
HAL Id: hal-00718203
https://hal.inria.fr/hal-00718203

Submitted on 16 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Decentralized Monitoring of Supply Chains
Aymen Baouab, Walid Fdhila, Olivier Perrin, Claude Godart

To cite this version:
Aymen Baouab, Walid Fdhila, Olivier Perrin, Claude Godart. Towards Decentralized Monitoring of
Supply Chains. ICWS 2012 - The 2012 IEEE Nineteenth International Conference on Web Services,
Jun 2012, Honolulu, United States. �hal-00718203�

https://hal.inria.fr/hal-00718203
https://hal.archives-ouvertes.fr

Towards Decentralized Monitoring of Supply Chains

Aymen Baouab∗, Walid Fdhila†, Olivier Perrin∗ and Claude Godart∗
∗Université de Lorraine, LORIA - INRIA, - UMR 7503, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France

Email: {aymen.baouab, olivier.perrin, claude.godart}@loria.fr
†University of Vienna, Faculty of Computer Science, 1010 Vienna, Austria

Email: walid.fdhila@univie.ac.at

Abstract—Cross-organizational service-based processes are
increasingly adopted by different companies when they can
not achieve goals on their own. In order to guarantee that all
involved partners are informed about errors that may happen
in the collaboration, it is necessary to monitor the execution
process by continuously observing and checking message ex-
changes during runtime. This allows a global process tracking
and evaluation of process metrics. In this paper, we present an
approach for decentralized monitoring of cross-organizational
choreographies. We introduce the concept of External Flow
Monitoring and define a hierarchical propagation model for
exchanging external notifications between the collaborating
parties. We also introduce the concept of EFM-view which
allows partners to track the state of the choreography beyond
their own processes. The collected monitoring data can be
further used for the evaluation of global process metrics by
expressing and evaluating statistical queries over execution
traces.

Keywords-web service, choreography monitoring, cross-
organizational business process.

I. INTRODUCTION

The ability of linking cross-organizational business pro-
cesses is receiving increased attention in an ever more
networked economy [17]. Indeed, collaborative computing
grows in importance and processes have to deal with compli-
cated transactions that may take days or weeks to complete
across wide ranging geographies, time zones, and enterprise
boundaries. Organizations interact with each other forming
complex chains including multiple administrative domains
in order to drive increased business value.

Building complex distributed processes, without introduc-
ing unintended consequences, represents a real challenge.
Choreography description languages help to reduce such
complexity by providing means of describing complex sys-
tems at a higher level. The birth of a service choreography
is often determined by putting together external norms, reg-
ulations, policies, best practices, and business goals of each
participating organization. All these different requirements
have the effect of constraining the possible allowed inter-
actions between a list of partners. However, this does not
necessarily guarantee that erroneous situations cannot occur
due to inappropriately specified interactions. Thus, runtime
verification must be taken into consideration, to the aim of
checking if the actual behavior of the interacting entities

effectively adheres to the modeled business constraints.
Run-time compliance monitoring of services composition

have been a subject of interest of several research efforts
[20], [2], [1], [3], [4], [5]. Traditional monitoring approaches
consist of a central monitor which is notified by each
participant whenever an event happens (e.g. sending or
receiving a message). Nevertheless, this is mostly limited
to inner-organizational roles and may not be adaptive to
some situations specially in case of business value chains
that span across many circle of trust (i.e. there is no common
trusted party among all participants). By removing a central
authority responsible for that, it is required to distribute this
aspect among the involved participants. Thus, there is a need
to find an efficient way to enable an instant propagation
of internal exceptions across organizational boundaries. The
main purpose behind that is to enable global process track-
ing, and to guarantee that all involved partners are informed
about errors that happen as soon as possible. Indeed, the
sooner violations are detected, the better caused failures are
properly handled.

In this paper, we present an approach for exchanging mon-
itoring data between collaborating partners. Our approach
relies only on state change of choreographies (i.e. occur-
rence of a message exchange) without providing information
about the internal processes. In order to limit data exposure
and avoid bandwidth overhead, we define a hierarchical
model for selective notification propagation. We design
a new component called External Flow Monitor (EFM)
to be implemented within each participating organization.
According to the pre-defined choreography specification,
each EFM supervises all incoming and outgoing calls of its
organization and automatically exchanges notifications with
a pre-calculated subset of other participants. The collected
data can be further used for the evaluation of global process
metrics and might help business-level stakeholders gaining
insight and understanding into their business operations.

The rest of this paper is structured as follows. Section
2 illustrates our work by a motivating example. Section 3
introduces the formal definitions of choreography and related
concepts. Section 4 details our decentralized monitoring
approach while Section 5 illustrates it by a case study.
Section 6 outlines some implementation guidelines, Section
7 discusses related work and Section 8 summarizes the

contribution and outlines future directions.

II. SCENARIO AND MOTIVATION

To illustrate the motivation and concepts of our work, we
adopt the scenario of a supply chain choreography. In this
type of cross-organizational business value chains, a reseller
interacts with multiple suppliers who in turn interact with
multiple manufacturers in order to get a quote for some
goods or services.

The basic structure of such a network is presented in figure
1.

Reseller

Supplier A

Supplier B

Supplier N

Manufacturer 1

Manufacturer 2

Manufacturer n

Figure 1. Supply chain structure.

For instance, figure 2 shows a choreography involving
seven main parties: the customer (C), the reseller (R), two
suppliers (SA and SB), and three manufacturers (A1, A2,
and A3). First, the reseller receives a request for a quote
from the customer (M1). Then, it selects one of the two
suppliers and formulates a new request. In case of selecting
SupplierA (M2), manufacturers 1 and 2 are requested in
sequence (M3,...,6). In the other case (M8), manufacturers 2
and 3 are requested in parallel (M9,...,12). After getting the
final results (M7 or M13), the reseller replies the customer
(M14).

Global process tracking : In the inter-organizational
setting, each participant has concern only with the partners
immediately connected to it and cannot see beyond. Tech-
nically, a service (or a subprocess exposed as a service)
can see its providers and its consumers with which it is
making service level agreements. During runtime, it has
no information about the rest of the service choreography.
However, a service is dependent on its lower services and
might be interested in monitoring the outsourced process
fragments. In our example, the customer C only interacts
with the reseller R and cannot see beyond. After sending
its request to R, C still waits for the response without
having any information about the current state of its request.
Thus, it would be interesting to keep C notified of what is
happening during its request. Such a case shows the need
for exchanging notifications in order to enable choreography
tracking. Furthermore, exchanging notifications permits to
have a wider view on the choreography and to collect
additional monitoring data that might be used a posteriori

for measuring global process performance and controlling
the achievement of business goals.

Exceptions : Exceptions can occur at any time through-
out the execution of this choreography. The reason can be an
internal problem of one participant or an incorrect message
that differs from the one that is specified in the process
description. In the latter case, the problem can be managed
rapidly especially when using a reliable messaging protocol
between the two partners. However, in the case of an internal
error which cannot be reported back to the choreography to
be treated as a global exception (e.g. using WS-CDL[16]
exceptions), the involved participants may not be notified.
Traditionally, this kind of situation is handled by adding
confirmation calls after the end of each subprocess and/or
fixing global timeouts. However, additional calls may com-
plicate the choreography control-flow and global timeouts
are still not well adapted to the long-running collaborations.
To address this issue, it is preferable to guarantee that all
involved partners are informed about errors that happen as
soon as an internal subprocess suffer an exception.

Timeouts : Timeout represents the maximum length of
time for which a piece of software logic will continue to
wait for a certain event to occur. If that event does not
happen in the pre-defined amount of time, it will stop the
success execution flow and raise this non-occurrence as an
exception of some sort [6]. For instance, when using the
BPEL language, a timeout on a receive activity is used when
the process is waiting for an external message to arrive.
In this case, the timeout value is fixed in accordance with
the time in which the service can be expected to complete
a request under normal conditions. Typically, this kind of
information is prepared for an SLA (service level agreement)
which takes into consideration the service levels supported
by services it invokes.

In our example, each party may fix a timeout for each
invocation to indicate how long an outbound SOAP request
will wait for a result message to come back before the
participant signals an error.

In case of an internal error within the reseller or a
non reception of a response from another participant (e.g.
supplier A or B) within the fixed local timeout, the customer
remains not informed about that exception and will continue
waiting for an answer until its timeout occurs. This may not
be adaptive for such a long running collaboration.

III. CHOREOGRAPHY (GLOBAL / LOCAL VIEW)

A choreography defines re-usable common rules that
govern the ordering of exchanged messages, and the pro-
visioning patterns of collaborative behavior, as agreed upon
between two or more interacting participants [18]. In this
paper, we perceive a choreography as a description of
admissible sequences of send and receive messages between
collaborating parties. For the sake of simplicity, we omit
assignment of global variables. We use ”participant” and

Figure 2. A Supply Chain Example (BPMN 2.0 Choreography Diagram).

”partner” interchangeably. We formalize the semantics of a
choreography as follows.

Definition 1 (Choreography global view): Formally, a
choreography C is a tuple (P , I, L) where
• P is a finite set of participants (Partners),
• I is a finite set of interactions,
• L is the set of constraints on the sequencing of inter-

actions.
Every interaction i ∈ I corresponds to a certain type of

messages, and is associated with a direction of communi-
cation. Let MT be the set of message types. Formally, an
interaction is defined as follows.

Definition 2 (Interaction): An interaction I ∈ I is a tuple
(s,d,mt) where s,d ∈ P (the source and the destination of
the message), and mt ∈MT (the type of the message).

In a given choreography, two interactions are either in
strict order, in interleaving order, or exclusive to each other.
Then, the constraints specified in L are generally of three
types :
• The strict order constraint, denoted by the function
Seq(M1,M2), holds for two messages M1 and M2,
if M2 never occur before M1.

• The exclusiveness constraint, denoted by the function
Ex(M1,M2), holds for two messages M1 and M2,
if they never occur together with the same instance
identifier.

• The co-occurrence constraint, denoted by the function
And(M1,M2), holds for two messages M1 and M2, if
they occur always together in any execution trace.

The global view of a choreography specifies a high-level
view of the conversation between the participants, and can
be considered as being interpreted from an observer point
of view. The local view is derived from the global view,
and specifies the communication-relevant behavior of each
participant. Each local view only include interactions where
at least one of the communication actions (e.g. receive, send)
is executed by the participant for which the local view
is generated. It includes also the set of constraints on the
sequencing of those interactions. We define a local view as
follows.

Definition 3 (Choreography local view): A local view Ci
of a participant Pi is a tuple (Ii, Li) where
• Ii ⊆ I is a set of interactions involving Pi (i.e. having
Pi as a source or a destination):
i = (s, d,mt) ∈ Ii ⇔ s = Pi or d = Pi,

• Li ⊆ L is the set of constraints on Ii.

IV. EXTERNAL FLOW MONITORING

A traditional monitor is supposed to monitor the confor-
mance of incoming and outgoing messages choreography
of its own organization referring only to its local view. This
kind of monitoring does not allow for choreography tracking
because it is not possible to see what is happening beyond
the borders (e.g. communications between other collaborat-
ing parties). To monitor the whole choreography, proposed
solutions [20], [4], [14] consist of a central monitor which is
notified by each participant whenever an event happens (e.g.
using a publish/subscribe mechanism [14]). Nevertheless,
this may present a single point of failure and not be
adaptive when there is no common trusted party among all
participants. In order to enable cross-organizational business
process tracking in a decentralized manner, we propose a
new automated mechanism for exchanging monitoring data
between selected participants, without inducing significant
network overhead.

A. External Flow Monitor

We introduce a new component called External Flow
Monitor (EFM) which has to be deployed to each party’s
infrastructure. Each EFM is configured considering which
events it has to provide and to which EFMs. Based on each
choreography specification, notifications are automatically
exchanged across the formed interconnected network of
EFMs. A description of the EFM is shown in Figure 3.

During runtime, the choreography model is used as a basis
to transparently observe the behavior of peer-to-peer service
interaction. Our approach relies only on choreography state
changes (i.e. when a global message is sent or received)
monitoring only the interactions between the peers in an
unobtrusive way (i.e. the exchanged messages are not altered

EFM
(External Flow Monitor)

Choreography
Model

Choreography messages

External
notifications

Internal notifications

External
notifications

Design time

Figure 3. External Flow Monitor.

by the monitors and the peers are not aware of the monitors).
We provide an automated mechanism of generating and
exchanging notifications. Notifications are defined based on
the choreography model by specifying which data it should
contain, and to which partner it should be sent.

B. Notifications Exchange

For each exchanged message between two participants,
their EFMs generate each a new notification that has to
be sent to specified partners. Each notification is correlated
to a choreography message and is generated in order to
inform other partners about the occurrence of that message.
A notification is defined as follows.

Definition 4 (Notification Event): A notification n ∈ N
is a tuple (ci,t,s,d,mt) where ci is an instance identifier (used
for correlation), t is the timestamp of generation, s,d ∈ P
(the source and the destination of the associated message),
and mt ∈MT (the set of message types).

Exchanging notifications between partners induce addi-
tional traffic. In order to enable selective notification ex-
change and reduce the the additional network overhead (i.e.
reduce the number of partners that have to be notified), we
introduce a new type of relationship between the participants
of the choreography. With such a relationship, we define the
direction of each notification.

C. Hierarchical Classification of Participants

Notifications pertaining to different choreography mes-
sages of a given participant are meant to be restricted and
may be only partially interesting to a subset of business
partners. These interested partners are those viewed as con-
sumers of that participant. In a choreography, we can classify
participants hierarchically in a producer-consumer manner
to form service supply-chains of added value. In other
words, the organization of partners is performed in multiple
hierarchical layers. Putting the client (i.e. the initiator of the
choreography) on the top layer, the lowest layers consist of
a set of service providers. Then, each layer is dependent
on its lower layers and the propagation of notifications is
allowed only upward in the hierarchy. These layers denote
the visibility levels of the participants (i.e. service providers
and the client). To enable such a classification, we introduce
the notion of super/sub-partner as follows.

Definition 5 (Super / Sub Partner): A participant Pi ∈ P
is called the super − partner of a participant Pj iff the
first interaction in the local view of Pj has Pi as a sender. In
other words, Pi is responsible for the participation of Pj in
the choreography. Then, Pj is called a sub−partner of Pi.
Formally, we note : Super(Pj) = Pi . Then, Pi ∈ Sub(Pj).

It should be noticed that we assume all choreographies to
be realizable [7] with only one initiator. In a supply-chain, a
service provider may have sub-contractors which may have
also further sub-contractors making a hierarchical structure
[15]. In this way, each participant has exactly one super-
partner (except the one who initiates the choreography) and
may have many sub-partners. As such, participants can be
classified in a tree : the initiator represents the root (see
Figure 4.a).

P0

P1 P2 . . . Pn

P11 P12 . . . P1n

Super

Sub
partner

Generate
Notifications Forward

Notifications

Monitoring
View of P1

P0

P1 P2 . . . Pn

P0

P1
...

Pn

 a) General case

 b) Best case c) Worst case

Figure 4. Super/Sub-Partner Tree

Each participant notifies its super-partner by generating
new notifications (when a message is exchanged) and for-
warding those coming from its sub-partners. Using a hierar-
chical architecture permits to lower the complexity in terms
of notifications overhead. Indeed, the complexity depends
on the number of choreography messages and the number
of participants. Let d be the depth of the generated tree. For
each message, there are at most d−1 notifications that have
to be transmitted (one generation and d−2 forwards). Then,
the number of notifications is upper bounded by O(m) (m
is the number of choreography messages).

When considering the number p of participants, the
complexity in the best case (when the depth is equal to
1) is obviously linear (figure 4.b). In the average case,
our approach requires O(p.log(p)) notifications, but needs
O(p2) notifications in the worst case, when the unbalanced
tree resembles a linked list (degenerate tree) as shown in
figure 4.c.

Proof: Let c be the average number of leaves of each
node (i.e. the number of sub-partners of each participant),
m be the maximum number of messages sent by each

participant, and Ii (i ∈ [0..d]) be the level number i of the
tree. For each node (participant) in the first level I1, there is
only m sent notifications, for I2, there are 2∗m, and for Id,
there are d ∗m. Then, after multiplying by ci (which is the
average number of nodes of the level i), the total number of
notifications n is equal to i ∗ ci ∗m (with 0 < i < d) which
is upper bounded by O(d ∗ cd). We know that depth d of
a c-tree is O(logc(p)). We deduce that n is upper bounded
by O(logc(p) ∗ clogc(p)) = O(p ∗ logc(p)) if c > 1. Indeed,
c = 1 describes the worst case depicted in figure 4.c.

D. EFM-View

A local view in a choreography represents the visibility of
a business partner. Every partner is limited only to its own
view. Using such hierarchical setting, each EFM receives
notifications on any state change of all its subsequent sub-
partners. Then the EFM-view allows for a wider visibility
than the local view. The EFM-view of a participant Pi

includes interactions where at least one of the communi-
cation actions (e.g. receive, send) is performed by Pi or
all its subsequent sub-partners. It includes also the set of
constraints on the sequencing of those interactions. Formally,
we define the EFM-view as follows.

Definition 6 (EFM View): An EFM-view Vi of a partici-
pant Pi is a tuple (ISi, LSi) where
• ISi = ∪j∈sub(i)ISj ∪ Ii
• LSi ⊆ L is the set of constraints on ISi.
Note. If the participant Pi do not have sub-partners

(sub(Pi) = ∅) then we have ISi = Ii, which means that
its EFM-view is equal to its local view (Vi = Ci).

Considering the lifecycle of our monitoring solution we
can distinguish between two phases : the setup phase, and
the concrete monitoring.

E. Setup Phase

In the setup phase, we mainly identify the super of each
participant as well as the set of notifications it should send
or receive. Algorithm 1 presents a pseudocode of the setup
procedure.

Algorithm 1: Setup Algorithm
1 Require: - C: a choreography (a global view)
2 - P: a set of participants
3 for (each Pi in P) do
4 /* Identifying the Super of Pi */
5 Ii0 ← GetF irstInteraction(Pi)
6 Superi ← GetSource(Ii0)
7 SubPartners(Superi)← SubPartners(Superi) ∪

{Pi}
8 /* Define the set of needed

notifications */
9 Vi ← ConstuctNotificationSet(Pi)

10 end
11 End

Let’s C be a choreography and P the set of participants.
For each participant Pi, we look for the first partner who
initiated a conversation with it. The latter is considered as
responsible for initiating Pi in the collaboration (super of
Pi). Then, we define the set of needed notifications (i.e. that
have to be generated during runtime phase).

F. Runtime Phase

An EFM can be seen as a special case of finite state au-
tomaton whose transitions are labeled with message events.
The automaton is automatically generated from its defined
EFM- view. Starting from the initial state when the chore-
ography is locally instantiated, the current state is updated
whenever a new exchanged message is detected or an
external notification is received. As such, each EFM follows
each choreography to which its organization is participating
without modifying anything about it (i.e. the structure of the
choreography remains the same).

Algorithm 2: EFM : Runtime monitoring and notifica-
tion management

1 Require: - S: The super of the current participant
2 - V: The EFM-view
3 for (each event occurrence ei) do
4 if (ei.type 6= Exception and CheckConformance(ei))

then
5 UpdateMonitorState(ei)
6 if (ei.msrc 6= Super and ei.mdst 6= Super) then

/* Generate a new notification if ei
is not coming from/going to the
Super */

7 if (ei.type = message exchange) then
8 n← GenerateNotification(ei)
9 SendNotification(n, Super)

10 else
11 /* ei.type = notification

exchange */
12 ForwardNotification(ei, Super)
13 end
14 end
15 else
16 AlertInternalMonitor()
17 ReportExceptionTo(sub-partners(Pi))
18 end
19 end
20 End

In algorithm 2, we explain the runtime monitoring process
from a single partner view, and show how notifications and
messages are managed by each EFM. We mention that an
EFM deals with three types of events: (i) events related to
messages exchanged with other partners (i.e. choreography
messages), (ii) events related to exchanged notifications (i.e.
for monitoring purpose), and (iii) events stating exceptions.
According to the event type, the EFM behaves differently.
• If the event is a message exchange, then the EFM

checks if it is conform to its view. The conformance test

checks if the message is received or sent with respect
to the constraints on the sequencing of interactions (i.e.
order, exclusiveness and co-occurence constraints). If
the message is conform, then the monitor updates its
status in the view graph and eventually instantiates a
new notification and sends it to its super. Indeed, we
don’t need to notify the super if he is the source or
the destination of the message causing the notification.

• If the event is a notification reception, then the EFM
checks if it is conform to its view, updates its view
status and forwards the notification to its super.

• If the event is an exception generated by another
partner, then the EFM would simply forward it to its
subsequent sub-partners and treat the exception.

In the two first scenarios, if the event is not conform to the
EFM view, an exception is raised, the internal monitor is
alerted and all its sub-partners are notified. Each sub-partner
propagates the exception to its sub-partners according to the
Super/Sub-partner tree. It should be noted that the super and
its subsequent supers would detect the error automatically
and do not need to be notified since they will be blocked in
their view graphs.

V. CASE STUDY: SUPPLY CHAIN CHOREOGRAPHY

As an evaluation, we applied our approach on the supply
chain choreography introduced in Section II. The local views
of the reseller and the two suppliers are shown in figure 5.
For the sake of space, we omit the local views of the other
participants.

R->SB:Po

SB->A3:RspSB->A2:Req

<parallel>

A2->SB:Snd

C->R:Snd

<Choice>

R->SB:Po

SA->R:Sfr

R>SA:Po

SA->A1:Req

A1->SA:Snd

Reseller (R)
Supplier A (SA)

Supplier B (SB)

Start
super= R

Start
super= R

M1
M2

M8

M13

M7

N3
N4
N5

N6

Start
super= C

R->C:RepM14

R->SA:Po

SB->R:Sfr

SA->A2:Req

A2->SA:Snd

SA->R:Sfr

A3->SB:Snd

SB->R:Sfr

M3

M4

M11

M12

M5

M6

M9

M10

N9
N10
N11

N12

N2
N3

N13

Figure 5. Local Views (Reseller, Supplier A and B).

After the execution of Algorithm 1, the first interac-
tion of each local view defines the Super of each party.
Then we have Super(R) = C, Super(SA) = R, and
Super(SB) = R. The customer C, which is the initiator
of the choreography, has no Super. Afterwards, the set of
needed notifications to be sent to each Super is automati-
cally defined in each party. In this case, we discern twelve
definitions of notifications N2,...,13 associated, respectively,
to the defined choreography messages M2,...,13.

? M1
<Choice>

? N3
! M8

? N4? N11? N9
<parallel>

? N10

? M7

! M2

? N5
? N6

? N12

? M13

! M14

Figure 6. Reseller’s Monitoring View.

Figure 6 shows the generated EFM-view of the reseller
(R). For sake of space, each interaction is labeled with either
a send action (prefixed with ”!”) or a receive action (prefixed
with ”?”). We remark that the manufacturers A1, A2, and
A3 do not have sub-partners (sub(Ai) = ∅) then their EFM-
views are equal to their local views (VAi = CAi).

Local constraints on each participant behavior can be
re-enforced by its super. For instance, the co-occurrence
constraint for the two messages M9 and M11 that can
be enforced by applying And(M9,M11) on the Supplier
B (SB) can be further verified by the EFM of R using
And(N9, N11).

Figure 7 sketches an example of execution and the set of
sent notifications between the partners. ci1 is the instance
identifier. τi represents a timestamp associated with the
occurrence time of the message Mi (either its reception or
sending time). A timestamp is a mandatory attribute to verify
the ordering of the messages.

VI. IMPLEMENTATION GUIDELINES

In order to present the concept in a technology-
independent way, we prefer to outline a general architecture
rather than describing technical details related to any service
choreography language. We propose to extend any organiza-
tion architecture with two components : the External Flow
Controller and the External Flow Monitor (Figure 8).

The External Flow Controller (EFC): is responsible
for the control and the conformance verification of the ex-
changed choreography messages according to the local view.
Two types of control are depicted: (i) incoming message

Customer
(C)

Reseller
(R)

Supplier B
(SB)

Manufacturers
(A2)(A3)

M1:Send Order

M8:Place Order
M9, M11:Request parts

N8(ci1, τ8, R, SB, PO)

N9(ci1, τ9, SB, A2, RP)

N13(ci1, τ13, SB, R, SF)

M14:Reply

M12:Send ResultsN12(ci1, τ12, A3, SB, SR)
N11(ci1, τ11, SB, A3, RP)

M10:Send Results

M13:Send F. Results
N10(ci1, τ10, A2, SB, SR)N10(ci1, τ10, A2, SB, SR)

N12(ci1, τ12, A3, SB, SR)
N11(ci1, τ11, SB, A3, RP)
N9(ci1, τ9, SB, A2, RP)

Figure 7. Example of a Successful Scenario.

control in order to restrict the access to internal resources
taking into account the context of the call and the control-
flow of the involved inter-organizational process, and (ii)
outgoing message control used to prevent from divulging
sensitive information in unexpected ways (i.e. without a
consistent inter-organizational process context). This aspect
is not covered in this paper. More details can be found
in our previous work [3]. Furthermore, the EFC generates
a notification whenever a received or sent choreography
message is validated. The generated notification is then
locally sent to the EFM.

Organization A

Local workflow engine

Event Consumers
(Internal Monitor

Dashboards)

 - Interception
 - Detection
 - Notification

EFM
External Flow

Monitor

EFC
External Flow

Controller
 Event

producer

Internal events

Choreography
 eventsExternal

notifications

Chreo-
graphy

messages

Organization C

EFC

EFM

Organization A

EFC

EFM

Organization B

EFC

EFM Cross-
organizational
Chreography

Chreography
messages
External
notifications

Figure 8. Conceptuel Reference Architecture.

Event correlation –: During the execution phase, we
may have several instances of different defined choreography
models. Obviously, we need to correlate notification events

belonging to the same instance. The most common solution
to deal with this issue is to define two identifiers that have
to be contained on each message (e.g. included in the SOAP
header): The choreography ID (a unique identifier for each
choreography model) and the choreography instance ID (a
unique identifier for each choreography instance). Since
each choreography message passes through the EFC, this
component may be adapted to include and read the identifier
whenever a choreography message is exchanged.

Event timestamps –: Time is a critical issue in monitor-
ing cross-organizational processes where a set of monitors
communicate through message exchange and do not have
access to a global clock. Nonetheless generated notification
events have to be timestamped and a common time is
required to analyze the acquired monitoring data. To deal
with this issue, Clock Synchronization Algorithms [19] may
be adopted. Without setting a global clock, an alternative
solution is to send the time separating two consecutive events
instead of sending time of occurrence of each event.

VII. RELATED WORK

Run-time monitoring of services composition have been a
subject of interest of several research efforts. In this section
we want to outline some of the most relevant contributions
with the aim to provide a distinction to our work.

Subramanian et al. [10] presented an approach for en-
hancing BPEL engines by proposing a new dedicated engine
called ”SelfHealBPEL” that implements additional facilities
for runtime detection and handling of failures. This approach
may have a negative impact on performance and agility since
there is no separation between monitoring logic and the
BPEL engine. Barbon et al. [11] proposed an architecture
that separates the business logic of a web service from the
monitoring functionality and defined a language that allows
for specifying statistic and time-related properties. However,
their approach focus on single BPEL orchestrations and
do not deal with monitoring of choreographies in a cross-
organizational setting. Ardissono et al. [20] presented a
framework for supporting the monitoring of the progress
of a choreography in order to ensure the early detection of
faults and the notification of the affected participants. The
approach consists on a central monitor which is notified by
each participant whenever he sends or receives a message.
Nevertheless, this approach is centralized and therefore not
well adapted to inter-organizational choreographies specially
when there is not a common trusted party among all partic-
ipants.

In case of decentralized processes within the same or-
ganization (or within a circle of trust), Chafle et al. [4]
have modeled a central entity as a status monitor which
is implemented as a web service. On each partition, a local
monitoring agent captures the local state of the composite
service partition and periodically updates the centralized
status monitor. The status monitor maintains the status of

all the activities of the global composite service. However,
under high loads, maintenance of global state at one place
can become a bottleneck. In [5], the authors introduce
the concept of monitor-based messenger (MBM), which
processes exchanged messages through a runtime monitor.
Each local monitor stamps its outgoing messages with the
current monitor state to prevent desynchronizations, provide
a total ordering of messages, and offer protection against
unreliable messaging.

Regarding event-centric perspectives, process monitoring
solutions focus on intra-organizational processes and are
mostly based on Business Activity Monitoring (BAM) tech-
nology [12]. To the best of our knowledge, only two event-
centric approaches deal with monitoring cross-organizational
choreographies. The first one [13] uses a common audit
format which allows processing and correlating events across
different BPEL engines. The second approach [14] intro-
duces complex event specification and uses a choreography
instance identifier (ciid) to deal with event correlation (which
is not supported in [13]).

Our introduced event based framework allows for run-
time decentralized monitoring of choreographies that are
deployed across organizational boundaries. In contrast to the
previously mentioned works, we rather focus on providing
an automated and decentralized mechanism for exchang-
ing notifications across the involved partners according to
specific rules that can be automatically generated from the
choreography specification.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach for monitoring
global state change of cross-organizational choreographies.
We introduced the notion of External Flow Monitoring and
defined an hierarchical propagation model for exchanging
external notifications between the collaborating parties in
order to limit data exposure and avoid bandwidth overhead.
The generation of notifications relies on state change of
choreographies allowing to transparently observe the exter-
nal behavior of each participant without providing informa-
tion about the internal processes.

Future work will aim at extending our proposed archi-
tecture by a new component to manage the actions to
be undertaken if an exception is detected (e.g. constraint
violation, message/notification redundancy, deadlock, etc.).
We also plan to address privacy issues using role based
monitoring to avoid critical information disclosure.

REFERENCES

[1] O. Moser, F. Rosenberg, and S. Dustdar, “Event driven
monitoring for service composition infrastructures.” in WISE.
Springer, 2011, pp. 38–51.

[2] A. Francalanza, A. Gauci, and G. Pace, “Runtime monitor-
ing of distributed systems (extended abstract),” University of
Malta, Tech. Rep., 2010, wICT.

[3] A. Baouab, O. Perrin, and C. Godart, “An event-driven ap-
proach for runtime verification of inter-organizational chore-
ographies,” in 2011 IEEE International Conference on Services
Computing (SCC), july 2011, pp. 640 –647.

[4] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda,
“Decentralized orchestration of composite web services,” in
Proceedings of the 13th international World Wide Web con-
ference, ser. WWW. NY, USA: ACM, 2004, pp. 134–143.

[5] S. Halle and R. Villemaire, “Flexible and reliable messaging
using runtime monitoring,” in Enterprise Distributed Object
Computing Conference Workshops, 2009. EDOCW 2009. 13th,
sept. 2009, pp. 116 –125.

[6] A. Tost, “Planning and handling timeouts in service-oriented
environments,” in IBM WebSphere Developer Technical Jour-
nal, 2009.

[7] N. Lohmann and K. Wolf, Realizability Is Controllability, ser.
Lecture Notes in Computer Science, C. Laneve and J. Su, Eds.
Springer Berlin Heidelberg, 2010, vol. 6194.

[8] M. Montali, F. Maggi, F. Chesani, P. Mello, and W. van der
Aalst, “Monitoring business constraints with the event calcu-
lus,” in Technical report, Universita degli Studi di Bologna,
2011.

[9] A. Awad and M. Weske, “Visualization of compliance violation
in business process models,” in Proc. BPI09, 2009.

[10] S. Subramanian, P. Thiran, N. Narendra, G. Mostefaoui,
and Z. Maamar, “On the enhancement of bpel engines for
self-healing composite web services,” in Applications and the
Internet. SAINT 2008., 2008, pp. 33 –39.

[11] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
time monitoring of instances and classes of web service
compositions,” Web Services, IEEE International Conference
on, vol. 0, pp. 63–71, 2006.

[12] A. Dahanayake, R. J. Welke, and G. Cavalheiro, “Improving
the understanding of bam technology for real-time decision
support,” Int. J. Bus. Inf. Syst., vol. 7, pp. 1–26, 2011.

[13] S. Kikuchi, H. Shimamura, and Y. Kanna, “Monitoring
method of cross-sites’ processes executed by multiple ws-bpel
processors,” in CEC/EEE 2007, 2007, pp. 55 –64.

[14] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, and
D. Zwink, “Cross-organizational process monitoring based on
service choreographies,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. New York,
NY, USA: ACM, 2010, pp. 2485–2490.

[15] I. ul Haq, A. Huqqani, and E. Schikuta, “Aggregating hierar-
chical service level agreements in business value networks,” in
Business Process Management. Springer Berlin / Heidelberg,
2009, pp. 176–192.

[16] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. La-
fon, and C. Barreto. Web services choreography description
language version 1.0. W3C. Available from:, 2005.

[17] P. Grefen, “Towards dynamic interorganizational business
process management,” Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE, 2006.

[18] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. La-
fon, and C. Barreto, “Web services choreography description
language version 1.0,” W3C. Available from:, 2005.

[19] E. Anceaume and I. Puaut, “A Taxonomy Of Clock Synchro-
nization Algorithms,” 1997.

[20] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Seg-
nan, “Monitoring choreographed services,” in Innovations and
Advanced Techniques in Computer and Information Sciences
and Engineering, CISSE 06, pp. 283288, 2006.

