each trial of class i. It is worth

noting here the similarities between CSP and WOSF.

Indeed, both spatial filters are obtained using GEVD of

two matrices, their difference lying in the definition of

these two matrices. Once the WOSF spatial filters are

obtained, extracting feature wli for the i
th spatial filter

wi is simply achieved as follows:

wli = log(‖wT
i ∆X‖1)



4 Evaluation

We comparedWL features andWOSF to BP features

and CSP on 15 subjects, from two different EEG data

sets. This section describes these data sets, the evalua-

tion methodology and the obtained results.

4.1 Data set 1: Motor Imagery

We used data set IIa [7] from BCI competition

IV (http://www.bbci.de/competition/iv/). It comprises

EEG signals from 9 subjects who performed left hand,

right hand, foot and tongue Motor Imagery (MI). EEG

signals were recorded using 22 electrodes located above

motor areas. For the purpose of this study, only EEG

signals corresponding to left and right hand MI were

used. A training and a testing set were available for each

subject, both sets containing 72 trials for each class. For

this data set, performances were measured by optimiz-

ing the spatial filters and classifier on the training set,

and using them to predict the labels of the test set.

4.2 Data set 2: Mental Rotation

This data set was collected in-house from 6 subjects

during Mental Rotation (MR) tasks. The protocol used

was similar to that of data set 1, except that on cue

presentation, instead of performing MI tasks, subjects

were instructed to either imagine continuous rotations

of a 3D geometric figure displayed on screen or to re-

lax while fixating a dot displayed in the screen center.

EEG were collected using 15 electrodes (C3, C1, Cz,

C2, C4, F3, F1, Fz, F2, F4, P3, P1, Pz, P2, P4). Each

subject participated to 4 runs, a run comprising 20 tri-

als from each class (relax and MR), except subject B3,

who participated to 3 runs only, due to fatigue. Due

to the smaller number of trials per subject in this data

set, performances were evaluated using leave-one-run-

out cross-validation, i.e., the spatial filters and classifier

were optimized on the EEG signals from all runs ex-

cept one, and tested on this remaining run. The process

was repeated by using each run as the testing run. The

performance measure is the classification accuracy av-

eraged over each testing run.

4.3 Methods

All EEG signals were band-pass filtered in 8-30Hz,

using a 5th order Butterworth filter. Indeed, this fre-

quency band has been shown to be suitable to classify

EEG signals corresponding to both MI and MR tasks

[4]. For both data sets, for each trial, we extracted the

features from the time segment located from 0.5s to 2.5s

after the cue instructing the subject to perform a mental

task (as done by the winner of BCI competition IV, data

set IIa). With both CSP and WOSF, we used 3 pairs of

spatial filters for feature extraction, as recommended in

[3] for CSP. The 6 features hence extracted were clas-

sified using Linear Discriminant Analysis, one of the

most efficient classifier for BCI design [2].

We compared the performance of BP and WL fea-

tures extracted from all available channels, and their

performance after CSP and WOSF spatial filtering, re-

spectively. Since we expected WL features to extract

a different information from EEG signals than BP fea-

tures, we also explored whether combining them could

further improve performances. Thus, we concatenated

into a single feature vector BP and WL features ex-

tracted after CSP and WOSF spatial filtering respec-

tively. To keep a similarly low dimensionality despite

the feature concatenation, we used only 2 pairs of spa-

tial filters for both CSP and WOSF, i.e., 8 features in

total, rather than 3 pairs when they were used alone.

4.4 Results

The results described in Table 1 highlight several in-

teresting points. First, they confirmed the need for spa-

tial filtering in EEG-based BCI, with CSP and WOSF

clearly outperforming BP and WL without spatial fil-

tering. Then, they showed that WL outperformed BP

on the MR signals, whereas it obtained lower perfor-

mance than BP on the MI signals. Overall, a paired

t-test revealed no significant difference between them

(p > 0.05). More interesintgly, WOSF reached sim-

ilar performance than CSP on the MR data, and out-

performed it on the MI data. This difference was not

significant though, maybe due to the limited number

of subjects. Even more interestingly, our results sug-

gested that combining WOSF together with CSP leads

to the best classification accuracy, 80% on average, ver-

sus 77% for CSP alone, this difference being statisti-

cally significant (p < 0.05). 11 out of 15 subjects

reached their best performance using CSP and WOSF

combined. This suggests that WL and WOSF is a valu-

able feature for EEG classification as well as a robust

alernative and complement to CSP-based features.

To try to understand why WOSF might be more ef-

ficient than or complementary to CSP, it is worth look-

ing at the spatial filters obtained (see Figure 1). This

figure reveals that CSP and WOSF filters are generally

rather similar (see, e.g., subject A1), although spatial

filters leading to higher performances tend to be spa-

tially smoother and more focused. It should be men-

tioned that an EEG power increase also means an EEG

waveform length increase, which could explain the spa-



Table 1. Classification accuracy (%) obtained by each method on the two data sets
Motor Imagery Data Set Mental Rotation Data Set

subject A1 A2 A3 A4 A5 A6 A7 A8 A9 Mean B1 B2 B3 B4 B5 B6 Mean

BP 69,4 54,2 84 63,8 59,7 59 59 84,7 85,4 68,8 71,3 50 60 65 80 73,8 66,7

WL 70,8 50,7 63,9 59,7 50 59 58,3 84,7 87,5 65 81,9 53,8 67,5 62,5 80 70,4 69,3

CSP 93,1 50 96,5 70,8 56,9 68,8 80,6 93,8 92,4 78,1 93,8 59,4 68,3 66,9 85 79,4 75,5

WOSF 92,4 55,6 95,1 71,5 74,3 70,1 83,3 95,8 91,7 81,1 98,8 60,6 70,8 58,1 85,6 76,9 75,1

CSP+

WOSF 94,4 51,4 94,4 73,6 72,2 70,8 83,3 95,8 93,1 81 100 57,5 75 69,4 88,1 82,5 78,8

tial filter similarities. Naturally, the performance differ-

ence between CSP and WOSF are also due to the differ-

ent information extracted from the signals as well as to

the use of the l1-norm for WL rather than the l2-norm

for BP. Indeed, the l2-norm squaring the EEG signal

values, it tends to amplify the influence of high ampli-

tude artifacts more than the l1-norm.

Figure 1. CSP and WOSF spatial filters

5 Conclusion

In this paper, we introduced the waveform length as a

new feature for EEG classification, as well as an optimal

spatial filter for classification based on such features.

Our evaluations suggested that these WL and WOSF

algorithms are simple to use and implement, computa-

tionally efficient and provide competitive performance

with CSP. Combining WOSF with CSP even signifi-

cantly outperformed CSP alone. Thus, this approach

can potentially become a new and useful tool in the fea-

ture repertoire of EEG-based BCI designers.

The work presented in this paper opens the door to

many potential future works. For instance, WOSF be-

ing based on the same optimization framework as CSP,

namely GEVD, it could benefit from several works ex-

tending CSP, such as regularization [5], filter-bank ap-

proaches [1] or optimization based on the l1-norm [12].

It would also be interesting to study any potential theo-

retical link between WL features and time-domain pa-

rameters (TDP) [11], TDP being defined as the variance

of EEG signal derivatives. This highlights the quick

evolution potential of WL and WOSF approaches.
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